CS 6968: Scalable Algorithms
Spring 2023
Lecture 19: Distributed Hash Tables cont. - April 13th, 2023
Prof. Prashant Pandey
Scribe: Todd Thornley

1 Overview

In the last lecture we discussed various issues and design concerns with distributed hash tables, ending with a discussion of Chord.

In this lecture we look into some questions from the previous lecture and discussed concepts from the Distributed Hashing paper.

2 Skew/Load Factor

For N items on M machines using hash function H, the expected number of items on a machine M is:

$$
N / M
$$

w.h.p. the number will be:

$$
O(\lg (N) / \lg \lg (N))
$$

if $N=M$ per balls in bins.

Load factor is defined as $\frac{\text { total items }}{\text { possible storage }}$

3 Consistent Hashing

- There are \mathbf{M} items such that each of them needs to be stored in one of the \mathbf{N} distributed machines
- Recal. hash functions

2 -wise independent hash function
$H=\left\{h_{a, b} \mid a \in\{1 \ldots p-1\}\right.$ and $b \in\{0,1,2 \ldots p-1\} \mid$ where $h_{a, b}(x)=(a x+b \bmod P) \bmod n$

- Using a 2 -wise independent family of hash functions we can create a perfect hash
- Perfect hashing only works well if the number of machines does not change
- If the number of machines changes:

Figure 1: Consistent Hashing Diagram. Data is placed clockwise or to the right.

1. Change the n in $h_{a, b}$ to n^{\prime} to get $h_{a, b}^{\prime}$: By doing so almost all items will need to be moved to a new machine.
2. Keep n unchanged:

Thus no moving, but the new machine will go unused creating imbalanced load.

- A strategy is needed that does not incur a lot of rehashing while also keeping the load balanced across all machines.

3.1 Basic Idea

Each machine and item is mapped to a random real number in the interval $[0,1]$

- Store the item in the successor of the item's hash position
- The successor is the first machine "on the right"
- If there is no machine "on the right", the successor is the machine with the smallest number. (Wrap around to the beginning, see figure 1)

3.2 Implementation

- To dynamically maintain machines and we need binary search trees whose keys are the values assigned to the machines.
- Let h_{i} and h_{m} be respective hash functions that we use to hash items and machines in the interval $[0,1]$

3.2.1 Insert

- Find the successor of $h_{i}(x)$ in the BST
- Store x in returned machine

3.2.2 Delete

- Find the successor of $h_{i}(x)$ in the BST
- Delete x in returned machine

3.2.3 Node Up

- There may be items in the successor of $h_{m}(y)$ that belong in y
- Find the successor of $h_{m}(y)$ in the BST
- Move all items whose h_{i} value is greater than $h_{m}(y)$ to y .

3.2.4 Node Down

- Find the successor of $h_{m}(y)$ in the BST
- Move all items in value is greater than $h_{m}(y)$ to returned node.

3.3 Bounds

Lemma 1:
w.h.p. no one machine has more than $O(l g(n) / n)$ as a fraction of items

Proof:

Find some interval I of length $\frac{2 l g(n)}{n}$

- $\operatorname{Pr}[$ no machine lands in I$]=\left(\frac{1-2 l g(n)}{n}\right) \approx \frac{1}{n^{2}}$ by union bound
- Equally split $[0,1]$ into $\frac{n}{2 l g(n)}$ such intervals
- $\operatorname{Pr}[$ every interval has at least 1 machine $]=1-\frac{n}{2 \lg (n)} * \frac{1}{n^{2}}>1-\frac{1}{n}$
- w.h.p. each machine owns an interval of length at most $\frac{c * l g(n)}{n}$

Bibliography.

References

[1] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, Rina Panigrahy Consistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on the World Wide Web. Symposium on Theory of Computing, 29(1):654-663, 1997.

