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1 Overview

In the last lecture we looked at the theory behind the expected guarantees of consistent hashing [1].

In the lecture, we explore the ideas behind constructing a concurrent and resizable hashtable.

2 Concurrent and Resizable Hashing

1. Concurrent: Multiple threads are allowed to query and update the hash table at the same
time. Locking mechanisms may be used for synchronization.

2. Resizable: The number of slots a hashtable uses is updated during the life of the hashtable.
Might require rehashing existing items to the new number of slots.

Note, we are discussing concurrent and resizable hashtables on a single machine, and not in a
distributed setting.

2.1 Why Concurrency?

Concurrency increases the throughput and efficiency of hashtable operations by allowing simulta-
neous operations and also takes advantage of multicore CPUs.

Concurrency is typically implemented by having threads acquire a reader/writer lock on the
hashtable slot being modified.

2.2 Why Resize?

Load factor of a Hashtable is defined as

load factor =
number of elements in a hash table

number of slots in a hash table

As the load factor of the hashtable increases, the efficiency of hashtable decreases. This is due to
the chance of collisions increasing. More collisions results in more items being allocated to the same
bucket, which consequently results in lower efficiency of hashtable operations.

Resizing the hashtable by increasing the number of slots will decrease the load factor. A typical
strategy for resizing would be ”Double the slots of a hashtable when the load factor of the
hashtable crosses 70%”.
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3 Challenges of Concurrent and Resizable Hashing

3.1 Resizing process

1. Allocate a new hashtable with a greater number of slots. This new larger hashtable is using
a new hash function.

2. Scan the smaller hashtable and map the key to the newer hashtable.

3. Once all the keys are transferred to the newer hashtable, deallocate it.

3.2 Resizing in a concurrent environment

While the hashtable is being resized, in a concurrent setting updates to the hashtable must either
be

• Stop the world strategy: Acquire a lock on the whole hashtable which will stall all other
threads except the resizing thread.

• Write-on-copy: Let the other threads operate on the older hashtable as it normally. The
resizing thread is a read-only thread on the older hashtable so should not block operations
on the older thread. Once resizing is done, shift over to the new hashtable completely and
sync missing keys to the new hashtable in a separate thread

Both strategies have problems.

The Stop the world strategy kills performance as updates to the hashtable are stopped, though
reads could still be serviced. The Write-on-copy has a more complicated implementation, Dirty
keys in the older hashtable during resizing must be tracked. During the sync operation, both
hashtables must be queried, resulting in read performance being killed.

Both strategies suffer from having a large Max Resident Set Size as both the old and new
hashtables must be kept in memory.

4 Using ideas from Consistent Hashing for Concurrent and Re-
sizable hashing

The fundamental issue affecting scalability is the large number of keys needing to be rehashed.
This is a similar problem to the one described in Consistent Hashing [1] paper, where all keys in a
distributed node must be rehashed whenever the set of caches are updated.

Instead of having the buckets of a hashtable continuous, let them be a non-contiguous blocks
indexed by a table that is small enough to fit in a L3 cache. Now the buckets of a hashtable are
analogous to cache nodes in a distributed setting described in the consistent hashing paper.
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4.1 Fingerprint directory

Chord[2], which is a distributed hash table based on consistent hashing maintains a fingerprint
table for each node mapping buckets to machines. Our design is not distributed, so we will have a
single index that maps all bucket ids to memory pointers.

This fingerprint index will have n entires which are pairs. FP [i] = (bi, pi) is the entry of the i slot
out of n slots. bi is the bucket id of the i slots. The i bucket stores all keys k whose bi > h(k) > bi−1.
pi is a memory pointer where the keys of bucket i are stored.

We will have a function find bucket(h(x)) that returns pi, the pointer to the bi in which h(x) is
stored.

Again, the key assumption is that FP is small enough to fit in a L3 cache. This assumption makes
find bucket fast.

4.2 Read/Write Path

The read/write path is exactly the same as the consistent hashing.

For a key k that needs to be read/write in a hashtable

1. Compute h(k)

2. Use find bucket(h(k)) find the pointer to the bucket h(k) belongs to.

3. Read/Update k in the bucket.

4.3 Resizing strategy

When a bucket bi crosses a threshold number of keys, it has to be resized. This threshold is usually
a small constant, as we want all the keys in a bucket to fit a cache line.

So to resize a bucket

1. Acquire a write lock on the bucket bi being resized.

2. Add a new bi−1 > b̂ > bi bucket. Allocate space for it and get a pointer p̂ for it. Insert this
entry into FP , while also keeping a lock on this new bucket.

3. Redistribute the keys of bi among b and b̂.

4. Release the locks.

There are other smaller details, that need to be taken care of. Keys which go to bi during resizing
must be cognizant of the fact that b̂ is also available - maybe this could be done by holding a lock
on find bucket when a new bucket is being added.
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4.4

The above design was discussed as a thought experiment, but the advantages are that it has the
best of both the stop-the-world and write-on-copy strategies.

1. No need to lock the entire table as we use fine grained locks on the buckets.

2. Max resident size is minimal, we only allocate new space for a bucket.

Potential issues that are unexplored are

1. Fingerprint FP table find bucket implementation needs to be fast. The assumption is that
because it is small enough to fit in a L3 cache, this assumption will hold.
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