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1 Overview

So far, in this course, we have talked about the following topics:

1. Search Trees on integers

2. Data Structures (DS) for strings: Implicit DS, Succinct DS, Compact DS

3. Hashes:

• Universal, K-wise independent, Simple tabulation hashing

• Hash tables: Chaining hash functions, Perfect hashing, Linear probing, Cuckoo hashing,
2-choice hashing, Frontyard-Backyard hashing, Robinhood hashing

4. Sketches

5. Filters: Bloom filter, Quotient filter

6. Locality Sensitive Hashing, MinHash

7. Similarity Search, Cardinality, HyperLogLog

In this lecture, we will talk about graphs, its applications, its challenges, and common representation
methods.

2 Introduction to Graphs

A graph is an abstract data type that is used to represent relationship between a set of nodes.
Graph is represented by:

1. Vertices: models objects

2. Edges: models the relationship between the above objects

For instance, in Figure 1, v1 & v2 represent the vertices while e1 represents the edge connecting
the two vertices.
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Figure 1: Graph with 2 vertices and an edge connecting them.

2.1 Applications of Graphs

Graphs are used everywhere in the real world. A few such applications are:

• Social Networking [1]

• Collaboration Network

• Transportation Network

• Computer Networks

• Genomics [2]

• Finance Transactions

2.2 Types of Graphs

While there exists numerous ways to represent graphs, the type of graph is determined by the
properties of edge and vertices:

• Edges can be directed or undirected. Example: Family tree is a directed graph, while mutual
friends is an undirected graph. Note that in directed graphs, the relationship can go one-way
or both.

• Edges can be weighted, where the weight might denote the strength/distance/etc. Example:
shortest distance graph.

• Edges and vertices can have metadata.

In this lecture, we will focus only on static graphs, where no insertions/deletions to the vertices
would be made. An example of such a graph would be the SRA graph of a reference human genome.
In the next lecture, we will extend our discussion to dynamic graphs.
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3 Queries

In order to understand what we want from an ideal graph representation, we look at practical
queries that a graph would get in various applications:

• Social Network Queries:

– Find all your friends who went to the same high school as you.

– Find cliques.

– Mutual friend search.

– Recommend people who you might know.

• Find good clusters:

– finding groups of vertices that are well connected internally and poorly connected exter-
nally.

• Subgraph Finding:

– finding or counting specific sub-groups inside a graph. Example: finding all the people
that are live in a specific city, within the network of a person’s mutual friends.

– Finding the current subgraph.

– Finding important nodes. Example: finding accounts in twitter that have high visibility
of information.

– Biological networks.

From the limited set of examples, we understand the the below set of operations are required from
a static graph structures:

• IsNeighbor(s, d): returns true if there exist an edge from vertex s to vertex d.

• GetNeighbors(v): returns a set of all neighbors of vertex v.

• AddEdge(s, d): adds an edge from vertex s to d.

• DeleteEdge(s, d): remove the edge from vertex s to d.

4 Real world graphs

Graphs provide a good way to represent a list of objects while defining relationship between them.
However, in practice, there are multiple issues that real use cases of graphs have to address. These
include, but may not be limited to,:

• Massive graphs: Real use cases of graphs typically have massive amount of objects and/or
edges that the framework wants to support. For instance: Twitter’s social network graph
consists 41.7 M vertices (users) and 1.47 B edges (social relations), as of 2010 [3], totalling
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Figure 2: Skew in real graphs. Most vertices have very small degree, while a small portion of
vertices have very large degrees.

6.3 GB of size. Web graphs have been reported to contain over 3.5 B web pages and 128.7
B links (Common Crawl Foundation 2012) [4], which results in a massive 540 GB graph.
Similarly, SRA graphs in genomics can reach in petabytes in size. Therefore, for a practical
implementation, space considerations are critical.

• High Sparsity: Real world graphs are typically very sparse. For instance, the Twitter’s
social graph has 41.1 M users. A fully connected graph over these users would have trillions
of edges, but Kwak et al. report only 1.5 billion edges, depicting the high amounts of sparsity.
Therefore, researchers should also take advantage of sparse representations to reduce the
operation complexity and storage requirements.

• Skewed Degrees: Typical real applications of such graphs observe a skew in the operations
that are performed over these structures. For instance, Figure 2 denotes a typical skew in the
amount of activity seen on Twitter’s network. There’s a small subset of people that display
a majority of tweets, while the majority of accounts sees little to no activity. Degree of
skew impacts the load imbalance which must be addressed in order to maintain high resource
utilization.

5 Graph Representations

For an efficient implementation of graphs, we must address the challenges mentioned in Section 4.
In this section, we study a few popular graph representations. Let’s consider a graph with n vertices
and m edges.
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5.1 Adjacency Matrix

Adjacency matrix (Adj[n][n]) is a two-dimensional bit array of size n × n, where n is the total
number of vertices. Bit Adj[s][d] is set as 1 if there exists an edge from vertex s to vertex d,
otherwise A[s][d] = 0. Figure 3a depicts this representation. Below are the properties of Adjacency
Matrix:

Adj[s][d] =

{
1, if there exists an edge from vertex s to vertex d

0, otherwise

• Storage size requirement: O(n2).

• Fast for querying IsNeighbor(s, d). Return Adj[s][d] in constant time.

• Fast for querying GetNeighbors(v). Return Adj[v][∗] in O(n) time.

• Fast AddEdge(s, d) and DeleteEdge(s, d), in constant time.

Overall, Adjacency Matrix is good for finding existence of a neighbor and insertion/deletion of
relation, but requires large storage. This storage requirement is good if the graph is dense. However,
if the graph is sparse, which is typically the case, the storage requirement is an overkill.

5.2 Edge List

Adjacency Matrix defines a similar structure to bitmap of all possible edges, coming at a high
storage cost. Instead, an Edge List only stores the existing edges between the nodes. Below are
the properties of an Edge List:

• A relation/edge from vertex s to d exists if and only if (s, d) exists in the Edge List.

• Space requirement is O(m), where m is the total number of edges.

• Finding neighbors, IsNeighbor(s, d) and GetNeighbors(v), both take O(m) time as the func-
tion need to iterate all the entries of the edge list in worst case.

• AddEdge(s, d) takes constant time, but DeleteEdge(s, d) takes O(m) time as we need to
iterate the list to find position of the edge’s entry.

An Edge List requires low storage for sparse graphs as only existing edges are stored. However, it
takes O(m) time to find neighbors or relation between two nodes.

5.3 Adjacency List

An adjacency List is a collection of list of edges, for each vertex. In other words, an array
(AdjList[n]) of all vertices where AdjList[v] points to a linked list of all vertices that are neighbors
of vertex v. Figure 3c depicts an implementation of an Adjacency List. Below are the properties
of such a representation:
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(a) Adjacency Matrix (b) Edge List

(c) Adjacency List (d) Compressed Sparse Rows

Figure 3: Various Graph representations. All four representations use the same graph example
(same vertices and edges in all four representation) for easier comparison.

• Storage requirement is O(n + m), as for each node the number of neighbors that are to be
stored in the list can be m in the worst case.

• Since the list is unordered, AddEdge(s, d) takes constant time, as the function only needs to
insert vertex d in AdjList[s] at the end.

• To delete an edge from a vertex s to vertex d, we need to scan the AdjList[s]’s list, which can
be of lengthm in the worst case. However, in real applications, the actual number of neighbors
of any vertex v, also known as degree(v), is much smaller than total number of edges m. In
short, degree(v) ≪ m. Therefore, we say that DeleteEdge(s, d) takes O(degree(s)) time.

• Similar to Edge List, the time for neighbor search depends on the length of the list. In Adja-
cency List, list of a vertex v is of size degree(v). Hence, IsNeighbor(s, d) takes (O(degree(s))
time and GetNeighbors(v) take (O(degree(v)) time.

• Note that deletion and neighbor search above would takeO(log(degree(v)) instead ofO(degree(v))
if the list was ordered, but so would adding a new edge.

• Another alternative to implement fast neighbor search is by maintaining a Hash Table of
neighbors instead of a list. In such an implementation, IsNeighbor(s, d) would take constant
time.

In conclusion, Adjacency List reduces the neighbor search and deletion time to degree of the vertex
as compared to iterating over all edges in Edge List. However, this performance requires trading off
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Table 1: Trade-offs in graph representation

Adj. Matrix Edge List Adj. List
Compressed
Sparse Rows

Adj. List
+ Hash Tables

Storage O(n2) O(m) O(n+m) O(n+m) O(n+m)

AddEdge(s, d) O(1) O(1) O(1) O(n+m) O(1)

DeleteEdge(s, d) O(1) O(m) O(degree(s)) O(n+m) O(1)

GetNeighbor(v) O(n) O(m) O(degree(v)) O(degree(v)) O(degree(v))

IsNeighbor(s, d) O(1) O(m) O(degree(s)) O(degree(s)) O(1)

storage. Also, note that this structure is based on pointers and requires pointer-chasing to perform
operations.

5.4 Compressed Sparse Rows (CSR)

The CSR representation stores edges and vertices in two separate arrays: (a) Edges[m] array is
a sorted array that stores the destination of each edge. This array is sorted as per the source
vertices of each edge. (b) The Offset[n] array stores the offsets into the edge array, denoting the
offset of the first edge going outgoing from each vertex. In other words, Offset[i] denotes the
offset of where vertex i’s edges start in Edges array. For instance, in Figure 3d, degree(vertex0) =
Offset[1]−Offset[1] = 2 denotes that vertex 0 have exactly 2 edges. Looking at the Edges[0] &
Edges[1], we say that those 2 edges go to vertices 11 and 7. Below are the properties of CSR:

• Storage requirement is O(n+m) as we need to store the 2 arrays of size n and m.

• Degree of a vertex v is calculated by: degree(v) = Offset[v + 1]−Offset[v].

• Neighbor search for a vertex v is performed by indexing into Edges array based on its offset
and degree. To be precise, {Edges[v], Edges[v+1], ..., Edges[v+ degree(v)− 1]} is the set of
all neighbors of v. Therefore, GetNeighbor(v) and IsNeighbor(s, d) takes O(degree(v) and
O(degree(s) time, respectively.

• AddEdge(s, d) and DeleteEdge(s, d) take O(n + m) time as both the arrays need to be
updated.

CSR requires less storage than Adjacency List as it doesn’t need pointers, and same asymptotic time
complexity for neighbor search. However, note that Adjacency List requires pointer chasing, while
CSR can exploit spatial locality in arrays. Therefore, in actual implementation, CSR outperforms
Adjacency List. Table 1 compares all the four graph representations and suggests that CSR is
typically the best implementation.

6 Conclusion

In this lecture, we study Graphs and its types and applications. We focus on static graphs and
understand the typical operations that real use cases need from such graphs. Next, we look at
a few real graph implementations and observe properties that one must take into account while
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developing a scalable graph representation. Finally, we discuss four popular graph representations
and study their trade-offs in terms of storage requirement and query time. Table 1 summarizes the
costs of each representation. We conclude that for static graph implementations, CSR is typically
the best choice, unless we have a very dense graph.
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