Introduction	Low dimensional data	High dimensional data	MIPS	Summary
000000	00	0000	000000	O

From NNS to MIPS

CS 5968/6968: Data Str & Alg for Scalable Computing Spring 2023

Benwei Shi

University of Utah

2023-02-27

Introduction 000000	Low dimensional data	High dimensional data	MIPS 000000	Summary O
Learning Ou	tcomes			

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 のへで

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
●00000	00	0000	000000	O
Nearest neighb	or			

What is the nearest neighbor?

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
•00000	00	0000	000000	O
Nearest neighb	or			

What is the nearest neighbor?

Definition (Nearest Neighbor)

Given a universe Ω and a distance function $D: \Omega^2 \to \mathbb{R}$, the nearest neighbor of a query point $q \in \Omega$ in a finite set of points $P \subseteq \Omega$ is,

 $p^* = \operatorname*{arg\,min}_{p_i \in P} D(p_i, q)$

・ロト・日本・山田・山田・山下・

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
•00000	00	0000	000000	O
Nearest neighb	or			

What is the nearest neighbor?

Definition (Nearest Neighbor)

Given a universe Ω and a distance function $D: \Omega^2 \to \mathbb{R}$, the nearest neighbor of a query point $q \in \Omega$ in a finite set of points $P \subseteq \Omega$ is,

 $p^* = \operatorname*{arg\,min}_{p_i \in P} D(p_i, q)$

For example, $\Omega = \mathbb{R}^2$

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

• Reasonable preprocessing time: poly(n, d)

Nearest neighbor search (NNS)

Preprocess P so that one can efficiently find the nearest neighbor of q in P.

- Reasonable preprocessing time: poly(n, d)
- Fast query time: poly(log n, d)

Introduction 000000	Low dimensional data	High dimensional data	MIPS 000000	Summary O
Similarity se	arch?			

- Similarity is an opposing concept to the distance.
- Similar elements should have small distance.
- Far apart elements should not be similar.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
00●000	00		000000	O
Similarity searc	:h?			

- Similarity is an opposing concept to the distance.
- Similar elements should have small distance.
- Far apart elements should not be similar.
- e.g., the Gaussian kernel similarity $K(p,q) = \exp\left(-\frac{D(p,q)^2}{2\sigma^2}\right)$. When distance D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
00●000	00		000000	O
Similarity searc	:h?			

- Similarity is an opposing concept to the distance.
- Similar elements should have small distance.
- Far apart elements should not be similar.
- e.g., the Gaussian kernel similarity $K(p,q) = \exp\left(-\frac{D(p,q)^2}{2\sigma^2}\right)$. When distance D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.

• Minimizing the distance is equivalent to maximizing the similarity.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
00●000	00	0000	000000	O
Similarity searc	h?			

- Similarity is an opposing concept to the distance.
- Similar elements should have small distance.
- Far apart elements should not be similar.
- e.g., the Gaussian kernel similarity $K(p,q) = \exp\left(-\frac{D(p,q)^2}{2\sigma^2}\right)$. When distance D = 0, the kernel is 1 and when distance D is large, the kernel is almost 0.
- Minimizing the distance is equivalent to maximizing the similarity.
- When the objective is to maximizing a similarity function, we call it similarity search.

	Low dimensional data	oooo	000000	o O
Common d	istance functions			

- For \mathbb{R}^d :
 - L_p distance: $L_p(p,q) := \left(\sum_{i=1}^d |p_i q_i|^p\right)^{1/p}$ for $p \ge 1$. When p = 2 we get the Euclidean distance. Other common choices are p = 1 (Manhattan distance) and $p = \infty$ (Chebyshev distance).

- Cosine similarity: $S_C(p,q) = \frac{p^T q}{\|p\|_2 \|q\|_2}$.
- Dot product (similarity): $S_D(p,q) = p^T q$.
- For strings:
 - Edit distance, Hamming distance.
- For the power set of a finite set:
 - Jacard similarity, Jacard distance,
- For nodes in a graph:
 - Length of the shortest path.
- For point sets:
 - Kernel distance, Gromov-Hausdorff distance.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
0000€0		0000	000000	O
Applications				

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
0000●0	00		000000	O
Applications				

• Learning: Pattern recognition, prediction, classification

• Matching: DNA sequencing, point cloud registration, compression, clustering

• Searching: information retrieval, web searching, map searching, recommendation, plagiarism detection

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
000000	00		000000	O
Applications				

- Learning: Pattern recognition, prediction, classification
 - Cons: Need to store all the data points.
 - Model based learning methods are better at this.
- Matching: DNA sequencing, point cloud registration, compression, clustering

• Searching: information retrieval, web searching, map searching, recommendation, plagiarism detection

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
0000●0	00		000000	O
Applications				

- Learning: Pattern recognition, prediction, classification
 - Cons: Need to store all the data points.
 - Model based learning methods are better at this.
- Matching: DNA sequencing, point cloud registration, compression, clustering
 - These are NNS problems in general.
 - Domain specific data \Rightarrow Specical algorithms.
- Searching: information retrieval, web searching, map searching, recommendation, plagiarism detection

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
0000●0	00		000000	O
Applications				

- Learning: Pattern recognition, prediction, classification
 - Cons: Need to store all the data points.
 - Model based learning methods are better at this.
- Matching: DNA sequencing, point cloud registration, compression, clustering
 - These are NNS problems in general.
 - Domain specific data \Rightarrow Specical algorithms.
- Searching: information retrieval, web searching, map searching, recommendation, plagiarism detection

- A lot of data, but we have to store them anyway.
- Vector data (low/high dimensional).
- Efficient NNS system is crucial.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
0000●0	00		000000	O
Applications				

- Learning: Pattern recognition, prediction, classification
 - Cons: Need to store all the data points.
 - Model based learning methods are better at this.
- Matching: DNA sequencing, point cloud registration, compression, clustering
 - These are NNS problems in general.
 - Domain specific data \Rightarrow Specical algorithms.
- Searching: information retrieval, web searching, map searching, recommendation, plagiarism detection
 - A lot of data, but we have to store them anyway.
 - Vector data (low/high dimensional).
 - Efficient NNS system is crucial.

I'd see NNS as a searching problem, as the name suggests.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
00000●	00	0000	000000	O
Applications				

The rest lecture mostly focuses on the most common data space, *d*-dimensional vectors, i.e. $\Omega = \mathbb{R}^d$.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
000000	●○	0000	000000	O
1 1				

- Sort the data points. Binary search.
 - Space: O(n); query time: $O(\log n)$.
- Balanced binary search tree.
 - Space: O(n); query time: $O(\log n)$.
- vEB-tree, x-fast trie...
 - Space: O(n); query time: $O(\log \log u)$.
- Space: O(n); query time: $O(\log n)$.

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
000000	○●	0000	000000	O
<i>d</i> = 2				

- Voronoi diagram
 - Space: O(n); query time: $O(\log n)$. [Lipton-Tarjan'80]
- kd-Tree
 - Space: O(n); query time: $O(\log n)$. [Lipton-Tarjan'80]

Image by Hristo Hristov Space: O(n); guery time: $O(\log n)$ on average.

- All known data structures that beat O(dn) linear scan query time require $O(2^d)$ space.
- Observation (Number of partitions). Splits the data space in each dimension into two halves, end with 2^d partitions.

• Think $n = 10^6$, d = 100.

Point Location in Equal Balls (PLEB)

Definition (ε -NN)

Given a point set P and a query point q, we say $\hat{p} \in P$ is an ε -NN of q in P if

 $D(\hat{p},q) \leq (1+arepsilon) \min_{p \in P} D(p,q)$

Definition (ε -Point Location in Equal Balls (ε -PLEB))

Given a point set P and $r \in \mathbb{R}^+$, for any query point q,

- if $\min_{p\in P} D(p,q) \leq r$, return a point p' s.t. $D(p',q) \leq (1+\varepsilon)r$.
- if $(1 + \varepsilon)r \leq \min_{p \in P} D(p, q)$, return \emptyset .
- if $r \leq \min_{p \in P} D(p,q) \leq (1 + \varepsilon)r$, return p' or \emptyset .

Introduction 000000	Low dimensional data	High dimensional data ○○●○	MIPS 000000	Summary O
Indyk-Motwa	ani'98			

Algorithm 1 Preprocess

Input: point set $P \subset \{0, 1\}^d$, size ℓ i.i.d. drawn $H \leftarrow \mathcal{H}^{\ell \times k}$ ℓ hash tables $T \leftarrow \{\} * \ell$ **for** $p \in P$ **do for** j = 1 to ℓ **do** $T_j[(H_{j,1}(p), \dots, H_{j,k}(p))] \leftarrow p$ **return** T, H

$$egin{aligned} &k = O(\log n), \ell = O(n^{1/arepsilon}) \ & ext{space: } O(nd + n^{1+1/arepsilon}) \ & ext{Where } \mathcal{H} ext{ is a family of LSH.} \end{aligned}$$

Algorithm 2 Query

Input: ℓ hash tables T, $\ell \times k$ hash functions H, query point $q \in \{0,1\}^d$ $A \leftarrow \emptyset$ for j = 1 to ℓ do $p \leftarrow T_j[(H_{j,1}(q), \dots, H_{j,k}(q))]$ if $D(q, p) \leq r_2$ then return p

time: $O(n^{1/\varepsilon}d)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Indyk-Motwani'98 - Result

Definition (Locality-Sensitive Hashing)

A family $\mathcal{H} = \{h : \Omega \to S\}$ is called (r_1, r_2, p_1, p_2) -sesitive for metric D if for any $q, p \in \Omega$

- if $D(p,q) \leq r_1$ then $\mathsf{Pr}_{h \sim \mathcal{H}}[h(q) = h(p)] \geq p_1$,
- if $D(p,q) \geq r_2$ then $\mathsf{Pr}_{h\sim\mathcal{H}}[h(q)=h(p)] \leq p_2$,

where $p_1 > p_2$ and $r_1 < r_2$.

For *d* dimensional hamming space $\Omega = \{0,1\}^d$ and hamming distance $D(p,q) = \sum_{i=1}^d \mathbb{1}(p_i \neq q_i), \ \mathcal{H} = \{h_i : h_I(p) := p_i, i = 1, ..., d\}$ is $(r, r(1 + \varepsilon), 1 - \frac{r}{d}, 1 - \frac{r(1 + \varepsilon)}{d})$ -sensitive.

Theorem

For any $\varepsilon > 1$, there exists an algorithm for ε -PLEB in $\{0,1\}^d$ using $O(dn + n^{1+1/\varepsilon})$ space and $O(dn^{1/\varepsilon})$ query time.

Random sample a point from a hypercube $[0, 1]^d$. Then the probability of the point lies within the lenght s hypercube.

Low dimensional dat

High dimensional data

MIPS

Summary 0

hyper-sphere range query

Random sample a point from a hypercube $[0,1]^d$. Then the probability of the point lies within the largest ball that fits entirely within the hypercube.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → 置・釣A⊘

Introduction
occosionLow dimensional data
occosionHigh dimensional data
occosionMIPS
occosionSummary
occosionEuclidean distance in high dimensional space

In the high dimensional space, the distance between two points is not a good indicator of their similarity.

Randomly sample 1000 points from a uniform distribution in $[-1, 1]^d$. Then plot the histagram of the pairwise distances normalized by the max distance. When d = 1000, 2/24 error will include more than 50% of the points; 3/24 error will include almost all the points.

- In the AI era, everything is a vector. And the dimension is quite large.
 - Google's Universal Sentence Encoder embeds sentences into a space of dimension 512.

- GPT-3 embeds documents into space of dimension from 1024 to 12288.
- These embeds are not fixed, but learned by minimizing some loss function.
- The loss function can be defined in terms of the distances, or the similarities.

Cosine similarity in high dimensional space

Randomly sample 1000 points from a uniform distribution in $[-1, 1]^d$. Then plot the histagram of the pairwise consine similarities normalized by the max similarity.

High dimensional MIPS

There are two main tasks required to develop an efficient MIPS system.

- To reduce the number of candidates. e.g. space/data partitioning.
 - Tree search methods [Muja-Lowe'14: Dasgupta-Freund'08]
 - Locality sensitive hashing [Shrivastava-Li'14: Nevshabur-Srebro'15: Indyk-Motwani, '98; Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt'15]
 - Graph search [Malkov-Yashunin'16; Harwood-Drummond'16]
- To speed up evaluation.
 - Quantization.
 - Random projection (dimension reduction) [Ailon-Liberty'13]

Introduction	Low dimensional data	High dimensional data	MIPS	Summary
000000	00	0000	000000	●
Conclusion				

- A NNS system preprocesses the dataset for fast query.
- The objective can be minimizing a distance function or maximizing a similarity function.
- There are many methods exist for low dimensional data.
- In high dimensional space, the euclidean distance is not a good measurement of similarity, people usually use cosine similarity, e.g. MIPS.
- In addition to space(data) partitioning, speeding up evaluation is also important in high dimensional space.