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1 Overview

In the last lecture we discussed van Emde Boas Trees, which provide the following operational
complexities with a dataset of size n from a universe of size U :

VEB Tree

Insert/Delete O(log logU)
Successor/Predecessor O(log logU)

Find O(log logU)
Space Θ(U)

In this lecture our objective is to alter the data structure so that it requires only Θ(n) space. In
section 2 we will complete our discussion of VEB Trees by describing the Insert operation. In
section 3 we will review some Prerequisite data structures. In sections 4 and 5 we will discuss
X-Fast and Y-Fast Trees.

2 VEB Trees: Insert

In this section we discuss the insertion of elements into a VEB Tree. Consider the following
pseudocode:

Algorithm 1: VEB Tree Insert

Input: VEB Tree v and item x
1 if v.min is NONE then
2 v.min = x;
3 v.max = x;

4 if x < v.min then
5 swap x and v.min;

6 if x > v.max then
7 swap x and v.max;

8 if v.cluster[high(x)].min is NONE then
9 Insert(v.summary, high(x));

10 Insert(v.cluster[high(x)], low(x));

Note that the minimum and maximum values in a cluster should only be stored in the min and
max properties, not in the cluster itself. In this way we guarantee that insertion only requires
one non-trivial recursive call. Thus, our recurrence relation is T (U) = T (

√
U) +O(1), yielding the

desired O(log logU) runtime.
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3 Prerequisite Review

3.1 Linked Lists

Our goal in this lecture is to reduce the space complexity of VEB Trees to Θ(n) without sacrificing
efficiency in the insertion, deletion, successor, and predecessor operations. We therefore must avoid
storing empty space, so we will implement our data structure on top of a linked list.

Recall that, given a pointer to the predecessor of x, inserting x into a singly linked list is a constant
time operation. Less obviously, deletion of x is also a O(1) operation given a pointer to the successor.
This is accomplished by swapping data with the successor node and then deleting it.

Thus the complexity of insertion and deletion into a singly linked list depends only on the complexity
of successor and predecessor operations.

3.2 Tries

A Trie (prefix tree) is a tree which stores words over some alphabet A by letting each node represent
a prefix determined by a traversal from the root. Thus, each node has up to |A| children, and during
a traversal the choice of child represents a choice of the next character in the prefix.

The space required is O(|A|
∑

i length(wi)). In our context we are considering n bitstrings of equal
(logU) length, so this space complexity becomes O(n logU). For more detail consider reviewing
chapter 8 of the textbook by Peter Brass [1]. Here is an example with n = 4, U = 25. Note that
when the words have uniform length, the data are the leaf nodes of the trie.
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4 X-Fast Trees

X-Fast trees are an intermediate data structure offering the following performances:

X-Fast Tree

Insert/Delete O(log n) (amortized)
Successor/Predecessor O(log logU)

Find O(log logU)
Space O(n logU)

4.1 X-Fast Trees: Structure

In an X-Fast tree, our n elements are stored in a sorted doubly-linked list. Additionally, the nodes
of this linked list are exactly the leaf nodes of a trie. Each node in the trie gets pointers to its
rightmost and leftmost descendants (which are both nodes in our linked list).

Finally, each of the logU + 1 levels of the trie gets an associated hash table, which stores the
answers to existence queries for each possible node at that level.

4.2 X-Fast Trees: Find

The find operation is simple: query the hash table associated with the bottom level of the trie.

4.3 X-Fast Trees: Successor/Predecessor

Recall that we represent each x ∈ U as a bitstring. Then it is natural to consider the sequence of
logU prefixes of an element x, of lengths 1, 2, ... logU . If x is in our structure, then each prefix is
associated with a node in the trie, and each of those nodes is at a different level.

Thus, for x ∈ U , we can find the longest existing prefix of x in O(log logU) time by performing
a binary search on the prefix list, using the set of hash tables. Once we have found this longest
existing prefix, we can find the successor or predecessor in constant additional time with minimal
logic using the pointers to the leftmost and rightmost descendants.

Assume for the moment that x is not already in our data structure (if it is, just use the linked list).
Once we have found the longest existing prefix of x, we know that the associated node in the trie
has exacrtly one child. If this is a right child, then the successor is the longest existing prefixs’s
leftmost descendant, which we access in constant time using the aformentioned pointer. If the child
is a left child, then the predecessor is the longest existing prefix’s rightmost descendant. Once we
have found one, we can find the other by using the pointers in the linked list.

X-Fast Trees: Space

Each existing element requires logU nodes in the trie, one for each prefix. Then the worst case
is where our n elements have few overlapping prefixes. Therefore we need O(n logU) space (note
that the hash tables and pointers are linear in the size of the trie).
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5 Y-Fast Trees

X-Fast trees improved our space consumption to O(n logU), but there is still work to be done to
reach the desired O(log logU). Additionally, X-Fast Trees have worse Insert/Delete performance
than VEB Trees. The solution to both of these problems is the Y-Fast Tree:

Y-Fast Tree

Insert/Delete O(log logU)
Successor/Predecessor O(log logU)

Find O(log logU)
Space Θ(n)

The key idea of the Y-Fast tree is to divide our large universe U into a number of smaller universes,
such that for each relevant operation we can (a) efficiently choose the relevant small universe and
(b) efficiently complete the operation in the chosen small universe.

Y-Fast Trees: Structure

The data is divided into O(logU) balanced BSTs constructed from contiguous items. Each BST
submits a representative item to be stored in an X-Fast Tree. Thus the X-Fast Tree contains
O( n

logU ) elements.

Y-Fast Trees: Operations

The selection of the representatives is important, but was beyond the scope of material covered in
our lecture. For more detail, consider reading the original paper [2]. In general, the idea is to use
successor and predecessor queries on our X-Fast Tree of data representatives to identify which BST
we should complete our operation in.

Since each leaf node of the trie points to a BST of size O(logU), each of our operations of interest
require O(log logU) time once we have found the appropriate leaf node. Thus, for any of our
operations we need only O(log logU) time.

Y-Fast Trees: Space

The associated X-Fast Tree has size O( n
logU ), and therefore requires

O(
n

logU
logU) = O(n)

space.

Additionally, the collection of BSTs only stores a total of n elements, so the entire Y-Fast tree
requries O(n) space.
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