
Chapter 3

Hashing

3.1 Introduction

We explore data structures that support the following operations: Given a universe of

elements U = {0, 1, 2,, u− 1}, and a set S ⊆ U containing elements, we want to support

the following operations:

• insert(x)—add x ∈ U to S; i.e., S ← S ∪ {x} .

• find(x)— determine whether element x ∈ S.

• delete(x)–remove element x from S; i.e., S ← S − {x} .

The elements ∈ U are keys belonging to records.

Question. What is the best data structure to solve this problem?

Answer. Hash Tables.

Quote of Udi Member, former CTO of Yahoo:

“The three most important data structures are hashing, hashing and hashing.”

27

Hashing

Figure 3.1: Hashing.

3.2 Main Idea of Hashing

Use the hash function h to map the universe U = {0, . . . , u − 1} of keys to the set T =

{0,,m − 1}.

3.3 Collisions

Definition 23. When a record x maps to an already occupied slot in T , a collision occurs.

3.3.1 Avoiding Collisions by Chaining

28

Hashing

Figure 3.2: Chaining: resolving collision by chaining. Records in same slot are linked by

list. In this example, h(3) = h(39) = h(20) = j.

3.3.2 Resolving Conflicts by Open Addressing

No storage is used outside of hashtable itself. Insertion systematically probes the table until

an empty slot is found.

Main Idea: Hash function depends both on the key and probe number.

• insert(k) - Try to insert key k into position h(k, 0).

If position h(k, 0) has already been filled, then try h(k, 1).

If position h(k, 1) has already been filled, then try h(k, 2), etc, . . .

• delete(k) - Very slightly more difficult but still pretty straightforward.

• search(k) - Keep searching in postions h(k, 0), h(k, 1), h(k, 2),. . . until either k is

found or and empty cell is found.

Linear Probing

Given an ordinary hash function h(k), linear probing uses the hash function

h̃(k, i) = h(k) + i mod m

29

Hashing

Disadvantage: Suffers from clustering. (Is this really a disadvantage?)

Double Hashing

Given two hash functions h1(k) and h2(k), double hashing uses the hash function

h̃(k, i) = h1(k) + i · h2(k) mod m.

Requirement:

1. h2(k) should be relatively prime to m.

2. Make m = 2! and h2(k) should be odd.

3.3.3 Myth

You probably learned in your undergraduate class that deletions are hard when there is

linear probing. This is just not true.

3.3.4 Modern Memory Hierarchy

The folk wisdom says that chaining is better than double hashing, which is better than

linear probing. Linear probing is considered to be the worst because it induces clustering

which tends to cause long runs.

This wisdom is being turned on its head by modern memory hierarchies as explained below.

In a modern memory hierarchy, memory is divided into words, blocks, etc. Memory transfers

are often the dominant cost of running time. The number of memory transfers can be

reduced if data is read and written sequentially. As a result, it is better to read sequentially

rather than randomly. This is achieved best by using linear probing.

The arrow shows the cells queried during linear probing. As we can see, even if all the cells

indicated by the arrow are touched, it results in just two memory transfers.

⇒ Linear probing has locality of reference.

⇒ Linear probing results in fewer number of memory transfers.

30

Hashing

Figure 3.3: Memory hierarchy.

Figure 3.4: Memory is divided into contiguous fixed-sized blocks.

31

Hashing

3.4 Universal Hashing

3.4.1 Weakness of Hashing

For any hash function mapping from a universe U = {0, 1, · · · , u−1} −→ {0, 1, · · · ,m−1},
there exists a set S, |S| = n, such that lookups have very slow running time. (Just choose

a set of keys that all hash to the same value, i.e., S ⊆ {x| h(x) = y, for some y}.)

Figure 3.5: Hashing from U = {0, 1, · · · , u− 1} to T = {0, 1, · · · ,m− 1}. We choose a set S ⊆ U such that all the

elements of S are hashed to the same value in T . The lookups on S will have a very slow running time.

3.4.2 Universal Hash Functions

Definition 24. We are given a set H of hash functions mapping from U → {0, 1, · · · ,m−1},
such that ∀x, y ∈ U , where x)= y:

∣

∣

∣

∣

{ha ∈ H|ha(x) = ha(y)}
∣

∣

∣

∣

=
|H|
m

.

That is, the probability that x and y collide is 1
m , if we choose ha randomly from H.

Claim 25. Let ha be a hash function chosen uniformly at random from a universal set H
of hash functions. Suppose that ha is used to hash n arbitary keys into m slots of the table.

Then for any given key x:

E[# of collisions with x] =
n− 1

m
.

32

Hashing

Proof. Let Cxy be the random variable that indicated whether x and y collide, then

Cxy =

{

1 with probability 1
m

0 with probability 1− 1
m .

Then,

E[Cxy] =
1

m
· 1 +

(

1−
1

m

)

· 0 =
1

m
.

Let Cx be the random variable denoting the number of collisions with x. Thus,

Cx =
∑

y∈S−{x}

Cxy.

By linearity of expection we know that

E[Cx] =
∑

y∈S−{x}

E[Cxy]

=
∑

y∈S−{x}

1

m

=
n− 1

m
.

3.4.3 Construction of a Universal Set of Hash Functions

Let m be prime. Let key k be divided into r components, for any r = max{logm u, 2} (where

u is the size of universe to be hashed). That is,

k = (k0, k1, k2, · · · , kr−1) (ki ∈ {0, 1, · · · ,m− 1}).

That is, k is represented in base m. Choose a random vector

a = (a0, a1, a2, · · · , ar−1) (ai ∈ {0, 1, · · · ,m− 1}).

That is, ai is also represented in base m. Define the hash function

ha(k) =
r−1
∑

i=0

aiki mod m.

Next we prove that we have a universal set of hash functions.

33

Hashing

Claim: |H| = mr.

Claim: The set |H| = {ha} is universal, that is,

Prob(x, y collide) =
1

m
,

or
∣

∣

∣

∣

{ha ∈ H|ha(x) = ha(y)}
∣

∣

∣

∣

=
|H|
m

.

Proof. Let

x = (x0, x1, · · · , xr−1),

y = (y0, y1, · · · , yr−1), where x)= y.

Assume that:

ha(x) = ha(y).

That is,
r−1
∑

i=0

aixi =
r−1
∑

i=0

aiyi (mod m),

r−1
∑

i=0

(xi − yi)ai = 0 (mod m).

Since x)= y, there is at least one digit that differs. Without loss of generality, say that

x0)= y0. Then,

(x0 − y0)a0 = −
r−1
∑

i=1

(xi − yi)ai (mod m).

Now we use the following fact:

Fact: Let m be prime, for any z ∈ Zm = {0, 1, 2, · · · ,m − 1}, where z)= 0, there

exists a unique z−1 ∈ Zm, such that z · z−1 = 1 (mod m).

Therefore, there exists the inverse of x0 − y0. So we have:

a0 = (x0 − y0)
−1

(

r−1
∑

i=1

(yi − xi)ai

)

(mod m).

That’s why we require the m to be prime.

34

Hashing

Question: How many degrees of freedom do we have? i.e., how many ha’s satisfy

above requirement (cause x and y to collide)?

Answer: There are m choices for each of the r− 1 numbers a1, a2, · · · , ar−1.

But once these are chosen, exactly one choice for a0 causes x and y to collide:

a0 = (x0 − y0)
−1

(

r−1
∑

i=1

(yi − xi)ai

)

(mod m).

Therefore, there are mr−1 hash functions satisfying the above requirement.

Thus, the number of ha’s that cause x and y to collide is:

mr−1 =
|H|
m

.

3.5 Perfect Hashing

Claim: If we hash n keys into a hash table of size n2, then

Prob(There exists collision) <
1

2
.

Proof. Let random variable

Cxy =

{

1 if ha(x) = ha(y)

0 otherwise.

Because we have a universal hash function

Cxy =

{

1 with probability 1
m

0 with probability 1− 1
m .

Therefore,

E[Cxy] =
1

m
.

Let C be the number of pairwise collisions:

C =
∑

x,y∈S, x $=y

Cxy.

35

Hashing

By linearity of expectation,

E[C] =
∑

x,y∈S, x $=y

E[Cxy]

=
∑

x,y∈S, x $=y

1

m

=

(n
2

)

m

=
n(n− 1)/2

n2

<
1

2
.

So the expected # of pairwise collision is less than 1
2 .

Using Markov’s Inequality:∗

Markov’s Inequality: Let X be a nonnegative random variable,

Pr(X ≥ αE[X]) ≤
1

α
.

We obtain:

E[C] ≤
1

2
.

The previous equation means that

Pr(≥ 1 collisions) < Pr(C ≥ 2E[C]) ≤
1

2
.

3.6 Perfect Hashing Using Linear Space

Difficulty: Bins may have many balls, i.e., elements.

Fact: The fullest bin may have O(
√
n) balls (elements).

Great idea: Use a 2-level hash function!

∗This is another thing you should remember on your deathbed.

36

Hashing

• 1st level: A table of size n. But there will be many collisions.

Definition 26. Let N(i) be the # of elements hashed to position i. That is,

N(i) = |{k ∈ S|h(k) = i}|

• 2nd level: Associated with position i is its own table of size (N(i))2. This table has

all keys such that h(k) = i . Each table has its own hash function.

Figure 3.6: Two-level hash function.

We already know that this is a perfect hash function (from the previous section). We need

to show that this construction uses linear space . This is not obvious , since the space usage

is

Θ(n) +
n
∑

i=1

Θ(N(i))2,

and, a priori, there is no reason to assume that this equation is linear.

3.7 Analysis of Space Usage in Perfect Hashing

Amazingly, the space usage is only Θ(N) and that is what remains to prove.

Theorem 27. The space usage for the perfect hashing construction is Θ(N).

Main Beautiful Idea: We show that the space usage is linear

by counting the # of collisions in first level in 2 ways.

3.7.1 First way with random variables

Lemma 28. The expected number of pairwise collisions is n−1
2 .

37

Hashing

Proof. Let random variable Cij be:

Cij =

{

1 if elements i and j land in the same bin.

0 otherwise.

Then ,

Cij =

{

1 with prob 1
n = 1

m . (We are letting m = n.)

0 with prob 1− 1
n .

Therefore, E[Cij] =
1
n .

Now let C be the total # of pairwise collisions, hence C =
∑

i<j

Cij .

Therefore,

E[C] =
∑

i<j

E[Cij]

=

(

n

2

)

·
1

n

=
n− 1

2
.

3.7.2 Second way

Theorem 29. The expected # of collisions is
n
∑

i=1

(

N(i)

2

)

=
n
∑

i=1

Θ(N(i))2.

Proof. If there are N(i) keys that hash to position i then the expected # of (pairwise)

collisions is the # of ways of choosing subsets of size 2, i.e.,
(N(i)

2

)

.

But the space usage of the data structure is:

Fact 30. The space usage of the data structure is Θ(n) +
n
∑

i=1

Θ(N(i))2.

Therefore combining these two observations, we obtain

Theorem 31. The space usage of the pefect-hashing data structure is Θ(N) .

Other refs. Cite static perfect hashing. Who did dynamic perfect hashing?

What are the results?

38

Hashing

3.8 Stronger Kinds of Universal Hashing

We’re going to do dynamic hashing, and for that we need to be a little bit more careful

about our hash functions. 2 So here goes:

Definition 32. A set H of hash functions is said to be a weak universal family if for all

x, y ∈ U , x)= y,

Pr[h← H : h(x) = h(y)] =
O(1)

m
.

In particular, it is c-universal iff

Pr[h← H : h(x) = h(y)] ≤
c

m
.

Example: Hp,m = {ha,b | a ∈ {1, 2, . . . , p}, b ∈ {0, 1, 2, . . . , p−1}}, for some prime p > |U |,
where ha,b(x) = ((ax + b) mod p) mod m. Each function requires only O(log |U |) bits to

represent, and we can evaluate it in constant time. This class of functions is 2-universal.

Definition 33. A set H of hash functions is said to be a strong universal family if for all

x, y ∈ U such that x)= y, and for all a, b ∈ [m],

Pr[h← H : h(x) = a ∧ h(y) = b] =
O(1)

m2
.

Definition 34. A set H of hash functions is said to be a k-independent if for all k distinct

items x1, x2, . . . , xk ∈ U , and for all a1, a2, . . . , ak ∈ [m],

Pr[h← H : h(x1) = a1 ∧ h(x2) = a2 ∧ . . . ∧ h(xk) = ak] =
O(1)

mk
.

Similarly, if

Pr[h← H : h(x1) = a1 ∧ h(x2) = a2 ∧ . . . ∧ h(xk) = ak] ≤
c

mk
.

We refer to the family as (c, k)-independent.

Example: Pick some p > |U |.

H = {h | h(x) = (c0 + c1x+ . . .+ ck−1xk−1) mod m, for some c0, c1, . . . ck−1 ∈ [p]}.

To see that universal hashing gives what we want, it’s enough to show weak universal family

does, suppose we pick m so that n
m = O(1), and let h be a random element of H. Now,

2From Eric Demaine’s lecture notes.

39

Hashing

an operation that involves item x has running time proportional to the length of the chain

that x is in, which is equal to
∑

y∈S Iy, where Iy is the indicator random variable that is 1

if and only if h(x) = h(y). So, the expected length (and the expected running time) is

E





∑

y∈S
Iy



 =
∑

y∈S
E[Iy] = 1 +

∑

y $=x

Pr[h(x) = h(y)] ≤ 1 + n ·
O(1)

m
= O(1)

Theorem 35 (Siegel, 1989). For any ε > 0, there exists a nΩ(1)-independent family of hash

functions such that each function can be represented in nε space, and can be evaluated in

O(1) time.

Theorem 36 (Pagh, Ostlin, 2003). There exists a n-independent family of hash functions

such that each function takes O(n) words to describe, and can be evaluated in O(1) time.

3.9 Cuckoo - Dynamic Hashing (Pagh and Rodler 2001 [?])

Theorem 37 (Cuckoo hashing performance). Cuckoo hashing achieves:

• insert – in O(1) expected time

• queries/deletes – in O(1) worst-case time

Where cuckoo hashing gets its name. Cuckoo hashing is based on the nesting habit

of the Cuckoo bird, which is known to place its eggs in the unattended nests of other birds.

When the baby cuckoo birds are born, the surrogate mother bird feeds them. The baby

cuckoo is typically born first, and pushes some of the unhatched eggs out of the nest.

Requirement for (c,O(log n))-independent hash functions. Unlike static perfect

hashing, cuckoo hashing make uses of (c,O(log n))-independent hashing. Whether the

scheme can achieve the same bound using only O(1)-independent hash family is still an

open problem.

The scheme requires two (c,O(log n))-independent hash functions, say h1 and h2. (We’ll

use 6 log n-independent hash functions.)

Parameter Choices. The table size m is required to be greater than 2n. We’ll use

m = 4n. Throughout the life of the data structure, it maintains the following invariant:

40

Hashing

Invariant 3.9.1. An item x that has already been inserted is stored either at hash-table

location T [h1(x)] or at T [h2(x)].

Invariant 3.9.2. A query takes at most two probes in the worst case. So does a delete.

Before presenting the algorithm, we introduce some notation:

Definition 38. We let h(x) represent the location that most recently holds x, that is,

h(x) =















h1(x) if x was most recently put in h1(x)

h2(x) if x was most recently put in h2(x)

undefined if x is not yet in either location

We let h(x) represent the alternate location, that is,

h̄(x) =















h1(x) if h(x) = h2(x)

h2(x) if h(x) = h1(x)

undefined if x is not yet in either location

Definition 39. • We say that x bumps y if we remove y from its location and replace

it with x, that is, h1(x) = h(y) (or h2(x) = h(y)), and we remove y from the table

and set h(x) = h1(x) (or h(x) = h2(x)).

• We toggle y if we move y from one of its possible locations to the other in the hash

table, that is if we set h(y) to be h̄(y)

• A toggle and bump happens when the location we toggle to is full and a toggle and

stick happens when the location we toggle to is empty.

We know how to query and delete.

To insert an element x:

1. Compute h1(x). If T [h1(x)] is empty, we put x there, and we are done. Otherwise,

bump whatever is in T [h1(x)] and toggle it.

2. This produces a chain reactions of toggle and bump, until one of two conditions have

been met. Either there is a toggle and stick or we have bumped 6 log n elements. In

the latter case, pick two new hash functions and rehash the entire contents of the

table.

41

Hashing

It remains is to analyze the running time of inserting an item. Consider the process of

inserting an item x1. Let x1, x2, . . . , xt be the sequence of items, with the exception of x1,

that are bumped during the process, in the order they are bumped.

There are three cases.

• Case (a): No cycle. The process continues, without coming back to a previously

visited cell, until an empty cell is found or rehashes.

• Case (b): One cycle. Otherwise, the process comes back to a cell that it has

already visited. That is, for some j, the other cell that xj can be in is occupied by

a previously evicted item xi. Then xi will be evicted a second time, and will go to

the other position it can be found in–namely, back to the location of xi−1. Thus,

xi, xi−1, . . . , x1 will be evicted in that order, and x1 will be sent to T [h2(x)], and the

sequence continues.

The sequence continues until it ends at an empty cell or rehashes.

• Case (c): Two cycles. Otherwise the sequence continues until, once more, it runs

into a previously visited cell. In this case, we have discovered an infinite loop, so you

rehash. (In fact, you can stop as soon as you find 2 cycles, but this doesn’t affect the

run time.)

We can visualize the above behaviors by considering the cuckoo graph G, whose vertex set

is [m] and whose edge set contains edges of the form (h1(x), h2(x)) or (h2(x), h1(x)) for all

x ∈ U . In this way, the process of inserting item x1 can be viewed as a walk on G starting

at h(x1). Visualizations of the three different behaviors are given in Figure 3.7

We analyze the running time in all three cases. The key observation is that when inserting

a new element, we never examine more than 6 log n items. Since our functions are 6 log n-

independent, we can treat them as truly random functions.

• Case (a): No cycle. We calculate the probability that the insertion process evicts

t items. The process carries out the first eviction if and only if T [h1(x1)] is occupied.

By the union bound,

Pr[≥ 1 eviction] ≤
∑

x∈S,x $=x1

(Pr[h1(x) = h1(x1)] + Pr[h2(x) = h1(x1)])

< 2
n

4n
=

1

2
.

42

Hashing

x1

!!
• x2 "" • x3 "" • x4 "" • x5 "" • x6 "" • x7 "" •

(a) no cycle

x1

##

•
x8

$$

•x7%%

• x2 ""

x1

&&

• x3 ""

x2

''
!"

#
• x4 ""

x3

''
!"

#
• x5 ""

x4

''
!"

#
•

x6

((

• x9 "" • x10 "" • x11 "" • x12 "" •

(b) one cycle

x1

##

•
x8

$$

•x7%%

• x2 ""

x1

&&

• x3 ""

x2

''
!"

#
• x4 ""

x3

''
!"

#
• x5 ""

x4

''
!"

#
•

x6

((

• x9 "" • x10 "" •
x11

$$
•

x13

((

•x12
%%

(c) two cycles

Figure 3.7: Three different behaviors of the process of inserting element x1.

43

Hashing

Similarly,

Pr[≥ 2 evictions] ≤
1

4
.

and in general,

Pr[≥ t evictions] ≤ 2−t.

Therefore,

E[running time] ≤
∞
∑

t=1

t2−t = O(1).

Also,

Pr[rehash] ≤ 2−6 logn =
1

n6
<

1

n2
.

• Case (b): One cycle.

Claim 40. In the sequence x1, x2, . . . , xt of evicted items, there exists a consecutive

subsequence distinct items of length at least t/3 that starts with x1 (see Figure 3.7(b)).

Proof. Consider Figure 3.7(b). The sequence can be partitioned into three parts —

the solid line part, the dashed line part, and the dotted line part — and one of them

must contains at least t/3 items.

By the same reasoning as in the previous case, we have

Pr[≥ t evictions] ≤ 2−t/3,

and

E[running time] ≤
∞
∑

t=1

t2−t/3 = O(1).

Also,

Pr[rehash] ≤ 2
−6 log n

3 =
1

n2
.

• Case (c): Two cycles. We now calculate the probability of a sequence of length t

having two cycles. We use a counting argument.

Question. How many two-cycle configurations are there?

– The first item in the sequence is x1.

– There are at most t− 1 items in the sequence, each of which is drawn from a set

of size n. Thus, the number of sequences of elements starting with x1 is at most

nt−1.

44

Hashing

– There are at most t choices for when the first loop occurs, at most t choices for

where this loop returns on the path so far, and at most t choices for when the

second loop occurs. Thus, there are t3 choices for describing the structure of the

loop.

Question. Why isn’t it t4? I don’t know the answer, but it doesn’t seem to

matter.

– Additionally, this pattern can occur anywhere in our table (data structure) of

hash values. While the first hash value is h1(x1), the remaining t− 1 values are

unconstrained. Our table is of size m = 4n, so there are (4n)t−1 possibilities for

where the elements hash to.

Claim 41. There are at most t3nt−1(4n)t−1 configurations.

However, to calculate the total number of cuckoo graphs, note that each edge in the

graph comes from the evaluation of two different hash functions on a single input. The

hash functions have a range of size m = 4n, so the number of possible locations for a

single edge is (4n)2

2 (where the division by two occurs because the edge is undirected,

so an edge from i to j is the same as an edge from j to i). Therefore, the total

number of cuckoo graphs (of t nodes) is (4n)2t

2t . Thus, the probability that a two-cycle

configuration occurs is at most

t3nt−1(4n)t−12t

(4n)2t
=

t3

4n22t
.

Therefore, the probability that a two-cycle occurs at all is at most

∞
∑

t=2

t3

4n22t
=

1

4n2

∞
∑

t=2

t3

2t
=

1

4n2
· O(1) = O

(

1

n2

)

.

So, an insertion causes the data structure to rehash with probability O(1/n2). Therefore, n

insertions can cause the data structure to rehash with probability at most O(1/n). Thus,

rehashing, which is basically n insertions, succeeds with probability 1−O(1/n), which means

that it succeeds after a constant number trials in expectation. In a successful trial, every

insertion must fall into the first two cases. Therefore, a successful trial takes n × O(1) =

O(n) time in expectation. In an unsuccessful trial, however, the last insertion can take

O(log n) time, so it takes O(n) + O(log n) = O(n) time in expectation as well. Since

we are bound to be successful after a constant number of trials, the whole process of

rehashing takes O(n) time in expectation. Hence, the expected running time of an insertion

is O(1) +O(1/n2) · O(n) = O(1) +O(1/n) = O(1).

45

Tail Inequalities

3.10 Worst-case Guarantees in Static Hashing

Still, universal hashing gives us only good performance in expectation, making it vulnerable

to an adversary who always insert/query items that make the data structure perform the

worst. In static hashing, however, we can establish some worst-case upper bounds.

Theorem 42 (Gonnet, 1981). Let H be an n-independent family of hash functions. The

expected length of the longest chain is Θ
(

lgn
lg lgn

)

.

By this theorem, we can construct a static hash table with Θ
(

lgn
lg lgn

)

worst-case running

time per each operation. We start by picking a random hash function from the family, hash

every item in S, and see if the length of the longest chain is at most twice the expected

length. If so, we stop. If not, we pick a new function and start over again. Since the

probability that we pick a bad hash function is at most 1
2 , we will find a good hash function

after a constant number of trials. The construction thus takes O(n) time in expectation.

3.11 Minimum Two Choices

As we’ll see later, we can do better than this. By using two hash functions, adding the in-

serted item to the shorter list, and searching in both lists when an item is queried, we achieve

Θ(lg lg n) length of longest chain in expectation. (More generally, for d hash functions, the

longest chain is of length Θ(log lognlog d).)

46

