
Lecture 15
Vectorization

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

VECTORIZATION

• The process of converting an algorithm's scalar implementation that
processes a single pair of operands at a time, to a vector
implementation that processes one operation on multiple pairs of
operands at once.

WHY THIS MATTERS

• Say we can parallelize our algorithm over 32 cores.
• Each core has a 4-wide SIMD registers.

• Potential Speed-up: 32x × 4x = 128x

SINGLE INSTRUCTION, MULTIPLE DATA

• A class of CPU instructions that allow the processor to perform the
same operation on multiple data points simultaneously.

• All major ISAs have microarchitecture support SIMD operations.
• x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512
• PowerPC: Altivec
• ARM: NEON, SVE

https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve

Z

SIMD EXAMPLE
X + Y = Z 8

7
6
5
4
3
2
1

X

SISD

+for (i=0; i<n; i++) {
Z[i] = X[i] + Y[i];

}

9 8 7 6 5 4 3 2
1
1
1
1
1
1
1
1

Y

SIMD

+

8 7 6 5

1 1 1 1

4 3 2 1

1 1 1 1

128-bit SIMD Register

128-bit SIMD Register

128-bit SIMD Register

x1
x2
⋮

xn

y1
y2
⋮

yn

x1+y1
x2+y2
⋮

xn+yn

+ =

SIMD INSTRUCTIONS (1)

• Data Movement
• Moving data in and out of vector registers

• Arithmetic Operations
• Apply operation on multiple data items (e.g., 2 doubles, 4 floats, 16 bytes)
• Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

• Logical Instructions
• Logical operations on multiple data items
• Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS

SIMD INSTRUCTIONS (2)

• Comparison Instructions
• Comparing multiple data items (==,<,<=,>,>=,!=)

• Shuffle instructions
• Move data in between SIMD registers

• Miscellaneous
• Conversion: Transform data between x86 and SIMD registers.
• Cache Control: Move data directly from SIMD registers to memory (bypassing

CPU cache).

INTEL SIMD EXTENSIONS
Width Integers Single-P Double-P

1997 MMX 64 bits ✔

1999 SSE 128 bits ✔ ✔(×4)

2001 SSE2 128 bits ✔ ✔ ✔(×2)

2004 SSE3 128 bits ✔ ✔ ✔

2006 SSSE 3 128 bits ✔ ✔ ✔

2006 SSE 4.1 128 bits ✔ ✔ ✔

2008 SSE 4.2 128 bits ✔ ✔ ✔

2011 AVX 256 bits ✔ ✔(×8) ✔(×4)

2013 AVX2 256 bits ✔ ✔ ✔

2017 AVX-512 512 bits ✔ ✔(×16) ✔(×8)
Source: James Reinders

https://www.youtube.com/watch?v=_OJmxi4-twY

SIMD TRADE-OFFS

• Advantages:
• Significant performance gains and resource utilization if an algorithm can be

vectorized.

• Disadvantages:
• Implementing an algorithm using SIMD is still mostly a manual process.
• SIMD may have restrictions on data alignment.
• Gathering data into SIMD registers and scattering it to the correct locations is

tricky and/or inefficient.

VECTORIZATION

• Choice #1: Automatic Vectorization

• Choice #2: Compiler Hints

• Choice #3: Explicit Vectorization

Source: James Reinders

Ease of Use

Programmer
Control

https://www.youtube.com/watch?v=_OJmxi4-twY

AUTOMATIC VECTORIZATION

• The compiler can identify when instructions inside of a loop can be
rewritten as a vectorized operation.

• Works for simple loops only and is rare in database operators.
Requires hardware support for SIMD instructions.

AUTOMATIC VECTORIZATION

• This loop is not legal to
automatically vectorize.

• The code is written such that the
addition is described sequentially.

These might point
to the same
address!

void add(int *X,
int *Y,
int *Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

*Z=*X+1

COMPILER HINTS

• Provide the compiler with additional information about the code to
let it know that is safe to vectorize.

• Two approaches:
• Give explicit information about memory locations.
• Tell the compiler to ignore vector dependencies.

COMPILER HINTS

• The restrict keyword in C++
tells the compiler that the arrays
are distinct locations in memory.

void add(int *restrict X,
int *restrict Y,
int *restrict Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

COMPILER HINTS

• This pragma tells the compiler to
ignore loop dependencies for the
vectors.

• It’s up to you make sure that this is
correct.

void add(int *X,
int *Y,
int *Z) {

#pragma ivdep
for (int i=0; i<MAX; i++) {

Z[i] = X[i] + Y[i];
}

}

EXPLICIT VECTORIZATION

• Use CPU intrinsics to manually marshal data between SIMD registers
and execute vectorized instructions.

• Potentially not portable.

EXPLICIT VECTORIZATION
• Store the vectors in 128-bit SIMD

registers.

• Then invoke the intrinsic to add
together the vectors and write
them to the output location.

void add(int *X,
int *Y,
int *Z) {

__mm128i *vecX = (__m128i*)X;
__mm128i *vecY = (__m128i*)Y;
__mm128i *vecZ = (__m128i*)Z;
for (int i=0; i<MAX/4; i++) {

_mm_store_si128(vecZ++,
�_mm_add_epi32(*vecX++,

�*vecY++));
}

}

VECTORIZATION DIRECTION

• Approach #1: Horizontal
• Perform operation on all elements

together within a single vector.

• Approach #2: Vertical
• Perform operation in an elementwise

manner on elements of each vector.

Source: Przemysław Karpiński

0 1 2 3

SIMD Add 6

0 1 2 3

SIMD Add

1 1 1 1

1 2 3 4

https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

EXPLICIT VECTORIZATION

• Linear Access Operators
• Predicate evaluation
• Compression

• Ad-hoc Vectorization
• Sorting
• Merging

• Composable Operations
• Multi-way trees
• Bucketized hash tables

Source: Orestis Polychroniou

http://www.cs.columbia.edu/~orestis

VECTORIZED DBMS ALGORITHMS

• Principles for efficient vectorization by using fundamental vector
operations to construct more advanced functionality.
• Favor vertical vectorization by processing different input data per lane.
• Maximize lane utilization by executing unique data items per lane subset (i.e.,

no useless computations).

RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015

FUNDAMENTAL OPERATIONS

• Selective Load
• Selective Store
• Selective Gather
• Selective Scatter

FUNDAMENTAL VECTOR OPERATIONS

Selective Load Selective Store

A B C DVector

Memory

0 1 0 1Mask

U V W X Y Z • • •

U V

A B C DVector

U V W X Y Z • • •Memory

0 1 0 1Mask

B D

Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

Selective Scatter

A B DValue Vector

Memory

2 1 5 3Index Vector

U V W X Y Z • • • A B C DValue Vector

U V W X Y Z • • •Memory

2 1 5 3Index Vector

CAW V XZ AB CD

0 21 3 54

0 21 3 54

ISSUES

• Gathers and scatters are not really executed in parallel because the L1
cache only allows one or two distinct accesses per cycle.

• Gathers are only supported in newer CPUs.

• Selective loads and stores are also implemented in Xeon CPUs using
vector permutations.

https://software.intel.com/en-us/node/683481

VECTORIZED OPERATORS

• Selection Scans
• Hash Tables
• Partitioning / Histograms

• Paper provides additional vectorized algorithms:
• Joins, Sorting, Bloom filters.

RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015

SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
 key = t.key
 if (key≥low) && (key≤high):
 copy(t, output[i])
 i = i + 1

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 m = (key≥low ? 1 : 0) &
 �(key≤high ? 1 : 0)
 i = i + m

Source: Bogdan Raducanu

SELECT * FROM table
 WHERE key >= $low AND key <=
$high

https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Source: Bogdan Raducanu

https://dl.acm.org/citation.cfm?id=2465292

SELECT * FROM table
 WHERE key >= $low AND key <=
$high

SELECTION SCANS

32

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 (vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

Mask 0 1 0 1 1 0

SIMD Compare

0 1 2 3 4 5All Offsets

SIMD Store

1 3 4Matched Offsets
SELECT * FROM table
 WHERE key >= "O" AND key <= "U"

SELECTION SCANS

33

0

16

32

48

0 1 2 5 10 20 50 100

Th
ro

ug
hp

ut
(b

ill
io

n
tu

pl
es

 /
 se

c)

Selectivity (%)

Scalar (Branching)
Scalar (Branchless)

Vectorized (Early Mat)
Vectorized (Late Mat)

0.0

2.0

4.0

6.0

0 1 2 5 10 20 50 100
Th

ro
ug

hp
ut

(b
ill

io
n

tu
pl

es
 /

 se
c)

Selectivity (%)

MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

5.7 5.6 5.35.7 4.9 4.3 2.8 1.3

1.7 1.7 1.71.8 1.6 1.4 1.5
1.2Memory

Bandwidth

Memory
Bandwidth

PAYLOADKEY

Linear Probing
Hash Table

HASH TABLES – PROBING
Scalar

k1
Input Key

h1
Hash Index

#
hash(key)

Vectorized (Horizontal)
k1 k9=

k3=

k8=

KEYS PAYLOAD

Linear Probing
Bucketized Hash Table

k1
Input Key

h1
Hash Index

#
hash(key)

k9= k3 k8 k1

k1=

k1

0 0 0 1
Matched

Mask

SIMD Compare

Four Keys Four Values

PAYLOAD
k99

k1

k6

k4

KEY

k5

k88

Linear Probing
Hash Table

HASH TABLES – PROBING
Vectorized (Vertical)

Input Key
Vector hash(key)

#
#
#
#

Hash Index
Vector

h1
h2
h3
h4

k1
k2
k3
k4

k1
k99
k88
k4

=
=
=
=

SIMD Gather

SIMD Compare

1
0
0
1

k1
k2
k3
k4

k5

k6

h5
h2+1
h3+1
h6

HASH TABLES – PROBING

36

0

3

6

9

12

 4KB
 16KB

 64KB
256KB

 1MB
 4MB

 16MB
 64MB

Th
ro

ug
hp

ut
(b

ill
io

n
tu

pl
es

 /
 se

c)

Hash Table Size

Scalar Vectorized (Horizontal) Vectorized (Vertical)
MIC (Xeon Phi 7120P – 61 Cores + 4×HT) Multi-Core (Xeon E3-1275v3 – 4 Cores + 2×HT)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

 4KB
 16KB

 64KB
256KB

 1MB
 4MB

 16MB
 64MB

Th
ro

ug
hp

ut
(b

ill
io

n
tu

pl
es

 /
 se

c)
Hash Table Size

Out of Cache
Out of Cache

2.3 2.2 2.12.4
1.1 0.9 0.7 0.6

1.1 1.1
0.9

1.2

0.8 0.8

0.3
0.2

PARTITIONING – HISTOGRAM

• Use scatter and gathers to increment counts.
• Replicate the histogram to handle collisions.

k1
k2
k3
k4

Input Key
Vector

h1
h2
h3
h4

Hash Index
Vector

SIMD Add

Replicated Histogram

+1
+1

+1

+1

SIMD Add

of Vector Lanes
SIMD Radix

+1
+2

+1

Histogram

+1
+1

+1

Histogram

SIMD Scatter

Missing
Update

JOINS

• No Partitioning
• Build one shared hash table using atomics
• Partially vectorized
• Min Partitioning
• Partition building table
• Build one hash table per thread
• Fully vectorized
• Max Partitioning
• Partition both tables repeatedly
• Build and probe cache-resident hash tables
• Fully vectorized

38

Rank-Select Primitive
[Jacobson, Guy. "Space-efficient static trees and graphs." 1989]

1 0 0 1 0 1 0 0

vector

7 6 5 4 3 2 1 0

• The operation rank(i) is defined as the number of set bits in the vector..
• This is a generalization of popcnt instruction.
• popcnt: Bit set count.

Rank(7) = 3 popcnt(vector) = 3

Rank-Select Primitive

Select(3) = 7

vector

1 0 1 1 0 0 0 0

7 6 5 4 3 2 1 0

• The operation select(i) is defined as at which position is the ith set bit.
• We can implement select using pdep and tzcnt instructions.
• pdep: parallel bit deposit tzcnt: trailing zeros count.

pdep(100,10110000) = 10000000
tzcnt(10000000) = 7

PDEP Instruction

1 0 1 0 1 1 0 1

d 0 e 0 f g 0 h

[Hilewitz, Yedidya, and Ruby B. Lee. "Fast bit compression and expansion with parallel extract and parallel deposit
instructions.”]

7 6 5 4 3 2 1 0

a b c d e f g hvector

mask

output

pdep: It copies the contiguous low-order bits to selected bits of
the destination; other destination bits are cleared.

