
CS 6968: Data Str & Alg Scalable Comp Spring 2023

Lecture Streaming Graphs Incremental Computations — 3/29, 2023

Prof. Prashant Pandey Scribe: James McMahon

1 Overview

In the last lecture we covered different representations of graphs and their trade offs.

In this lecture we discussed streaming graphs and different approaches to implementing them

2 Streaming Graphs

Streaming Graphs receive a stream of queries/updates and must process both with low latency.

Things that we want in a Streaming Graph:

• small space

• high concurrency

• low cost of updates/queries

Existing Streaming Graphs processing frameworks are divided into two types:

• Phased – Process updates/queries in phases, i.e: updates wait for existing queries to finish.
(single writer or multiple readers)

• Concurrent – single writer and multiple readers(on previous snapshot). Snapshots represent
the graph at a specific point in time. Queries are isolated and run on a snapshot and updates
generate new snapshots.

The following sections describe different systems/implementations of streaming graphs:

2.1 Stinger: Ediger et al. HPEC 2012 [3]

• Stinger uses fine grained locking, this was good in 2012, but with the locking and high
overheads it starts to suffer.

• Stinger uses an adjacency list, specifically Compressed Sparse Rows (CSR).

• Stinger supports point updates (can be concurrent)

1



2.1.1 LLAMA: Mackeo et al. ICDE 2015 [2]

• Supports batch processing (more like a phased approach)

• single writer, multiple readers

• each batch of updates take a snapshot. O(N) + O(k) extra space needed for every snapshot
(N = number of nodes, k = number of edge updates in this batch)

• also uses CSR

2.1.2 Aspen: Dhulipala et al. PLDI 19 [1]

• snapshot based system

• supports batch processing

• uses a purely functional balanced search tree

– In a purely functional tree, acquiring a snapshot is like acquiring a pointer to the root
of the vertex tree. (there is one pointer to the whole structure, updating the pointer can
point to a different structure)

• It uses a tree of trees model.

– First, there is a search tree over vertices

– Second, for each vertex, there is a search tree over incident edges.

Compared to CSR Aspen uses a structure called a C-Tree. It is a probabilistic tree that is in
between Binary and B trees. For all items in a tree, use a hash function to get approximately N

B
items.
H:k →{0...N}
N
B items→ heads

Everything that is in between the heads is a chunk:

2



The height of a C-Tree is log N
B

Serializability: Operations/Queries occur in a specific order. It is fine if the result of a query
is received at a later step, but we want to ensure that we see everything that occurred before
us, and not anything that occurred after, the end result needs to be a single order of operations.

References

[1] Laxman Dhulipala, Guy E. Blelloch, Julian Shun Low-latency graph streaming using com-
pressed purely-functional trees PLDI 2019, 918–934, 2019.

[2] Peter Macko, Virendra J. Marathe, Daniel W. Margo, Margo I. Seltzer LLAMA: Efficient
graph analytics using Large Multiversioned Arrays ICDE 2015, 363–374, 2015.

[3] David Ediger, Robert McColl, E. Jason Riedy, David A. Bader STINGER: High performance
data structure for streaming graphs HPEC 2012, 1–5, 2012.

3


