
CS 5968/6968: Data Str & Alg Scalable Comp Spring 2023

Lecture 17 — Mar 22, 2023

Prof. Prashant Pandey Scribe: Zixiao (Martin) Chen

1 Solutions to build cardinality counting

Assume the universe size |U | = 264. For this problem, several solutions have been proposed:

1. Array

10 10 10 0 0 20 20 0 0 0

The above is the model on how array implementation of the cardinality counting would work.
The array will have the length of u where each index of the array representing the value of
the item.

Given an item value x, we can increment the count of the item by having arr[x]+ = 1.

2. Bit Array

1 0 0 1 0

The bit array is established with length of |U |. The graph above illustrates how bit array
would be like for implementing carnality representation.

The bit array has the length of |U |. In the bit array, 1 is seen as item inserted while 0
is seen as item doesn’t exist. If the item is first encountered, then the item will be checked
at index i, if arr[i] == 0, then set arr[i] = 1. Otherwise, the item is already inserted and no
changes is required.

3. Hash Table

10 20 30 null null

The above is a illustration of how hash table would be for the implementation of cardinality
counting.

The hash table has the length of |U |. The item will be checked using the hash value of
it. If the item doesn’t exist then the item will be inserted. Otherwise, no changes happen in
the hash table.

1

Although these implementation provide the exact cardinality with O(n) cost,these solutions are
costly in terms of the space complexity, particuarly the hash table solution will incur Ω(n). There-
fore, it is essential to have an implementation achieving time complexity of O(n) while keeping the
space complexity to be lower than linear complexity.

2 Techniques to estimate cardinality with examples

Before diving into the solution to this problem, let’s introduce with the following hat problem:

• Given the fact that the cards are labelled 1-1000, and a random subset of size n to hide in hat
is chosen. One representative value of the subset picked from this hat is known. However,
one of median, minimum or maximum value get picked. The task to estimate n.

One possible solution for tackling this task is pick the minimum value and treat the cards such
that the values are distributed uniformly (equal difference between consecutive two values of cards).

For example, if the minimum value is 40 for a subset with unknown items picked randomly from
the hat. Using the property uniform distribution, I can build the equation of

1000/(n+ 1) = 40

in which n = 24.

Even through estimate should grow as minimum value shrinks under the assumption that the
values are shown under the uniform distribution, it is still likely that the error margin is huge as
cards with small value yet come in small numbers are also possible.

3 Two-hat problems

Another solution of estimating the cardinality and the Jaccard similarity between two sets is using
two-hat problems model as follows:

• Given two sets A and B where the items are unknown, get the k smallest values from set A
and B respectively.

• After getting k-min items from both sets, apply the intersection or union from the k-mins
from both sets as a sketch to estimate the number of unique items using this data.

• Space of coincidences is large, Need to look at more than one representative. (Same repre-
sentatives with minor difference in details)

The error margin is O(1/
√
k) for the above procedure. Hence, it seems that somehow bottom-k is

better than getting the minimum value directly.

Nonetheless, the space of coincidences is so large that it would be problematic to calculate the

2

cardinality of two large sets.

Therefore, it is pretty necessary to look at more than one representative when estimating the
number of unique items.

4 Hyperloglog

Before introducing a more sophisticated solution, let’s look at the following model:

• Assume that a hash function producing hash values usingtotally randomness will be applied,
we can use this hash function to hash input to create output. After getting the output, the
number can be translated into p-bit representation.

• The bitwise representation may seem to look as follows with exactly three leading zeros on
higher order for first few bits:

0 0 0 1 1 0 0 1 0 1

• The probability that higher order exactly 3 bits are all 0s is:

P(higher order exactly 3 bits are all zeros) =
1

2
∗ 1

2
∗ 1

2
∗ 1

2
=

1

16

Based on the above result, it can be inferred that for every 16 hash values there is one whose
bitwise representation starts with 0001. In other words, if we see a sequence of exactly 3
zeros, these are probably 16 items.

• Under such metric, the probability of having higher order x bits are exactly 0s is 1/2x+1.
Similarly, if in all hash values and the longest streak of zeros is L, then on average there are
2L+1 items.

Under this mapping between number X and Max LZC(Max Leading Zero Count) , the probability
of having higher order x bits are exactly zeros is 1/2x+1, which further shows as the number of bits
get larger, it becomes increasingly different to find many coincidences under one certain represen-
tative values with bitwise operation.

Hence, we can build the following analysis:

• Let M be maximum number of unique elements and L be the number of bits used for the
values representing unique elements. Then

2L+1 ≤ M

as it is true that the probability of having higher order x bits exactly zeros is 1/2L+1.

• As the below inequality also holds:
L ≤ logM

3

We can establish a data structure where we only need to use L many bits to represent a single
counter. However, the danger of doing so is such procedure will only estimate power of 2 and
too much uncertainty is involved. What’s worse, it still fails to solve the case in which items
with large values exist yet come in few counts.

Therefore, it is necessary to have multiple counters under bitwise representation to get accurate
estimate of number of unique items.

Actually, we can represent every counter value as bitwise representation. In other words, the
space complexity will be O(log logM) many bits. We can do so by using many counters with the
representation of O(log logM) many bits whereM stands for the maximum number of unique items.

If we want to use multiple to get the average, then the final result will be

2
L1+L2+...+Lk

k

However such result is still having some error bias. Another solution producing less error margin
is by calculating the harmonic mean of k counter, which is less sensitive to large outliers:

k
1
L1

+ ...+ 1
Lk

We call this calculation as hyperloglog approach. The name “hyper” is because such calcula-
tion is applying harmonic mean. “loglog” is because two bitwise operations are adopted with one
dealing with the counter value and another dealing with the hash value of item.

References

[1] Daniel N. Baker, Ben Langmead. Dashing: fast and accurate genomic distances with Hyper-
LogLog. Baker and Langmead Genome Biology (2019) 20:265.

4

