Frequency Estimation CS 5968/6968: Data Str & Alg for Scalable Computing Spring 2023

Benwei Shi

University of Utah

2023-02-13

(日)、<回)、<三)、</p>

Table of contents

- 1 Problems
 - Frequency
 - Frequency Estimation in Stream
 - Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch
- 3 Count Sketch
 - Count Sketch Algorithm
 - Count Sketch Analysis
- 4 Count-Min Sketch
- 5 Summary
 - Biased vs Unbiased

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Table of Contents

- 1 Problems
 - Frequency
 - Frequency Estimation in Stream
 - Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch
- 3 Count Sketch
 - Count Sketch Algorithm
 - Count Sketch Analysis
- 4 Count-Min Sketch
- 5 Summary
 - Biased vs Unbiased

< @ ► < E ►

Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Frequency

Given

- Metadata: a universe $[u] := \{1, 2, \dots, u\}$,
 - u is bigger than memory, $O(\lg u)$ is constant.

・ロト ・回ト ・ヨト ・ヨト

Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Frequency

Given

- Metadata: a universe $[u] := \{1, 2, \dots, u\}$,
 - u is bigger than memory, $O(\lg u)$ is constant.
- Data: a sequence $X := [x_i \in [u]]_{i=1}^n$,
 - i.e. $[x_1, x_2, \ldots, x_n]$, $x_i \in [u]$ for all $i \in [n]$.

Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Frequency

Given

- Metadata: a universe $[u] := \{1, 2, \dots, u\}$,
 - u is bigger than memory, $O(\lg u)$ is constant.
- Data: a sequence X := [x_i ∈ [u]]ⁿ_{i=1},
 i.e. [x₁, x₂,..., x_n], x_i ∈ [u] for all i ∈ [n].

Goal

For any query $q \in [u]$, return the its count or frequency:

$$c(q) := \sum_{x \in X} \mathbb{1}(x,q), \quad f(q) := \frac{c(q)}{n}.$$

Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Frequency

Given

- Metadata: a universe $[u] := \{1, 2, \dots, u\}$,
 - u is bigger than memory, $O(\lg u)$ is constant.
- Data: a sequence X := [x_i ∈ [u]]ⁿ_{i=1},
 i.e. [x₁, x₂,..., x_n], x_i ∈ [u] for all i ∈ [n].

Goal

For any query $q \in [u]$, return the its count or frequency:

$$c(q) := \sum_{x \in X} \mathbb{1}(x,q), \quad f(q) := \frac{c(q)}{n}.$$

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

DDoS Attack Detection at Router

Detect high frequency IP addresses with limited memory.

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Frequency Estimation in Stream

Given

- Metadata: a universe $[u] := \{1, 2, \dots, u\}$,
 - u is bigger than memory, $O(\lg u)$ is constant.

• Data: a sequence
$$X := [x_i \in [u]]_{i=1}^n$$

• *n* is bigger than memory.

Goal

For any query $q \in [u]$, return the ε -approximation of its frequency, $\hat{f}_{\varepsilon}(q)$, s.t.

$$f(q) - \varepsilon \leq \hat{f}_{\varepsilon}(q) \leq f(q) + \varepsilon$$

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Heavy Hitters in Stream

ϕ -Heavy Hitter

 $y \in [u]$ is a ϕ -heavy hitter iff $f(y) > \phi$.

イロト イヨト イヨト イヨト

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Heavy Hitters in Stream

ϕ -Heavy Hitter

 $y \in [u]$ is a ϕ -heavy hitter iff $f(y) > \phi$.

 $\overline{arepsilon}$ -approximation of ϕ -heavy hitters, $\hat{H}^{\phi}_{arepsilon}$

•
$$y \in \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) > \phi$.

•
$$y \notin \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) < \phi - \varepsilon$.

Benwei Shi Frequency Estimation

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Heavy Hitters in Stream

ϕ -Heavy Hitter

 $y \in [u]$ is a ϕ -heavy hitter iff $f(y) > \phi$.

arepsilon-approximation of ϕ -heavy hitters, $\hat{H}^{\phi}_{arepsilon}$

•
$$y \in \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) > \phi$.

•
$$y \notin \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) < \phi - \varepsilon$.

• Given f, you can find all ϕ -Heavy Hitters.

Misra-Gries Sketch Count Sketch Count-Min Sketch Summary Frequency Frequency Estimation in Stream Heavy Hitters in Stream

Heavy Hitters in Stream

ϕ -Heavy Hitter

 $y \in [u]$ is a ϕ -heavy hitter iff $f(y) > \phi$.

arepsilon-approximation of ϕ -heavy hitters, $\hat{H}^{\phi}_{arepsilon}$

•
$$y \in \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) > \phi$.

•
$$y \notin \hat{H}^{\phi}_{\varepsilon}$$
 if $f(y) < \phi - \varepsilon$.

• Given f, you can find all ϕ -Heavy Hitters.

• Given a \hat{f}_{ε} , for any $\phi \geq \varepsilon$, $\{y \in [u] \mid \hat{f}_{\varepsilon}(y) > \phi - \varepsilon\}$ is a $\hat{H}^{\phi}_{\varepsilon}$.

Majority Misra-Gries Sketch

Table of Contents

- Frequency
- Frequency Estimation in Stream
- Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch

3 Count Sketch

- Count Sketch Algorithm
- Count Sketch Analysis
- 4 Count-Min Sketch
- 5 Summary
 - Biased vs Unbiased

< A > < B

Majority

Majority Misra-Gries Sketch

Goal

Find y if $f(y) > \frac{1}{2}$.

Algorithm: Majority(X)

- $1 \ y \leftarrow \mathsf{NaN}, c \leftarrow 0$
- 2 forall $x \in X$ do
- 3 if y = x then $c \leftarrow c + 1$
- 4 else if c = 0 then $y \leftarrow x, c \leftarrow 1$

イロン 不同 とくほど 不同 とう

臣

- 5 else $c \leftarrow c-1$
- 6 return y

Boyer and Moore [1981].

Majority

Majority Misra-Gries Sketch

Goal

Find y if $f(y) > \frac{1}{2}$.

Algorithm: Majority(X)

- $1 \ y \leftarrow \mathsf{NaN}, c \leftarrow 0$
- 2 forall $x \in X$ do
- 3 if y = x then $c \leftarrow c + 1$
- 4 else if c = 0 then $y \leftarrow x, c \leftarrow 1$

イロト イヨト イヨト イヨト

- 5 else $c \leftarrow c 1$
- 6 return y

Boyer and Moore [1981].

• If there is no *m* s.t. $f(m) > \frac{1}{2}$, then whatever *y* is correct.

Majority

Majority Misra-Gries Sketch

Goal

Find y if $f(y) > \frac{1}{2}$.

Algorithm: Majority(X)

- $1 \ y \leftarrow \mathsf{NaN}, c \leftarrow 0$
- 2 forall $x \in X$ do
- 3 if y = x then $c \leftarrow c + 1$
- 4 else if c = 0 then $y \leftarrow x, c \leftarrow 1$

イロン イヨン イヨン ・ ヨン

크

5 else $c \leftarrow c - 1$

6 return y

Boyer and Moore [1981].

- If there is no *m* s.t. $f(m) > \frac{1}{2}$, then whatever *y* is correct.
- Assume $f(m) > \frac{1}{2}$. Whenever *c* reaches 0:
 - The algorithm goes back to initial state and starts to process the rest of the sequence.
 - *m* must be the majority of the rest sequence as well.

Majority Misra-Gries Sketch

Misra-Gries Sketch

Algorithm: $Majority(X)$	Algorithm: $Misra-Gries(X, k)$
1 $y \leftarrow \text{NaN}, c \leftarrow 0$	1 $Y \leftarrow [\text{NaN}] * k, C \leftarrow [0] * k$
2 forall $x \in X$ do	2 forall $x \in X$ do
3 if $y = x$ then $c \leftarrow c+1$	3 if $\exists i(Y[i] = x)$ then $C[i] \leftarrow C[i] + 1$
4 else if $c = 0$ then $y \leftarrow x, c \leftarrow 1$	4 else if $\exists i(C[i] = 0)$ then $Y[i] \leftarrow x, C[i] \leftarrow C[i] + 1$
5 else	5 else
$c \leftarrow c - 1$	6 forall i do $C[i] \leftarrow C[i] - 1$
7 return y	7 return Y, C

Misra and Gries [1982]. Extends the majority algorithm by increasing the number of keys and coun- ters from 1 to k.

< (17) > <

Majority Misra-Gries Sketch

Misra-Gries Sketch

Algorithm: $Majority(X)$	Algorithm: $Misra-Gries(X, k)$
1 $y \leftarrow \text{NaN}, c \leftarrow 0$	1 $Y \leftarrow [\text{NaN}] * k, C \leftarrow [0] * k$
2 forall $x \in X$ do	2 forall $x \in X$ do
3 if $y = x$ then $c \leftarrow c+1$	3 if $\exists i(Y[i] = x)$ then $C[i] \leftarrow C[i] + 1$
4 else if $c = 0$ then $y \leftarrow x, c \leftarrow 1$	4 else if $\exists i(C[i] = 0)$ then $Y[i] \leftarrow x, C[i] \leftarrow C[i] + 1$
5 else	5 else
$c \leftarrow c-1$	6 forall i do $C[i] \leftarrow C[i] - 1$
7 return y	7 return Y, C

Misra and Gries [1982]. Extends the majority algorithm by increasing the number of keys and coun- ters from 1 to k.

Majority Misra-Gries Sketch

Misra-Gries Sketch Analysis

Lemma

for all $q \in [u]$,

$$f(q) - \frac{1}{k+1} \leq \hat{f}_{MG(k)}(q) \leq f(q)$$

イロト イヨト イヨト イヨト

æ

Majority Misra-Gries Sketch

Misra-Gries Sketch Analysis

Lemma

for all $q \in [u]$,

$$f(q) - rac{1}{k+1} \leq \widehat{f}_{MG(k)}(q) \leq f(q)$$

Proof.

The upper bound is obvious.

When Line 6 executes, there must be k + 1 distinct item are decremented. It can hapen at most n/(k + 1) times.

Majority Misra-Gries Sketch

Misra-Gries Sketch Analysis

Lemma

for all $q \in [u]$,

$$f(q) - rac{1}{k+1} \leq \widehat{f}_{MG(k)}(q) \leq f(q)$$

Setting $\frac{1}{k+1} = \varepsilon$, or $k = \frac{1}{\varepsilon} - 1$,

$$f(q) - arepsilon \leq \widehat{f}_{MG(k)}(q) \leq f(q) \leq f(q) + arepsilon$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Majority Misra-Gries Sketch

Misra-Gries Sketch Analysis

Lemma

for all $q \in [u]$,

$$f(q)-rac{1}{k+1}\leq \widehat{f}_{MG(k)}(q)\leq f(q)$$

Setting $\frac{1}{k+1} = \varepsilon$, or $k = \frac{1}{\varepsilon} - 1$,

$$f(q) - arepsilon \leq \widehat{f}_{\mathcal{MG}(k)}(q) \leq f(q) \leq f(q) + arepsilon$$

• $f_{MG(k)}(q)$ is an ε -approximation of f(q).

イロト イヨト イヨト イヨト

Majority Misra-Gries Sketch

Misra-Gries Sketch Analysis

Lemma

for all $q \in [u]$,

$$f(q) - rac{1}{k+1} \leq \hat{f}_{MG(k)}(q) \leq f(q)$$

Setting
$$\frac{1}{k+1} = \varepsilon$$
, or $k = \frac{1}{\varepsilon} - 1$,

$$f(q) - arepsilon \leq \widehat{f}_{MG(k)}(q) \leq f(q) \leq f(q) + arepsilon$$

• $f_{MG(k)}(q)$ is an ε -approximation of f(q).

• Y is a $\hat{H}_{\varepsilon}^{\varepsilon}$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Table of Contents

- Problems
 - Frequency
 - Frequency Estimation in Stream
 - Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch
- 3 Count Sketch
 - Count Sketch Algorithm
 - Count Sketch Analysis
- 4 Count-Min Sketch
- 5 Summary
 - Biased vs Unbiased

< A > < B > <

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Algorithm

Algorithm: Count-Sketch(X, t, k)

$$1 \quad C \leftarrow 0^{t \times k}, H \leftarrow (H_i : [u] \to [k])_{i=1}^t, S \leftarrow (S_i : [u] \to [\pm 1])_{i=1}^t$$

- 2 forall $x \in X$ do
- 3 forall *i* in [t] do

$$4 \qquad C_{i,H_i(x)} \leftarrow C_{i,H_i(x)} + S_i(x)$$

5 return C, H, S

Charikar et al. [2002].

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Algorithm

Algorithm: Count-Sketch(X, t, k)

$$1 \quad C \leftarrow 0^{t \times k}, H \leftarrow (H_i : [u] \to [k])_{i=1}^t, S \leftarrow (S_i : [u] \to [\pm 1])_{i=1}^t$$

- 2 forall $x \in X$ do
- 3 forall *i* in [t] do

$$4 \qquad C_{i,H_i(x)} \leftarrow C_{i,H_i(x)} + S_i(x)$$

5 return C, H, S

Charikar et al. [2002].

• H_i, S_i are independent hash functions.

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Algorithm

Algorithm: Count-Sketch(X, t, k)

$$1 \quad C \leftarrow 0^{t \times k}, H \leftarrow (H_i : [u] \to [k])_{i=1}^t, S \leftarrow (S_i : [u] \to [\pm 1])_{i=1}^t$$

- 2 forall $x \in X$ do
- 3 forall *i* in [t] do

$$4 \qquad C_{i,H_i(x)} \leftarrow C_{i,H_i(x)} + S_i(x)$$

5 return C, H, S

Charikar et al. [2002].

- *H_i*, *S_i* are independent hash functions.
- S_i are choosen from a **pairwise** independent family.

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Algorithm

Algorithm: Count-Sketch(X, t, k)1 $C \leftarrow 0^{t \times k}, H \leftarrow (H_i : [u] \rightarrow [k])_{i=1}^t, S \leftarrow (S_i : [u] \rightarrow [\pm 1])_{i=1}^t$ 2 forall $x \in X$ do forall i in [t] do 3 $C_{i,H_i(x)} \leftarrow C_{i,H_i(x)} + S_i(x)$ 4 5 return C, H, S $H = \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_k \end{bmatrix} \quad S = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_k \end{bmatrix} \quad C = \begin{bmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,k} \\ C_{2,1} & C_{2,2} & \dots & C_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k,1} & C_{k,2} & \dots & C_{k,k} \end{bmatrix}$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Query

To approximate f(q) for any $q \in [u]$

$$\hat{f}_{CS}(q) := \underset{i \in [t]}{\operatorname{median}} \hat{f}_i(q), \quad \text{where } \hat{f}_i(q) := \frac{1}{n} S_i(q) C_{i,H_i(q)}.$$

$$H = \begin{bmatrix} H_1 \\ H_2 \\ \vdots \\ H_t \end{bmatrix} \quad S = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_t \end{bmatrix} \quad C = \begin{bmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,k} \\ C_{2,1} & C_{2,2} & \dots & C_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{t,1} & C_{t,2} & \dots & C_{t,k} \end{bmatrix}$$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will analize it in a probabilistic way.

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random variables?

(日)、<回)、<三)、</p>

_∢ ≣ ▶

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random variables?

Answer

The random events are the choices of hash functions in H and S.

Image: A math and A

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Randomness

Since the algorithm is not deterministic, it is randomized. We will analize it in a probabilistic way.

Question

Where is the randomness come from? Or what are the random variables?

Answer

The random events are the choices of hash functions in H and S. The random varialbes are H_i and S_i , or $H_i(q)$ and $S_i(q)$ for all $q \in [u]$.

イロト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Notations

$$C_{i,j} := \sum_{x \in X} S_i(x) \mathbb{1}(H_i(x), j)$$
$$= \sum_{x \in [u]} nf(x) S_i(x) \mathbb{1}(H_i(x), j)$$

ヘロト 人間 とくほど 人間とう

æ

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Notations

$$C_{i,j} := \sum_{x \in X} S_i(x) \mathbb{1}(H_i(x), j)$$

=
$$\sum_{x \in [u]} nf(x) S_i(x) \mathbb{1}(H_i(x), j)$$

• 1(i,j): equal to 1 if i = j and 0 otherwise.

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Notations

$$C_{i,j} := \sum_{x \in X} S_i(x) \mathbb{1}(H_i(x), j)$$

=
$$\sum_{x \in [u]} nf(x) S_i(x) \mathbb{1}(H_i(x), j)$$

- 1(i,j): equal to 1 if i = j and 0 otherwise.
- $C_{i,j}^{x} := nf(x)S_i(x)\mathbb{1}(H_i(x),j)$: the part of $C_{i,j}$ caused by $x \in [u]$.

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Notations

$$C_{i,j} := \sum_{x \in X} S_i(x) \mathbb{1}(H_i(x), j)$$

=
$$\sum_{x \in [u]} nf(x) S_i(x) \mathbb{1}(H_i(x), j)$$

- 1(i,j): equal to 1 if i = j and 0 otherwise.
- $C_{i,j}^{\times} := nf(x)S_i(x)\mathbb{1}(H_i(x),j)$: the part of $C_{i,j}$ caused by $x \in [u]$.

With these notations, we can simply write each $C_{i,j}$ as

$$C_{i,j} = \sum_{x \in [u]} C_{i,j}^x$$

イロト イボト イヨト イヨ

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Mean

Lemma

For any $i \in [t], q \in [u]$,

 $\mathsf{E}[\hat{f}_i(q)] = f(q)$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Mean

Lemma

For any $i \in [t], q \in [u]$,

 $\mathsf{E}[\hat{f}_i(q)] = f(q)$

$$\hat{f}_i(q) := \frac{1}{n} S_i(q) C_{i,H_i(q)} = f(q) + \frac{1}{n} \sum_{x \in [u], x \neq q} S_i(q) C_{i,H_i(q)}^x$$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Mean

Lemma

For any $i \in [t], q \in [u]$,

 $\mathsf{E}[\hat{f}_i(q)] = f(q)$

$$\hat{f}_i(q) := \frac{1}{n} S_i(q) C_{i,H_i(q)} = f(q) + \frac{1}{n} \sum_{x \in [u], x \neq q} S_i(q) C_{i,H_i(q)}^x$$

$$E \left[S_i(q)C_{i,H_i(q)}^x\right]$$

$$= nf(x) E \left[S_i(q)S_i(x)\mathbb{1}(H_i(x), H_i(q))\right]$$

$$= nf(x) E \left[S_i(q)S_i(x)\right] E \left[\mathbb{1}(H_i(x), H_i(q))\right]$$

$$= nf(x) E \left[S_i(q)\right] E \left[S_i(x)\right] E \left[\mathbb{1}(H_i(x), H_i(q))\right]$$

$$S_i \text{ is pairwise indep.}$$

$$= 0$$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Variance

Lemma

For any $i \in [t], q \in [u]$,

$$\mathsf{V}[\hat{f}_i(q)] \leq \frac{1}{k} F_2^2$$

where $F_2^2 = \sum_{x \in [u]} f(x)^2$.

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Variance

Lemma

For any $i \in [t], q \in [u]$,

$$\mathsf{V}[\hat{f}_i(q)] \leq \frac{1}{k} F_2^2$$

where $F_2^2 = \sum_{x \in [u]} f(x)^2$.

$$\mathsf{V}[\hat{f}_i(q)] = \mathsf{V}\left[\frac{1}{n}S_i(q)C_{i,H_i(q)}\right] = \frac{1}{n^2}\mathsf{V}\left[\sum_{x\in[u]}S_i(q)C_{i,H_i(q)}^x\right]$$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Variance - 2

$$\mathsf{V}[\hat{f}_{i}(q)] = \frac{1}{n^{2}} \mathsf{V}\left[\sum_{x \in [u]} S_{i}(q) C_{i,H_{i}(q)}^{x}\right] = \frac{1}{n^{2}} \sum_{x \in [u]} \mathsf{V}\left[S_{i}(q) C_{i,H_{i}(q)}^{x}\right]$$

Because

$$cov \left[S_{i}(q) C_{i,H_{i}(q)}^{x}, S_{i}(q) C_{i,H_{i}(q)}^{y} \right]$$

= $E \left[\left(S_{i}(q) C_{i,H_{i}(q)}^{x} - E[S_{i}(q) C_{i,H_{i}(q)}^{x}] \right) \left(S_{i}(q) C_{i,H_{i}(q)}^{y} - E[S_{i}(q) C_{i,H_{i}(q)}^{y}] \right) \right]$
= $E \left[\left(S_{i}(q) C_{i,H_{i}(q)}^{x} \right) \left(S_{i}(q) C_{i,H_{i}(q)}^{y} \right) \right] = 0$

for all $x \neq y$, if S_i and H_i are indep., S_i is pairwise indep.,

・ロト ・回ト ・ヨト ・ヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Variance - 3

$$V[\hat{f}_{i}(q)] = \frac{1}{n^{2}} \sum_{x \in [u]} V\left[S_{i}(q)C_{i,H_{i}(q)}^{x}\right]$$

$$\leq \frac{1}{n^{2}} \sum_{x \in [u]} E\left[(S_{i}(q)C_{i,H_{i}(q)}^{x})^{2}\right]$$

$$= \frac{1}{n^{2}} \sum_{x \in [u]} E\left[\left(nf(x)S_{i}(x)\mathbb{1}(H_{i}(x), H_{i}(q))\right)^{2}\right]$$

$$= \sum_{x \in [u]} f^{2}(x) E\left[\left(\mathbb{1}(H_{i}(x), H_{i}(q))\right)^{2}\right]$$

$$= \sum_{x \in [u]} f^{2}(x) \frac{1}{k} = \frac{1}{k}F_{2}^{2}$$

æ

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Failure Probability

Lemma

For any $q \in [u], i \in [t]$,

$$\Pr\left[\left|\hat{f}_{i}(q) - f(q)\right| \geq \varepsilon\right] \leq \frac{F_{2}^{2}}{k\varepsilon^{2}}$$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Failure Probability

Lemma

For any $q \in [u], i \in [t]$,

$$\Pr\left[\left|\hat{f}_{i}(q) - f(q)\right| \geq \varepsilon\right] \leq rac{F_{2}^{2}}{k\varepsilon^{2}}$$

The Chebyshev's inequality: $\Pr[|R - E[R]| \ge \varepsilon] \le \frac{V[R]}{c^2}$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Failure Probability

Lemma

For any $q \in [u], i \in [t]$,

$$\mathsf{Pr}\left[\left|\widehat{f}_{i}(q)-f(q)
ight|\geq arepsilon
ight]\leq rac{F_{2}^{2}}{karepsilon^{2}}$$

The Chebyshev's inequality: $\Pr[|R - E[R]| \ge \varepsilon] \le \frac{V[R]}{\varepsilon^2}$

$$\Pr\left[\left|\hat{f}_{i}(q) - f(q)\right| \geq \varepsilon\right] = \Pr\left[\left|\hat{f}_{i}(q) - \mathsf{E}[\hat{f}_{i}(q)]\right| \geq \varepsilon\right] \leq \frac{\mathsf{V}[\hat{f}_{i}(q)]}{\varepsilon^{2}} \leq \frac{F_{2}^{2}}{k\varepsilon^{2}}$$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting

Now we know
$$\Pr\left[\left|\hat{f}_i(q) - f(q)\right| \ge \varepsilon\right] \le \frac{F_2^2}{k\varepsilon^2}$$
 for each $i \in [t]$.

イロン イヨン イヨン

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting

Now we know
$$\Pr\left[\left|\hat{f}_i(q) - f(q)\right| \ge \varepsilon\right] \le \frac{F_2^2}{k\varepsilon^2}$$
 for each $i \in [t]$.
At the end, we will return

$$\hat{f}_{CS}(q) := \underset{i \in [t]}{\mathsf{median}} \hat{f}_i(q)$$

イロン イヨン イヨン イヨン

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting

Now we know
$$\Pr\left[\left|\hat{f}_i(q) - f(q)\right| \ge \varepsilon\right] \le \frac{F_2^2}{k\varepsilon^2}$$
 for each $i \in [t]$.
At the end, we will return

$$\hat{f}_{CS}(q) := \mathop{\mathrm{median}}_{i \in [t]} \hat{f}_i(q)$$

Whay the median?

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting

Now we know
$$\Pr\left[\left|\hat{f}_i(q) - f(q)\right| \ge \varepsilon\right] \le \frac{F_2^2}{k\varepsilon^2}$$
 for each $i \in [t]$.
At the end, we will return

$$\widehat{f}_{CS}(q) := \mathop{\mathsf{median}}_{i\in[t]} \widehat{f}_i(q)$$

Whay the median? If the median has error $\geq \varepsilon$, then at least half of the $\hat{f}_i(q)$ have error $\geq \varepsilon$.

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 2

Let the failure probability of each $\hat{f}_i(q)$ is $p = \frac{F_2^2}{k\varepsilon^2}$.

Repeat it t times independently, what is the probability of at least half failures?

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 2

Let the failure probability of each $\hat{f}_i(q)$ is $p = \frac{F_2^2}{k\varepsilon^2}$.

Repeat it t times independently, what is the probability of at least half failures?

Binomial distribution! The number of failure is B(t, p).

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 2

Let the failure probability of each $\hat{f}_i(q)$ is $p = \frac{F_2^2}{k\varepsilon^2}$.

Repeat it t times independently, what is the probability of at least half failures?

Binomial distribution! The number of failure is B(t, p). Chernoff bound:

$$\mathsf{Pr}\left[B(t,p) \geq rac{t}{2}
ight] \leq \exp\left(-t(1/2-p)^2/(2p)
ight)$$

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 3

Set
$$p = \frac{F_2^2}{k\varepsilon^2} = \frac{1}{4}$$
, or $k = \frac{F_2^2}{4\varepsilon^2}$

$$\Pr\left[B(t,p) \ge \frac{t}{2}\right] \le \exp\left(-t(1/2-p)^2/(2p)\right) \le \exp(-t/8)$$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 3

Set
$$p = \frac{F_2^2}{k\varepsilon^2} = \frac{1}{4}$$
, or $k = \frac{F_2^2}{4\varepsilon^2}$:

$$\Pr\left[B(t,p) \geq \frac{t}{2}\right] \leq \exp\left(-t(1/2-p)^2/(2p)\right) \leq \exp(-t/8)$$

Set $\exp(-t/8) = \delta$, or $t = 8 \log \frac{1}{\delta}$:

$$\Pr\left[\left|\hat{f}_{CS}(q) - f(q)\right| \ge \varepsilon\right] \le \Pr[B(t, 1/4) \ge t/2] \le \delta$$

イロト イヨト イヨト イヨト

Count Sketch Algorithm Count Sketch Analysis

Count Sketch Analysis - Confidence Boosting 3

Set
$$p = \frac{F_2^2}{k\varepsilon^2} = \frac{1}{4}$$
, or $k = \frac{F_2^2}{4\varepsilon^2}$:

$$\Pr\left[B(t,p) \geq \frac{t}{2}\right] \leq \exp\left(-t(1/2-p)^2/(2p)\right) \leq \exp(-t/8)$$

Set
$$\exp(-t/8) = \delta$$
, or $t = 8 \log \frac{1}{\delta}$:

$$\Pr\left[\left|\hat{f}_{CS}(q) - f(q)\right| \ge \varepsilon\right] \le \Pr[B(t, 1/4) \ge t/2] \le \delta$$

Theorem

If
$$k = \frac{F_2^2}{4\varepsilon^2}$$
 and $t = 8 \log \frac{1}{\delta}$, $\hat{f}_{CS}(q)$ is an $\hat{f}_{\varepsilon}(q)$ with probability at least $1 - \delta$ for any $q \in [u]$.

イロト イヨト イヨト イヨト

æ

Table of Contents

Problems

- Frequency
- Frequency Estimation in Stream
- Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch
- 3 Count Sketch
 - Count Sketch Algorithm
 - Count Sketch Analysis
- 4 Count-Min Sketch
 - Summary
 - Biased vs Unbiased

Count-Min Sketch - Algorithm

Algorithm: Count-Min(X, t, k)

1
$$C \leftarrow 0^{t \times k}, H \leftarrow (H_i : [u] \rightarrow [k])_{i=1}^t$$

- 2 forall $x \in X$ do
- 3 forall *i* in [t] do

$$4 \qquad C_{i,H_i(x)} \leftarrow C_{i,H_i(x)} + 1$$

5 return C, H

Cormode and Muthukrishnan [2005]

To approximate f(q) for any $q \in [u]$

$$\widehat{f}_{CMS}(q) := \min_{i \in [t]} \widehat{f}_i(q), \quad ext{where } \widehat{f}_i(q) := rac{1}{n} C_{i,H_i(q)}$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Count-Min Sketch - Bounds

Lemma

For any $q \in [u], i \in [t]$,

 $f(q) \leq \hat{f}_i(q).$

If H_i is drawn from a pairwise independent hash family, then

$$\mathsf{E}[\widehat{f}_i(q) - f(q)] \leq \frac{1}{k}.$$

If $k = \frac{1}{\delta \varepsilon}$, then

$$\Pr[\hat{f}_i(q) - f(q) \ge \varepsilon] \le \delta$$

イロト イヨト イヨト イヨト

æ

Count-Min Sketch - Confidence Boosting

Lemma

For any $q \in [u]$, $i \in [t]$, if H_i is drawn from a pairwise independent hash family, and $k = \frac{2}{\varepsilon}$, then $\hat{f}_i(q)$ is a $\hat{f}_{\varepsilon}(q)$ with probability at least 1/2.

Theorem

If $t = \lg \frac{1}{\delta}$, $k = \frac{2}{\varepsilon}$, H_is are independently drawn from a pairwise independent hash family, then for any $q \in [u]$, $\hat{f}_{CMS}(q) := \min_{i \in [t]} \hat{f}_i(q)$ is a $\hat{f}_{\varepsilon}(q)$ with probability at least $1 - \delta$.

イロン 不同 とうほう 不同 とう

Biased vs Unbiased

Table of Contents

Problems

- Frequency
- Frequency Estimation in Stream
- Heavy Hitters in Stream
- 2 Misra-Gries Sketch
 - Majority
 - Misra-Gries Sketch
- 3 Count Sketch
 - Count Sketch Algorithm
 - Count Sketch Analysis
- 4 Count-Min Sketch
- 5 Summary
 - Biased vs Unbiased

< A > < B

Summary

Sketch	Space	Technique	Deterministic
Misra-Gries	O(1/arepsilon)	Counter	Yes
Count Sketch	$O\left(\frac{F_2^2}{\varepsilon^2}\log\frac{1}{\delta}\right)$	Hashing	No
Count-Min Sketch	$O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$	Hashing	No

Table: Studied Sketches to obtain \hat{f}_{ε} (with probability at least $1-\delta$ if aplicable).

イロト イヨト イヨト イヨト

æ

Summary

Sketch	Space	Technique	Deterministic
Misra-Gries	O(1/arepsilon)	Counter	Yes
Count Sketch	$O\left(\frac{F_2^2}{\varepsilon^2}\log\frac{1}{\delta}\right)$	Hashing	No
Count-Min Sketch	$O\left(\frac{1}{\varepsilon}\log\frac{1}{\delta}\right)$	Hashing	No

Biased vs Unbiased

Table: Studied Sketches to obtain \hat{f}_{ε} (with probability at least $1 - \delta$ if aplicable).

It seems like the Count-Min sketch is better than the Count sketch in the error-space tradeoff, but the bound is based on F_2^2 which is usually much smaller than 1. The Count sketch is also more versatile than Count-Min sketch and works very well in practice.

Biased vs Unbiased

Biased vs Unbiased

Definition (biased, unbiased, under-estimated, over-estimated approximation)

To estimate a ground truth value f, a random variable \hat{f} (the output of any estimation method) is

- unbiased approximation if $E[\hat{f}] = f$;
- biased approximation if $E[\hat{f}] \neq f$;
- under-estimated approximation if $E[\hat{f}] < f$;
- over-estimated approximation if $E[\hat{f}] > f$;

question

Does unbiased approximation always better than biased approximation?

Biased vs Unbiased

Questions

question

 ${\sf Can}\ {\sf Count}/{\sf Count}{\sf -}{\sf Min}\ {\sf sketch}\ {\sf solve}\ {\sf heavy}\ {\sf hitters}?$ What is the query time?

イロト イヨト イヨト イヨト

Biased vs Unbiased

Questions

question

 ${\sf Can}\ {\sf Count}/{\sf Count}{\sf -}{\sf Min}\ {\sf sketch}\ {\sf solve}\ {\sf heavy}\ {\sf hitters}?\ {\sf What}\ {\sf is}\ {\sf the}\ {\sf query}\ {\sf time}?$

question

What is the failure probability of Count/Count-Min sketch actually is? For one q or for all $q \in [u]$?

Biased vs Unbiased

Questions

question

 ${\sf Can}\ {\sf Count}/{\sf Count}{\sf -}{\sf Min}\ {\sf sketch}\ {\sf solve}\ {\sf heavy}\ {\sf hitters}?\ {\sf What}\ {\sf is}\ {\sf the}\ {\sf query}\ {\sf time}?$

question

What is the failure probability of Count/Count-Min sketch actually is? For one q or for all $q \in [u]$?

question

What about weighted data? Real value weights? Negative weights?