
CS 5968/6969: Data Str and Alg Scalable Comp Spring 2023

Lecture 16 — May 20, 2017

Prof. Prashant Pandey Scribe: Manya Bajaj

1 Overview

In this lecture, we revisited locality sensitive hashing covered in a guest lecture.

2 Review of Hashing

2.1 Classical Hashing

• if x = y, then h(x) = h(y)

• if x ̸= y, then h(x) ̸= h(y)

2.2 Universal Hashing

• Collisions are as rare as possible.

• ∀x, y ∈ U if x ̸= y, then

P
h∈H

[h(x) = h(y)] =
1

|T |
where |T | is the size of the set of items to hash.

3 Locality Sensitive Hashing

• Idea: Collisions between similar items

• ∀x, y ∈ U
Ed(x, y) ≤ d1 ⇒ P

h∈H
[h(x) = h(y)] ≥ P1

Ed(x, y) ≥ d2 ⇒ P
h∈H

[h(x) = h(y)] ≤ P2

• This represents a family of hash functions where similar elements are more likely to have the
same value as compared to dissimilar or distant elements. Hence, low distance corresponds
to a high number of collisions, and a high distance corresponds to a low number of collisions.

• There is no guarantee in between d1 and d2.

• The above scenario is for a gapped LSH. In case of an ungapped LSH, d1 = d2.

1

• Note: The probability is computed over the choice of any hash function h ∈ H, and not over
the elements x, y.

3.1 Notation of similarity: Jaccard Index

For any two sets S1 and S2, the Jaccard Index is the ratio of the cardinality of intersection of the
two sets to the cardinality of union of the two sets:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

Example: S1 = {3, 10, 15, 19}, S2 = {4, 10, 15}

J(S1, S2) =
|{10, 15}|

|{3, 4, 10, 15, 19}|
=

2

5

3.2 Minwise Hashing

Idea: From a random universal hash function: Ui : string → N , take the minimum hash value.
Every time we want to generate a new minhash value, we will generate a new universal hash function
and compute the minimum hash value.
For any two sets, S1 and S2, the probability of hash collision is equal to the Jaccard Index:

P (minhash(S1) = minhash(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

• The probability of collisions increases as the similarity between the two sets increases.

• Ungapped LSH → unbiased estimator

Intuition: After hashing every element of S1 ∪ S2 and finding the minimum values, the chance of
having the same minimum value is equal to the number of common elements proportional to the
union. If the minimum belongs to S1 ∩ S2, then the minhash of both the sets will be the same.

3.3 Weighted Jaccard

WeightedJaccard(S1, S2) =

∑
imin(Si

1, S
i
2)∑

imax(Si
1, S

i
2)

3.4 Parity of Minhash

Idea: Only store the parity of minhash.

P (parity(m(S1) = parity(m(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

+ 0.5(1− |S1 ∩ S2|
|S1 ∪ S2|

)

2

3.5 Extension of Minwise Hashing

Introduce One-Permuation Hsashing to replace k-permutations hashing. This significantly reduces
the pre-processing cost.
Ui : string → N

• Divide the space [0, N] into k partitions and take the minimum from each partition to create
the sketch.

• If the partition is empty, introduce a scheme to borrow from the next non-empty partition in
an order.

References

[1] Ping Li, Art Owen, Cun-Hui Zhang. One Permutation Hashing for Efficient Search and Learn-
ing., 2012.

3

