Carnegie
 Mellon
 University

Sketching and locality sensitive hashing for alignment

Guillaume Marçais
2/15/23

Why do we need sketching and Locality Sensitive Hashing for alignment?

Large scale alignment problems

Cluster N samples based on sequence similarity

Sequence search in large database

- Avoid aligning to all sequences in database?
- Approximate nearer neighbor search
- High dimension, non-geometric space

Large scale alignment problems

Cluster N samples based on sequence similarity

- $\rightarrow N^{2} / 2$ alignment problems
- Speed-up pairwise alignment task?
- Skip hopeless alignments?

Sequence search in large database

- Avoid aligning to all sequences in database?
- Approximate nearer neighbor search
- High dimension, non-geometric space

Fast growth of sequence databases

- Exponential growth in public and private databases (SRA: $1.5 \times /$ year)
- \Longrightarrow hidden exponential slow down in large scale analysis

Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)
Computing the edit distance E_{d} in time $O\left(n^{2-\delta}\right), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- Usual dynamic programming: $O\left(n^{2}\right)$
- ${ }^{1}$ Masek and Paterson: $O\left(\frac{n^{2}}{\log (n)}\right)$
- $n^{2-\delta} \ll \frac{n^{2}}{\log (n)} \ll n^{2}$
- Can't fundamentallv imcrove

[^0]
Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)
Computing the edit distance E_{d} in time $O\left(n^{2-\delta}\right), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- Usual dynamic programming: $O\left(n^{2}\right)$
- ${ }^{1}$ Masek and Paterson: $O\left(\frac{n^{2}}{\log (n)}\right)$
- $n^{2-\delta} \ll \frac{n^{2}}{\log (n)} \ll n^{2}$
- Can't fundamentally improve

[^1]
Sequence alignment is hard

No strongly subquadratic time algorithm, most likely (Backurs, Indyk 2015)
Computing the edit distance E_{d} in time $O\left(n^{2-\delta}\right), \delta>0$ violates the Strong Exponential Time Hypothesis (SETH).

- Usual dynamic programming: $O\left(n^{2}\right)$
- ${ }^{1}$ Masek and Paterson: $O\left(\frac{n^{2}}{\log (n)}\right)$
- $n^{2-\delta} \ll \frac{n^{2}}{\log (n)} \ll n^{2}$
- Can't fundamentally improve

[^2]
Seed and extend paradigm

Main paradigm:

- Find seeds (small exact matches)
- Cluster "coherent" seeds

Reference

- k-mers
- Suffix trees/arrays, FM Index
- LSH / sketching

Sketching / Locality Sensitive Hashing

Avoid computing edit distance directly, use proxy measures easier to compute

- LSH: hashing method to avoid fruitless comparisons
- Sketching: sparse representation allowing quick comparison

Locality Sensitive Hashing: Make collisions matters

T

\mathcal{U} : universe. T : hash table. $|T| \ll|\mathcal{U}| . h: \mathcal{U} \rightarrow[0,|T|-1]$. $\mathcal{H}=\{h: \mathcal{U} \rightarrow[0,|T|-1]\}$

$$
\begin{gathered}
S=\text { AACGGTG } \\
h(S)=2
\end{gathered}
$$

0	
1	
2	S
3	
4	

Universal Hashing

- Collisions as rame as possible

Locality Sensitive Hashing: Make collisions matters

T

\mathcal{U} : universe. T : hash table. $|T| \ll|\mathcal{U}| . h: \mathcal{U} \rightarrow[0,|T|-1]$. $\mathcal{H}=\{h: \mathcal{U} \rightarrow[0,|T|-1]\}$

$$
\begin{gathered}
S=\text { AACGGTG } \\
h(S)=2
\end{gathered}
$$

0	
1	
2	S
3	
4	

Universal Hashing

- Collisions as rare as possible
- $\forall x, y \in \mathcal{U}, x \neq y$,

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)]=\frac{1}{|T|}
$$

Locality Sensitive Hashing: Make collisions matters

\mathcal{U} : universe. T : hash table. $|T| \ll|\mathcal{U}| . h: \mathcal{U} \rightarrow[0,|T|-1]$. $\mathcal{H}=\{h: \mathcal{U} \rightarrow[0,|T|-1]\}$

$$
\begin{gathered}
S=\text { AACGGTG } \\
h(S)=2
\end{gathered}
$$

T

Universal Hashing

- Collisions as rare as possible
- $\forall x, y \in \mathcal{U}, x \neq y$,

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)]=\frac{1}{|T|}
$$

Locality Sensitive Hashing

- Collision between similar elements
- $\forall x, y \in \mathcal{U}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{d}}(x, y) \leq d_{1} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \geq p_{1} \\
& \mathrm{E}_{\mathrm{d}}(x, y) \geq d_{2} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq p_{2}
\end{aligned}
$$

Locality Sensitive Hashing Definition

The family \mathcal{H} is " $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive" for distance D if there exists $d_{1}<d_{2}, p_{1}>p_{2}$ such that for all $x, y \in \mathcal{U}$

$$
\begin{aligned}
& \mathrm{D}(x, y) \leq d_{1} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \geq p_{1} \\
& \mathrm{D}(x, y) \geq d_{2} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq p_{2}
\end{aligned}
$$

- Low distance \Longleftrightarrow High collisions
- High distance \Longleftrightarrow Low collisions
- In between d_{1}, d_{2} : No guarantee

Locality sensitive hash family

Family \mathcal{H} of hash functions where similar elements are more likely to have the same value than distant elements.

Locality Sensitive Hashing Definition

The family \mathcal{H} is " $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive" for distance D if there exists $d_{1}<d_{2}, p_{1}>p_{2}$ such that for all $x, y \in \mathcal{U}$

$$
\begin{aligned}
& \mathrm{D}(x, y) \leq d_{1} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \geq p_{1} \\
& \mathrm{D}(x, y) \geq d_{2} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq p_{2}
\end{aligned}
$$

- Probability over choice of $h \in \mathcal{H}$, not over the elements x, y

Locality sensitive hash family

Family \mathcal{H} of hash functions where similar elements are more likely to have the same value than distant elements.

Locality Sensitive Hashing Definition

The family \mathcal{H} is " $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive" for distance D if there exists $d_{1}<d_{2}, p_{1}>p_{2}$ such that for all $x, y \in \mathcal{U}$

$$
\begin{aligned}
& \mathrm{D}(x, y) \leq d_{1} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \geq p_{1} \\
& \mathrm{D}(x, y) \geq d_{2} \Longrightarrow \operatorname{Pr}_{h \in \mathcal{H}}[h(x)=h(y)] \leq p_{2}
\end{aligned}
$$

- $d_{1}<d_{2}$: "gapped" LSH
- $d_{1}=d_{2}$, "ungapped" LSH
- Gap not desirable but not always avoidable.

Locality sensitive hash family

Family \mathcal{H} of hash functions where similar elements are more likely to have the same value than distant elements.

Overlap computation

- Compute overlaps between reads (MHAP ${ }^{2}$)

Reads

- Instance of "Nearest Neighbor Problem" for edit distance
- Use multinle hash tables
- Orange ellipse in same location as yellow circle

[^3]
Overlap computation

- Compute overlaps between reads (MHAP²)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle

[^4]
Overlap computation

- Compute overlaps between reads (MHAP ${ }^{2}$)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle

[^5]
Overlap computation

- Compute overlaps between reads (MHAP ${ }^{2}$)
- Instance of "Nearest Neighbor Problem" for edit distance
- Use multiple hash tables
- Orange ellipse in same location as yellow circle

-—— Overlap?

Hash Tables

[^6]
LSH for the edit distance

How to design an LSH for edit distance?

- minHash: LSH for k-mer Jaccard distance
- OMH: Ordered Min Hash

LSH for the edit distance

How to design an LSH for edit distance?

- minHash: LSH for k-mer Jaccard distance
- OMH: Ordered Min Hash

Jaccard distance

Jaccard distance between sets A, B :

$$
\mathrm{J}_{\mathrm{d}}(A, B)=1-\frac{|A \cap B|}{|A \cup B|}
$$

Jaccard distance

Jaccard distance between sets A, B :
Jaccard between sequences x, y : Jaccard distance of their k-mer sets

$$
\mathrm{J}_{\mathrm{d}}(x, y)=\mathrm{J}_{\mathrm{d}}(\mathcal{K}(x), \mathcal{K}(y))
$$

- Low $\mathrm{E}_{\mathrm{d}}(x, y) \Longrightarrow$ Low $\mathrm{J}_{\mathrm{d}}(x, y)$
- High $\mathrm{E}_{\mathrm{d}}(x, y) \nRightarrow \operatorname{High}_{\mathrm{d}}(x, y)$

$$
\mathrm{J}_{\mathrm{d}}(A, B)=1-\frac{|A \cap B|}{|A \cup B|}
$$

- Can have false positive, few false negative

MinHash: an LSH for the Jaccard distance

- Permutation of k-mers: $\pi: 4^{k} \rightarrow 4^{k}$ one-to-one

$$
\mathcal{H}=\left\{h_{\pi}(S)=\underset{m \in \mathcal{K}(\mathcal{S})}{\operatorname{argmin}} \pi(m) \mid \pi \text { permutation of } k \text {-mers }\right\}
$$

- Fix π, every k-mer of $A \cup B$ equally likely to be the minimum for π

$$
\operatorname{Pr}_{h \in \mathcal{H}}[h(A)=h(B)]=\frac{|A \cap B|}{|A \cup B|}
$$

- Unbiased estimator, ungapped LSH

minHash sketch: dimensionality reduction

- Choose L hash functions from $\mathcal{H}: h_{i}, 1 \leq i \leq L$
- Sketch of S : vector $\operatorname{Sk}(S)=\left(h_{i}(S)\right)_{1 \leq i \leq L}$
- Big compression: Mash ${ }^{3} L=1000, k=21,7000 \times$ compression
- Very fast pairwise comparison (Hamming distance between sketches)

$$
\operatorname{Sk}(A)=\left(\begin{array}{c}
\text { CGAG } \\
\text { TTAC } \\
\text { CATC } \\
\text { CCAT } \\
\text { CATG } \\
\text { ACAA }
\end{array}\right), \operatorname{Sk}(B)=\left(\begin{array}{c}
\text { GTTT } \\
\text { TTAC } \\
\text { GTAG } \\
\text { ATTT } \\
\text { ACCC } \\
\text { ACAA }
\end{array}\right) \quad \rightarrow \quad \mathrm{J}_{\mathrm{d}}(\mathcal{K}(A), \mathcal{K}(B)) \approx 1-\frac{2}{6}
$$

[^7]
OMH: LSH for the edit distance

- minHash: LSH for k-mer Jaccard distance
- OMH: Ordered Min Hash

Jaccard ignores k-mer repetition

$$
\begin{aligned}
& x=\overbrace{\text { AAAAAAAAAAAAAAA }}^{n-k} \overbrace{\text { CCCCC }}^{k} \\
& y=\underbrace{\text { AAAAA }}_{k} \underbrace{\text { CCCCCCCCCCCCCCC }}_{n-k}
\end{aligned}
$$

Jaccard ignores k-mer repetition

$$
\begin{array}{ll}
x=\overbrace{\text { AAAAAAAAAAAAAAA }}^{n-k} \overbrace{C C C C C}^{k} & \rightarrow\{\text { AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC }\} \\
y=\underbrace{\text { AAAAA }}_{k} \underbrace{\text { CCCCCCCCCCCCCCC }}_{n-k} & \rightarrow\{\text { AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC }\}
\end{array}
$$

Jaccard ignores k-mer repetition

$$
\begin{array}{ll}
x=\overbrace{\text { AAAAAAAAAAAAAAA }}^{n-k} \overbrace{C C C C}^{k} & \rightarrow\{\text { AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC }\} \\
y=\underbrace{\text { AAAAA }}_{k} \underbrace{C C C C C C C C C C C C C C}_{n-k}
\end{array} \rightarrow\{\text { AAAAA, AAAAC, AAACC, AACCC, ACCCC, CCCCC }\}
$$

Jaccard distance $\mathrm{J}_{\mathrm{d}}(x, y)=0 \quad$ Edit distance $\mathrm{E}_{\mathrm{d}}(x, y) \geq 1-\frac{2 k}{n}$ Identical k-mer content and high edit distance

Weighted Jaccard: Jaccard on multi-set

- $\chi_{A}: \mathcal{U} \rightarrow\{0,1\}$, $\chi_{A}(x)=1 \Longleftrightarrow x \in A$

$$
\mathrm{J}(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\sum_{x \in \mathcal{U}} \min \left(\chi_{A}(x), \chi_{B}(x)\right)}{\sum_{x \in \mathcal{U}} \max \left(\chi_{A}(x), \chi_{B}(x)\right)}
$$

Weighted Jaccard: Jaccard on multi-set

- $\chi_{A}: \mathcal{U} \rightarrow\{0,1\}$, $\chi_{A}(x)=1 \Longleftrightarrow x \in A$

$$
\mathrm{J}(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{\sum_{x \in \mathcal{U}} \min \left(\chi_{A}(x), \chi_{B}(x)\right)}{\sum_{x \in \mathcal{U}} \max \left(\chi_{A}(x), \chi_{B}(x)\right)}
$$

- $\chi_{A}^{w}: \mathcal{U} \rightarrow \mathbb{N}$,
$\chi_{A}^{w}(x)=\#$ of instances of x in A

$$
\mathrm{J}^{\mathrm{w}}(A, B)=\frac{\sum_{x \in \mathcal{U}} \min \left(\chi_{A}^{w}(x), \chi_{B}^{w}(x)\right)}{\sum_{x \in \mathcal{U}} \max \left(\chi_{A}^{w}(x), \chi_{B}^{w}(x)\right)}
$$

Weighted Jaccard handles repetitions

$$
\left.\begin{array}{l}
x=\overbrace{\text { AAAAAAAAAAAAAAA }}^{n-k} \overbrace{\text { CCCCC }}^{k} \rightarrow\left\{\begin{array}{c}
(\text { (AAAAA, } 1),(\text { AAAAA }, 2), \ldots,(\text { AAAAA, } 11)
\end{array}\right. \\
y=\underbrace{\text { AAAAA }}_{k} \underbrace{\text { CCCCCCCCCCCCCCC }}_{n-k} \rightarrow\left\{\begin{array}{c}
(\text { AAAAC,1),(AAACC,1),(AACCC,1),(ACCCC,1),(CCCCC,1) }
\end{array}\right\}
\end{array}\right\}
$$

Weighted Jaccard $\mathrm{J}_{\mathrm{d}}^{\mathrm{W}}(x, y)=1-\frac{k+2}{n} \quad$ Edit distance $\mathrm{E}_{\mathrm{d}}(x, y) \geq 1-\frac{2 k}{n}$
Weighted Jaccard $=$ Jaccard for multi-sets

Jaccard and weighted Jaccard ignore relative order

$$
\begin{aligned}
& x=\text { CCCCACCAACACAAAACCC } \\
& y=\text { AAAACACAACCCCACCAAA }
\end{aligned}
$$

Jaccard and weighted Jaccard ignore relative order

$$
\begin{aligned}
& x=\text { CCCCACCAACACAAAACCC } \quad \rightarrow\left\{\begin{array}{l}
\text { АААА,АААА,ААСА,ААСС,АСАА,АСАС,АССА,АССС } \\
\text { СААА,СААС,САСА,САСС,ССАА,ССАС,СССА,СССС }
\end{array}\right\}
\end{aligned}
$$

$$
x, y \text { : de Bruijn sequences, }
$$ contain all 16 possible 4 -mers once $(\sigma!)^{\sigma^{k-1}}$ de Bruijn sequences of length $\sigma^{k}+\sigma-1$

Jaccard and weighted Jaccard ignore relative order

$$
\begin{array}{ll}
x=\text { CCCCACCAACACAAAACCC } & \rightarrow\left\{\begin{array}{l}
\text { АААА,АААС,ААСА,ААСС,АСАА,АСАС,АССА,АССС } \\
\text { СААА,СААС,САСА,САСС,ССАА,ССАС,СССА,СССС }
\end{array}\right\} \\
y=A А A A C A C A A C C C C A C C A A A ~ & \rightarrow\left\{\begin{array}{l}
\text { АААА,АААС,ААСА,ААСС,АСАА,АСАС,АСА,,АССС } \\
\text { СААА,СААС,САСА,САСС,ССАА,ССАС,СССА,СССС }
\end{array}\right\}
\end{array}
$$

$$
x, y \text { : de Bruijn sequences, }
$$ contain all 16 possible 4 -mers once

$$
(\sigma!)^{\sigma^{k-1}} \text { de Bruijn sequences of length } \sigma^{k}+\sigma-1
$$

$$
\mathrm{J}_{\mathrm{d}}(x, y)=\mathrm{J}_{\mathrm{d}}^{\mathrm{w}}(x, y)=0 \quad \mathrm{E}_{\mathrm{d}}(x, y)=0.63
$$

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

1. k-mer repetitions
2. relative positions of k-mers

- k-mer Jaccard is not an LSH for the edit distance
- Sill provides 'big computation saving: asymmetric error model

Jaccard is different from edit distance

Unlike edit distance, k-mer Jaccard is insensitive to:

1. k-mer repetitions
2. relative positions of k-mers

- k-mer Jaccard is not an LSH for the edit distance
- Still provides big computation saving: asymmetric error model

OMH: Order Min Hash

- minHash is an LSH for Jaccard
- OMH is a refinement of minHash
- OMH is sensitive to
- repeated k-mers
- relative order of k-mers
$S=$ AGTTGAGCGGAAGGTG, $k=2$

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2
$$

π : permutation of Σ^{k}

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3
$$

π : permutation of Σ^{k}

1	2	3
AG	GG	CG
GT	GA	GA
CG	CG	TG
TT	AG	AG
GG	GC	GC
TG	GT	GG
AA	AA	TT
GA	TT	AA
GC	TG	GT

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3
$$

π : permutation of Σ^{k}

123

minHash \& OMH sketches

$S=$ AGTTGAGCGGAAGGTG, $k=2, L=3$

π : permutation of $\Sigma^{k} \quad$ Order: permutation of $\Sigma^{k} \times\{1, \ldots, n\}$

$$
\begin{array}{lr}
\text { GA, } & 4 \\
\text { TG, } & 3 \\
\text { AG, } \\
\text { GT, } \\
\text { GT, } & 13 \\
\text { AA, } 10 \\
\text { AG, } 11 \\
\text { TT, } & 2 \\
\text { AG, } \\
\text { CG, } & 7 \\
\text { GG, } & 12 \\
\text { GC, } & 6 \\
\text { TG, } & 14 \\
\text { GG, } & 8 \\
\text { GA, } & 9
\end{array}
$$

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3, \ell=2
$$

π : permutation of Σ^{k}

	2	3	4	5	6
GA, 4	,	,	AG,	AA, 10	GA,
TG, ${ }^{\text {a }}$	TG	GA		GT	
	AG	GA			
	GA,	TG,			
	AG,	AG,		AG,	
AA, 10	AG,	CG,		TT,	
	GA,			GA,	AA
TT,	GT,	AA,	GG,	CG,	AG
AG,	TT,	GG,	GA,	AG,	CG,
CG,	TG,	GG,	GA,	TG,	GG,
GG,	GG,	TG, 14	TG, 1	GG,	AG
GC, 6	AA,	GT, 1	TG,	GG,	
TG, 14	GG	AG, 11	GC		
	GT, 1	GC, 6			

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3, \ell=2
$$

π : permutation of Σ^{k}

1	2	3	4	5	
,			AG,	AA, 10	GA,
TG, 3	TG, 14	GA,	TT	GT, 13	
AG,	AG,	GA,	AG, 11	GA, 9	
	GA,	TG,	$A G, 5$		TG
GT, 13	AG,	AG,	AA, 10	AG	
AA, 10	AG,		GT,	TT	
AG	GA,	TT		GA,	
	GT,	AA, 1	GG		
AG, 0	TT,	GG	GA,	AG,	
	TG,	GG,	GA,	TG,	
GG,	GG,	TG, 14	TG, 14	GG,	AG
	AA, 10	GT,	TG,	GG,	
TG, 14	GG,	AG, 11	GC,	GC,	
	GT,	GC		AG	
			GG		

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3, \ell=2
$$

π : permutation of Σ^{k}

minHash \& OMH sketches

$$
S=\text { AGTTGAGCGGAAGGTG, } k=2, L=3, \ell=2
$$

Jaccard:

$$
\operatorname{Sk}(S)=\left(\begin{array}{c}
\mathrm{GC} \\
\mathrm{TG} \\
\mathrm{GT}
\end{array}\right)
$$

OMH:

$$
\operatorname{Sk}(S)=\left(\begin{array}{cc}
\mathrm{GC} & \mathrm{CA} \\
\mathrm{AG} & \mathrm{GG} \\
\mathrm{AG} & \mathrm{TG}
\end{array}\right)
$$

OMH is a LSH for edit distance

Theorem: OMH is a LSH for edit distance

There exists $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$ such that OMH is sensitive for the edit distance.

- p_{1} : related to probability of hash collisions of weighted Jaccard
- p_{2} : related to length of increasing sequence given weighted Jaccard

Practical considerations with Jaccard sketches

OMH:

Jaccard:

- Can use canonical k-mers
- Difficult to find independent hashes: use bottom sketches $(L \ll n)$
- ℓ times as large (cost to encode order)
- $\ell=1$: LSH / unbiased estimator of weighted Jaccard
- Can't use canonical k-mers: double sketch

OMH has a large gap

- $|S|=100, k=5$
- Current proof has a large gap
- What is smallest gap possible?
- OMH/minHash similar to embedding in Hamming space: gap probably unavoidable

[^0]: ${ }^{1}$ A faster algorithm computing string edit distances (1980)

[^1]: ${ }^{1}$ A faster algorithm computing string edit distances (1980)

[^2]: ${ }^{1} \mathrm{~A}$ faster algorithm computing string edit distances (1980)

[^3]: ${ }^{2}$ Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

[^4]: ${ }^{2}$ Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

[^5]: ${ }^{2}$ Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

[^6]: ${ }^{2}$ Assembling large genomes with single-molecule sequencing and locality-sensitive hashing

[^7]: ${ }^{3}$ Mash: fast genome and metagenome distance estimation using MinHash

