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Frequency

Given

Metadata: a universe [u] := {1, 2, . . . , u},
u is bigger than memory, O(lg u) is constant.

Data: a sequence X :=
[
xi ∈ [u]

]n
i=1

,

i.e. [x1, x2, . . . , xn], xi ∈ [u] for all i ∈ [n].

Goal

For any query q ∈ [u], return the its count or frequency:

c(q) :=
∑
x∈X

1(x , q), f (q) :=
c(q)

n
.

What if n is also too big for memory? Even bigger than external
memory?
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DDoS Attack Detection at Router

Detect high frequency IP addresses with limited memory.
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Frequency Estimation in Stream

Given

Metadata: a universe [u] := {1, 2, . . . , u},
u is bigger than memory, O(lg u) is constant.

Data: a sequence X :=
[
xi ∈ [u]

]n
i=1

,

n is bigger than memory.

Goal

For any query q ∈ [u], return the ε-approximation of its frequency,
f̂ε(q), s.t.

f (q)− ε ≤ f̂ε(q) ≤ f (q) + ε
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Heavy Hitters in Stream

ϕ-Heavy Hitter

y ∈ [u] is a ϕ-heavy hitter iff f (y) > ϕ.

ε-approximation of ϕ-heavy hitters, Ĥϕ
ε

y ∈ Ĥϕ
ε if f (y) > ϕ.

y /∈ Ĥϕ
ε if f (y) < ϕ− ε.

Given f , you can find all ϕ-Heavy Hitters.

Given a f̂ε, for any ϕ ≥ ε, {y ∈ [u] | f̂ε(y) > ϕ− ε} is a Ĥϕ
ε .
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Majority

Goal

Find y if f (y) > 1
2 .

Algorithm: Majority(X )

1 y ← NaN, c ← 0
2 forall x ∈ X do
3 if y = x then c ← c + 1
4 else if c = 0 then y ← x , c ← 1
5 else c ← c − 1

6 return y

Boyer and Moore [1981].

If there is no m s.t. f (m) > 1
2 , then whatever y is correct.

Assume f (m) > 1
2 . Whenever c reaches 0:

The algorithm goes back to inital state and starts to process
the rest of the sequence.
m must be the majority of the rest sequence as well.
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Misra-Gries Sketch

Algorithm: Majority(X)

1 y ← NaN, c← 0
2 forall x ∈ X do
3 if y = x then c← c+ 1
4 else if c = 0 then y ← x, c← 1
5 else
6 c← c− 1

7 return y

Algorithm: Misra-Gries(X, k)

1 Y ← [NaN] ∗ k,C ← [0] ∗ k
2 forall x ∈ X do
3 if ∃i(Y [i] = x) then C[i]← C[i] + 1
4 else if ∃i(C[i] = 0) then Y [i]← x,C[i]← C[i] + 1
5 else
6 forall i do C[i]← C[i]− 1

7 return Y,C

Misra and Gries [1982].

Extends the majority algorithm by increasing the number of keys
and coun- ters from 1 to k.

To approximate f (q) for any q ∈ [u]

f̂MG (q) :=

{
C [i ]
n ∃i(Y [i ] = q)

0 otherwise
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Misra-Gries Sketch Analysis

Lemma

for all q ∈ [u],

f (q)− 1

k + 1
≤ f̂MG(k)(q) ≤ f (q)

Proof.

The upper bound is obvious.
When Line 6 executes, there must be k + 1 distinct item are
decremented. It can hapen at most n/(k + 1) times.
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Lemma

for all q ∈ [u],

f (q)− 1

k + 1
≤ f̂MG(k)(q) ≤ f (q)

Setting 1
k+1 = ε, or k = 1

ε − 1,

f (q)− ε ≤ f̂MG(k)(q) ≤ f (q) ≤ f (q) + ε

fMG(k)(q) is an ε-approximation of f (q).

Y is a Ĥε
ε
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Count Sketch Algorithm

Algorithm: Count-Sketch(X , t, k)

1 C ← 0t×k ,H ← (Hi : [u]→ [k])ti=1,S ← (Si : [u]→ [±1])ti=1

2 forall x ∈ X do
3 forall i in [t] do
4 Ci ,Hi (x) ← Ci ,Hi (x) + Si (x)

5 return C ,H, S

Charikar et al. [2002].

Hi ,Si are independent hash functions.

Si are choosen from a pairwise independent family.
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H =


H1

H2
...
Ht

 S =


S1
S2
...
St

 C =


C1,1 C1,2 . . . C1,k

C2,1 C2,2 . . . C2,k
...

...
. . .

...
Ct,1 Ct,2 . . . Ct,k
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Count Sketch Query

To approximate f (q) for any q ∈ [u]

f̂CS(q) := median
i∈[t]

f̂i (q), where f̂i (q) :=
1

n
Si (q)Ci ,Hi (q).

H =


H1

H2
...
Ht

 S =


S1
S2
...
St

 C =


C1,1 C1,2 . . . C1,k

C2,1 C2,2 . . . C2,k
...

...
. . .

...
Ct,1 Ct,2 . . . Ct,k
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Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will
analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random
variables?

Answer

The random events are the choices of hash functions in H and S .
The random varialbes are Hi and Si , or Hi (q) and Si (q) for all
q ∈ [u].

Benwei Shi Frequency Estimation



Problems
Misra-Gries Sketch

Count Sketch
Count-Min Sketch

Summary

Count Sketch Algorithm
Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will
analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random
variables?

Answer

The random events are the choices of hash functions in H and S .
The random varialbes are Hi and Si , or Hi (q) and Si (q) for all
q ∈ [u].

Benwei Shi Frequency Estimation



Problems
Misra-Gries Sketch

Count Sketch
Count-Min Sketch

Summary

Count Sketch Algorithm
Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will
analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random
variables?

Answer

The random events are the choices of hash functions in H and S .

The random varialbes are Hi and Si , or Hi (q) and Si (q) for all
q ∈ [u].

Benwei Shi Frequency Estimation



Problems
Misra-Gries Sketch

Count Sketch
Count-Min Sketch

Summary

Count Sketch Algorithm
Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will
analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random
variables?

Answer

The random events are the choices of hash functions in H and S .
The random varialbes are Hi and Si , or Hi (q) and Si (q) for all
q ∈ [u].

Benwei Shi Frequency Estimation



Problems
Misra-Gries Sketch

Count Sketch
Count-Min Sketch

Summary

Count Sketch Algorithm
Count Sketch Analysis

Count Sketch Notations

Ci ,j :=
∑
x∈X

Si (x)1(Hi (x), j)

=
∑
x∈[u]

nf (x)Si (x)1(Hi (x), j)

1(i , j): equal to 1 if i = j and 0 otherwise.

C x
i ,j := nf (x)Si (x)1(Hi (x), j): the part of Ci ,j caused by

x ∈ [u].

With these notations, we can simply write each Ci ,j as

Ci ,j =
∑
x∈[u]

C x
i ,j
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Count Sketch Analysis - Mean

Lemma

For any i ∈ [t], q ∈ [u],

E[f̂i (q)] = f (q)

f̂i (q) :=
1

n
Si (q)Ci ,Hi (q) = f (q) +

1

n

∑
x∈[u],x ̸=q

Si (q)C
x
i ,Hi (q)

E
[
Si (q)C

x
i ,Hi (q)

]
= nf (x) E

[
Si (q)Si (x)1(Hi (x),Hi (q))

]
= nf (x) E

[
Si (q)Si (x)

]
E
[
1(Hi (x),Hi (q))

]
Si and Hi are indep.

= nf (x) E
[
Si (q)

]
E
[
Si (x)

]
E
[
1(Hi (x),Hi (q))

]
Si is pairwise indep.

= 0 E
[
Si (x)

]
= 0
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Count Sketch Analysis - Mean

Lemma

For any i ∈ [t], q ∈ [u],

E[f̂i (q)] = f (q)

f̂i (q) :=
1

n
Si (q)Ci ,Hi (q) = f (q) +

1

n

∑
x∈[u],x ̸=q

Si (q)C
x
i ,Hi (q)

E
[
Si (q)C

x
i ,Hi (q)

]
= nf (x) E

[
Si (q)Si (x)1(Hi (x),Hi (q))

]
= nf (x) E

[
Si (q)Si (x)

]
E
[
1(Hi (x),Hi (q))

]
Si and Hi are indep.

= nf (x) E
[
Si (q)

]
E
[
Si (x)

]
E
[
1(Hi (x),Hi (q))

]
Si is pairwise indep.

= 0 E
[
Si (x)

]
= 0
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Count Sketch Analysis - Variance

Lemma

For any i ∈ [t], q ∈ [u],

V[f̂i (q)] ≤
1

k
F 2
2

where F 2
2 =

∑
x∈[u] f (x)

2.

V[f̂i (q)] = V

[
1

n
Si (q)Ci ,Hi (q)

]
=

1

n2
V

∑
x∈[u]

Si (q)C
x
i ,Hi (q)
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Count Sketch Analysis - Variance - 2

V[f̂i (q)] =
1

n2
V

∑
x∈[u]

Si (q)C
x
i ,Hi (q)

 =
1

n2

∑
x∈[u]

V
[
Si (q)C

x
i ,Hi (q)

]
Because

cov
[
Si (q)C

x
i ,Hi (q)

,Si (q)C
y
i ,Hi (q)

]
= E

[(
Si (q)C

x
i ,Hi (q)

− E[Si (q)C
x
i ,Hi (q)

]
)(

Si (q)C
y
i ,Hi (q)

− E[Si (q)C
y
i ,Hi (q)

]
)]

= E
[(

Si (q)C
x
i ,Hi (q)

)(
Si (q)C

y
i ,Hi (q)

)]
= 0

for all x ̸= y , if Si and Hi are indep., Si is pairwise indep.,
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Count Sketch Analysis - Variance - 3

V[f̂i (q)] =
1

n2

∑
x∈[u]

V
[
Si (q)C

x
i ,Hi (q)

]
≤ 1

n2

∑
x∈[u]

E
[
(Si (q)C

x
i ,Hi (q)

)2
]

=
1

n2

∑
x∈[u]

E
[(
nf (x)Si (x)1(Hi (x),Hi (q))

)2]
=

∑
x∈[u]

f 2(x) E
[(
1(Hi (x),Hi (q))

)2]
=

∑
x∈[u]

f 2(x)
1

k
=

1

k
F 2
2
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Count Sketch Analysis - Failure Probability

Lemma

For any q ∈ [u], i ∈ [t],

Pr
[∣∣∣f̂i (q)− f (q)

∣∣∣ ≥ ε
]
≤ F 2

2

kε2

The Chebyshev’s inequality: Pr [|R − E[R]| ≥ ε] ≤ V[R]

ε2

Pr
[∣∣∣f̂i (q)− f (q)

∣∣∣ ≥ ε
]
= Pr

[∣∣∣f̂i (q)− E[f̂i (q)]
∣∣∣ ≥ ε

]
≤ V[f̂i (q)]

ε2
≤ F 2

2

kε2
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Count Sketch Analysis - Confidence Boosting

Now we know Pr
[∣∣∣f̂i (q)− f (q)

∣∣∣ ≥ ε
]
≤ F 2

2
kε2

for each i ∈ [t].

At the end, we will return

f̂CS(q) := median
i∈[t]

f̂i (q)

Whay the median?
If the median has error ≥ ε, then at least half of the f̂i (q) have
error ≥ ε.
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Count Sketch Analysis - Confidence Boosting 2

Let the failure probability of each f̂i (q) is p =
F 2
2

kε2
.

Repeat it t times independently, what is the probability of at least
half failures?

Binomial distribution! The number of failure is B(t, p).
Chernoff bound:

Pr
[
B(t, p) ≥ t

2

]
≤ exp

(
− t(1/2− p)2/(2p)

)
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Count Sketch Analysis - Confidence Boosting 3

Set p =
F 2
2

kε2
= 1

4 , or k =
F 2
2

4ε2
:

Pr
[
B(t, p) ≥ t

2

]
≤ exp

(
− t(1/2− p)2/(2p)

)
≤ exp(−t/8)

Set exp(−t/8) = δ, or t = 8 log 1
δ :

Pr
[∣∣∣f̂CS(q)− f (q)

∣∣∣ ≥ ε
]
≤ Pr[B(t, 1/4) ≥ t/2] ≤ δ

Theorem

If k =
F 2
2

4ε2
and t = 8 log 1

δ , f̂CS(q) is an f̂ε(q) with probability at
least 1− δ for any q ∈ [u].
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Count-Min Sketch - Algorithm

Algorithm: Count-Min(X , t, k)

1 C ← 0t×k ,H ← (Hi : [u]→ [k])ti=1

2 forall x ∈ X do
3 forall i in [t] do
4 Ci ,Hi (x) ← Ci ,Hi (x) + 1

5 return C ,H

Cormode and Muthukrishnan [2005]

To approximate f (q) for any q ∈ [u]

f̂CMS(q) := min
i∈[t]

f̂i (q), where f̂i (q) :=
1

n
Ci ,Hi (q).
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Count-Min Sketch - Bounds

Lemma

For any q ∈ [u], i ∈ [t],

f (q) ≤ f̂i (q).

If Hi is drawn from a pairwise independent hash family, then

E[f̂i (q)− f (q)] ≤ 1

k
.

If k = 1
δε , then

Pr[f̂i (q)− f (q) ≥ ε] ≤ δ
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Count-Min Sketch - Confidence Boosting

Lemma

For any q ∈ [u], i ∈ [t], if Hi is drawn from a pairwise independent
hash family, and k = 2

ε , then f̂i (q) is a f̂ε(q) with probability at
least 1/2.

Theorem

If t = lg 1
δ , k = 2

ε , Hi s are independently drawn from a pairwise
independent hash family, then for any q ∈ [u],
f̂CMS(q) := mini∈[t] f̂i (q) is a f̂ε(q) with probability at least 1− δ.
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Summary

Sketch Space Technique Deterministic

Misra-Gries O(1/ε) Counter Yes

Count Sketch O
(
F 2
2
ε2

log 1
δ

)
Hashing No

Count-Min Sketch O
(
1
ε log

1
δ

)
Hashing No

Table: Studied Sketches to obtain f̂ε (with probability at least 1− δ if
aplicable).

It seems like the Count-Min sketch is better than the Count sketch
in the error-space tradeoff, but the bound is based on F 2

2 which is
usually much smaller than 1. The Count sketch is also more
versatile than Count-Min sketch and works very well in practice.
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Biased vs Unbiased

Definition (biased, unbiased, under-estimated, over-estimated
approximation)

To estimate a ground truth value f , a random variable f̂ (the
output of any estimation method) is

unbiased approximation if E[f̂ ] = f ;

biased approximation if E[f̂ ] ̸= f ;

under-estimated approximation if E[f̂ ] < f ;

over-estimated approximation if E[f̂ ] > f ;

question

Does unbiased approximation always better than biased
approximation?
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Biased vs Unbiased

Questions

question

Can Count/Count-Min sketch solve heavy hitters? What is the
query time?

question

What is the failure probability of Count/Count-Min sketch actually
is? For one q or for all q ∈ [u]?

question

What about weighted data? Real value weights? Negative weights?
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