Lecture 4 - January 23rd, 2023
Prof. Prashant Pandey
Scribe: Joe Rodman

1 Overview

In the last lecture we learned about x -fast and y -fast trees.
In this lecture we learn about Succint Data Structures.

Some Logistics:

- Paper Report - The paper report is due today, January 23rd 2023
- Scribing - Everyone must sign up to scribe for a lecture. Email the TA to choose a date. The schedule on the class website shows the available dates. You must sign up for a lecture by the start of next class (Wed january 25th) or you will randomly be assigned a date
- Assignment 1 - Assignment one is due next week. Start early as there are plenty of edge cases to cover. The hope is that the assignment will help you better understand VEB Trees
- Guest Lectures - We will have three guest lectures this semester - one on ANN (approximate nearest neighbor problem), one on ESH, and one on Succinct Data Structures

2 Succinct Data Structures

GOAL: Store data as compactly as possible. Store N items in a "small space" (often a static space). We try to get as close to the theoretical optimum (OPT) as possible. In more simple terms, instead of using $\mathrm{O}(\mathrm{n})$ words to store the data, succinct data structures try to store the data in $\mathrm{O}(\mathrm{n})$ bits
** o(OPT) means less than or equal to OPT
The three types of data structures we will go over are:

- Implicit - Space $=\mathrm{OPT}+\mathrm{O}(1)$. An example of an implicit data structure is a sorted array representation of a binary search tree
- Succinct - Space $=\mathrm{OPT}+\mathrm{o}(\mathrm{OPT})$. In other words at most $2^{*} \mathrm{OPT}$
- Compact - Space $=\mathrm{O}(\mathrm{OPT})$. A Binary Search Tree is an example

2.1 Level Order Traversal of Binary Tries

GOAL: Succinctly represent tries

Method: Iterate through nodes in level order, and for each one, we write down 2 bits. 11 represents a node with a left and a right child, 10 represents just a left child, 01 represents just a right child, and 00 represents a leaf node.

Reminder: The level order traversal of the above tree is ABCDEFG

Result: 11011101000000
We add a leading 1 bit to represent the parent node, and the result uses $2 \mathrm{~N}+1$ bits: 111011101000000

Question: How can we find the index of the leftIndex and rightIndex nodes of a node?

Answer: We use the equations leftIndex $=2 \mathrm{i}$ and rightIndex $=2 \mathrm{i}+1$

Example: Take node D, with index 4 (in the level order traversal). The left node of D is index $2^{*} 4=8$, and the right node is at index $2 * 4+1=9$. Looking at the binary representation, index 8 is a 0 and index 9 is a 1 , which represents the node G

2.2 Rank and Select

$\operatorname{Rank}(i):$ the number of 1's at or before index i

Rank Ex: In the previous binary representation of the trie, $\operatorname{Rank}(9)=7$

Select(j): the index of the jth bit set to 1

Select Ex: In the previous binary representation of the trie, $\operatorname{Select}(4)=5$

Assumption: If we can do these operations in constant time on an n-bit string, we could represent a binary trie that supports the three important operations: leftNode, rightNode, and parentNode using the following equations.

- leftChild $=2 \operatorname{rank}(\mathrm{i})$
- rightChild $=2 \operatorname{rank}(\mathrm{i})+1$
- parent $=\operatorname{select}(\mathrm{i} / 2)$

The Rank Algorithm Note that this is taken directly from the textbook because I didn't fully understand what was discussed in class.

Rank This algorithm was developed by Jacobsen, in 1989 [2]. It uses many of the same ideas as RMQ. The basic idea is that we use a constant number of recursions until we get down to sub-problems of size $\mathrm{k}=\log (\mathrm{n}) / 2$. Note that there are only $2 \mathrm{k}=\mathrm{n}$ possible strings of size k , so we will just store a lookup table for all possible bit strings of size k . For each such string we have $\mathrm{k}=$ $\mathrm{O}(\log (\mathrm{n}))$ possible queries, and it takes $\log (\mathrm{k})$ bits to store the solution of each query (the rank of that element). Nonetheless, this is still only $\mathrm{O}(2 \mathrm{k} \cdot \mathrm{k} \log \mathrm{k})=\mathrm{O}(\mathrm{n} \log (\mathrm{n}) \log \log (\mathrm{n}))=\mathrm{o}(\mathrm{n})$ bits.

First Attempt We will split the bit string into $n / \log 2(n)$ chunks of size $\log 2(n)$. To find $\operatorname{rank}(\mathrm{i})$, we need to find (rank of i in its chunk) + (number of 1 's in all preceding chunks). We will show how to find $\operatorname{rank}(\mathrm{i})$ within a chunk. But we also need, for each chunk, the total number of 1 's among all of the preceding chunks. There are $\mathrm{n} / \log 2(\mathrm{n})$ chunks, and for each of them we have to store a number (with $\log (\mathrm{n})$ bits). So we can store all the data using $\mathrm{O}(\mathrm{n} / \log \mathrm{n})$ bits which we can afford.

Second Attempt Now we have chunks of size $\log 2 \mathrm{n}$. The solution is to use one more level of recursion. We will split into $2 \mathrm{n} / \log (\mathrm{n})$ subchunks of size $\log (\mathrm{n}) / 2$. The rank within the subchunks can be found using the lookup table. The problem is to find the number of one bits in the preceding subchunks. Note that we have $2 \mathrm{n} / \log \mathrm{n}$ subchunks. But the number of ones in the preceding subchunks is not more than $\log 2 \mathrm{n}$ because we are within a chunk of size $\log 2 \mathrm{n}$. So we can store each of these $2 \mathrm{n} / \log \mathrm{n}$ numbers by $\mathrm{O}(\log \log (\mathrm{n}))$ bits. So the total space of this part is $\mathrm{o}(\mathrm{n})$ as well.

References

[1] G. Franseschini, R.Grossi Optimal Worst-case Operations for Implicit Cache-Oblivious Search Trees, Prooceding of the 8th International Workshop on Algorithms and Data Structures (WADS), 114-126, 2003
[2] G.Jacobson Succinct Static Data Structures, PHD.Thesis, Carnegie Mellon University, 1989. J. Comput. Syst. Sci., 58(1):137-147, 1999.

