
Learned Indexes
CS 6530, Fall 2023

Hello

● I’m Yuvaraj Chesetti
○ Yuvi (as in You-Vee or UV) or Yuva (as in You Va) works!

● PhD Student since Summer 2023
○ Joined as a Masters Student in Fall 2022, converted

● Learning/Researching about Learned Indexes
○ Started out in the CS 6530 Fall project

● Catch me in the lab!
○ Always happy to discuss

Overview

● Main Idea
● Details

○ Read only learned index
○ Updateable learned index

● Research
○ Published
○ Ongoing

Indexes

● Given a key K in a sorted list, where is it located?
○ Look up an associated value with at that location
○ Unsorted List? Store a sorted list of pointers and treat the same way
○ Some indexes only check for indexes (Hash Table)

● Examples
○ Content section of a book (primary index, primary key is chapters)
○ Word Index (secondary index, keyed on words)

● If Data is sorted, why build an index?
○ Linear Search - O(n/B) fetches, (works for unsorted data)
○ Binary Search - O(log(n)) fetches, no locality
○ Fetch (In-Memory, Cache Misses, External-Memory - Disk IO Blocks)

B+ Trees

● Spend extra memory organizing an index, you could speed up queries!
● B+ Tree

○ O(logB(n)) fetches, Takes advantage of block based IOs in external memory
○ Go to default for building indexes

K

Index
(B+ Tree)

K

Search for K in
this page

?

Sorted, Clustered List on Disk

B+ Trees - One size fits all

● If data followed a pattern, do you need the B+ Tree?

K

Index
(B+ Tree)

K

1,4,9,16, 25….

Search for K in
this page

?

Sorted, Clustered List on Disk

Model the data

● No! - Just model the function

K

K

1,4,9,16….

Search for K in
this page

Sorted, Clustered List on Disk

pos(K)=√K
page(K) = pos(K)/B

Kraska, Tim, et al. "The case for learned index structures."
SIGMOD 2018.

Kraska, Tim, et al. "The case for learned index structures."
SIGMOD 2018.
Classical data structures don’t take advantage of the distribution of data

● They are designed to work for all distributions in worst case
● Modelling is the bread and butter of ML techniques

○ Specific hardware is being designed for ML, can take advantage of that.
● Not just indexes - filters, hashmaps, joins, sorts, merges…

Learn?

● What is being learnt?
● How do you learn?
● What about error?

Cumulative Distributive Function

A bag of items
Universe: U,

N items

?

Pick a random
item

What is the probability that
the picked item is smaller

than ‘X’ ?

Cumulative Distributive Function

A bag of items
Universe: U,

N items

?

Pick a random
item

What is the probability that
the picked item is smaller

than ‘X’ ?

< X >=X
X

N

P(‘?’ < X) = L/N

L

Cumulative Distributive Function

A bag of items
Universe: U,

N items

?

Pick a random
item

What is the probability that
the picked item is smaller

than ‘X’ ?

< X >=X
X

N

P(‘?’ < X) = L/N
Pos(X) = P(‘?’ < X) * N

L

This is the position/lower
bound of ‘X’ if the items in the

bag were laid out sorted!

Cumulative Distributive Function

A bag of items
Universe: U,

N items

?

Pick a random
item

What is the probability that
the picked item is smaller

than ‘X’ ?

< X >=X
X

N

P(‘?’ < X) = L/N
Pos(X) = P(‘?’ < X) * N

L

This is the position/lower
bound of ‘X’ if the items in the

bag were laid out sorted!

Cumulative Distributive Function

● P(‘?’ < X) = L/N is called the
Cumulative Distribution Function

● Integrating for x from (-∞, x) in the
Probability Density Function

● Monotonic increasing function

● Learn the distribution = Learn the
C.D.F

● All Indexes learn the C.D.F (Even B+
Trees)

Revisiting the toy example

● CDF(X) = sqrt(K)/N
● Index(X) = (CDF(X) * N)

K

K

1,4,9,16….

Search for K in
this page

? pos(K)=√K
page(K) = pos(K)/B

Revisiting the toy example

● CDF(X) = sqrt(K)/N
● Index(X) = (CDF(X) * N)

K

K

1,4,9,16….

Search for K in
this page

? pos(K)=√K
page(K) = pos(K)/B

“Learned”

How do you model the CDF?

● Not all distributions are simple like our toy example
● Key Idea: Break it into smaller problems - the Recursive Model Index

What about Individual Models?

● Neural Networks
○ Too heavy, designed for larger datasets

● RMI proposed needs to be tuned for levels, models, error
● Only linear functions works well (Piecewise Linear Approximation)

What about error?

All Indexes are ‘Learned Indexes’ (even B+ Trees)

● All indexes have error!
● B-Tree has an error of page-size (overfit)
● Error can be bounded, Model Size inverse to Error

PGM Index - Inner Index complexity

Source: https://pgm.di.unipi.it/

PGM Index - Inner Index complexity

Source: https://pgm.di.unipi.it/
(B = Error, inner query is faster, last mile is longer)

Search on Sorted Data Benchmark

Learn?

● What are we trying to learn?
○ The Cumulative Distribution Function

● How do you learn?
○ Break it down into sub-pieces makes it easier
○ Different Learned Index implementations vary in exact implementation details
○ CDF approximation techniques - piecewise linear regression

● What about error?
○ It’s not a problem, it doesn’t hurt performance

Learn?

● What are we trying to learn?
○ The Cumulative Distribution Function

● How do you learn?
○ Break it down into sub-pieces makes it easier
○ Different Learned Index implementations vary in exact implementation details
○ CDF approximation techniques - piecewise linear regression

● What about error?
○ It’s not a problem, it doesn’t hurt performance

● What about updates?

Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

● Where do you insert?
● When do you retrain?

1,4,9,16,25,49…

Sorted, Clustered List on Disk

Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

● Where do you insert?
● When do you retrain?

1,4,9,16,25,49…

Sorted, Clustered List on Disk

45

Need to shift all
items across

Updateability of Learned Indexes

So far, we’ve talked about sorted clustered data

● Where do you insert?
● When do you retrain?

1,4,9,16,25,49…

Sorted, Clustered List on Disk

45
How much error
can you tolerate
before retraining?

B+ Tree is also a learned index

● B+ Tree is also a learned index - that handles updates just fine
● Can we combine ideas from the B+ Tree with a learned index?
● Where do you insert?

○ Internal nodes have gaps in between
● When do you retrain?

○ The B+ Tree splits and merges nodes as the incoming distribution changes
● But a B+ Tree does not know anything about the the data distribution?

○ It doesn’t really know the distribution, it just adapts to the worst case
○ It is not an efficient ‘learning’ approach (Overfits)
○ I lied

My Takeaway: Combine a B+ Tree structure
with learned indexes, result: ALEX

Slide from CS 6530, Fall 2022

Slide from CS 6530, Fall 2022

ALEX - Few other optimizations

● Gapped Array
● Model Based Insertion
● Exponential Search

Items (Sorted) Empty Space B+ Tree node
Dense, sorted

Items Gapped Array
Inserts more efficient
(less items to shift)

Gapped Array

Model Based Insertion

● Where do you leave the gaps?
● Start with an empty array, insert according to model
● Model has errors, so gaps will naturally occur

Items Gapped Array
Inserts more efficient
(less items to shift)

X

Model Based Insertion

● Where do you leave the gaps?
● Start with an empty array, insert according to model
● Model has errors, so gaps will naturally occur

Items Gapped Array
Inserts more efficient
(less items to shift)

X

Model Based Insertion

● Where do you leave the gaps?
● Start with an empty array, insert according to model
● Model has errors, so gaps will naturally occur

Gapped Array
Inserts more efficient
(less items to shift)

X

X

Shift other items to
nearest gap

Model Based Insertion

● Where do you leave the gaps?
● Start with an empty array, insert according to model
● Model has errors, so gaps will naturally occur

Gapped Array
Inserts more efficient
(less items to shift)

X

X

Shift other items to
nearest gap

Lookups in ALEX

● Use the RMI to reach the correct Gapped Array
● Model based insertion - items will always be at or right of predicted position
● Start search from predicted position

Y

X

Start search for Y from model
predicted position

Search Algorithm

● Search - linear, binary or exponential?
● Exponential -

○ Search in windows of 2, 4, 8, 16… 2^x
○ If you overshoot, search in the second half with same window

Y

X

Start search for Y from model
predicted position

Exponential Search

Slide from CS 6530, Fall 2022

Different Learned Indexes

● RMI
● PGM Index - Ferragina, Paolo, and Giorgio Vinciguerra. "The PGM-index: a

fully-dynamic compressed learned index with provable worst-case bounds."
Proceedings of the VLDB Endowment 13.8 (2020): 1162-1175.

● ALEX - Ding, Jialin, et al. "ALEX: an updatable adaptive learned index." Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data. 2020

● FITing Tree - Galakatos, Alex, et al. "Fiting-tree: A data-aware index structure."
Proceedings of the 2019 international conference on management of data. 2019.

● LIPP - Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, Chunxiao Xing:
Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14(8): 1276-1288
(2021).

Learned Index Performance
● Benchmark

○ SOSD - Marcus, Ryan, et al. "Benchmarking learned indexes.", NeurIPS Workshop on
Machine Learning for Systems

○ Lan, Hai, et al. "Updatable Learned Indexes Meet Disk-Resident DBMS-From Evaluations
to Design Choices." Proceedings of the ACM on Management of Data 1.2 (2023): 1-22.

● Theoretical
○ Ferragina, Paolo, Fabrizio Lillo, and Giorgio Vinciguerra. "Why are learned indexes so

effective?." International Conference on Machine Learning. PMLR, 2020.
○ Sabek, Ibrahim, et al. "Can Learned Models Replace Hash Functions?." Proceedings of the

VLDB Endowment 16.3 (2022): 532-545.

LSM Trees

● Dai, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

● Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint

arXiv:2012.12501 (2020).

LSM Trees

● Dai, Yifan, et al. "From {WiscKey} to Bourbon: A Learned Index for {Log-Structured} Merge Trees." 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20). 2020.

● Abu-Libdeh, Hussam, et al. "Learned indexes for a google-scale disk-based database." arXiv preprint

arXiv:2012.12501 (2020).

● Genomics
○ Ho, Darryl, et al. "Lisa: Learned indexes for DNA sequence analysis." bioRxiv (2020).
○ Kirsche, Melanie, Arun Das, and Michael C. Schatz. "Sapling: Accelerating suffix array queries with

learned data models." Bioinformatics 37.6 (2021): 744-749.
● Spatial Indexing

○ Varun Pandey, Alexander van Renen, Andreas Kipf, Jialin Ding, Ibrahim Sabek, Alfons Kemper: The Case for Learned
Spatial Indexes. AIDB@VLDB 2020

● Classical Algorithms
○ Kristo, Ani, et al. "The case for a learned sorting algorithm." Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data. 2020.
○ Sabek, Ibrahim, and Tim Kraska. "The Case for Learned In-Memory Joins." arXiv preprint arXiv:2111.08824

(2021). (VLDB 2023)

Other

Open Research Problems

● Variable length keys
● String keys
● Compression
● Concurrency
● Updates
● Optimizations
● Theoretical lower bounds
● Specialized Hardware

Ongoing Research
● Speed up merges in LSM Trees
● Synthetic benchmarks
● Tried out in Bourbon (LevelDB fork with learned indexes)

○ Makes it worse!
○ Still think there’s some implementation gap or compaction policy we need to explore
○

Use the learned
indexes to speed
up merging

Ongoing Research

● Disk Based Joins - Indexed Nested Loop Join
● Use Learned Index instead of B+ Tree

Thanks!
Questions?

