CS 6530: Advanced Database Systems Fall 2022

Lecture 15
Vectorization

Prashant Pandey

prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO

http://prashant.pandey@utah.edu

VECTORIZATION

* The process of converting an algorithm's scalar implementation that
processes a single pair of operands at a time, to a vector
implementation that processes one operation on multiple pairs of
operands at once.

OOOOOOOOOOOOOOOOO

WHY THIS MATTERS

e Say we can parallelize our algorithm over 32 cores.
* Each core has a 4-wide SIMD registers.

* Potential Speed-up: 32x x 4x = 128x

OOOOOOOOOOOOOOOOO

SINGLE INSTRUCTION, MULTIPLE DATA

* A class of CPU instructions that allow the processor to perform the
same operation on multiple data points simultaneously.

* All major ISAs have microarchitecture support SIMD operations.
* x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512

e PowerPC: Altivec
* ARM: NEON, SVE

OOOOOOOOOOOOOOOOO

https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve

SIMD EXAMPLE

X+Y=2 128-bit SIMD Register
%1 [Ya] [Xi+Ys " 871615
X2 14| Y2 || X2TY2 X
: : : 4131211 4
Xn _yn_ _Xn+yn_)

g »98765432

7/ 128-bit SIMD Register

1111111
128-bit SIMD Register

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;

NENEW PR PR\ FRNEW JHENEW W NN JEY =N W | |O1|0) |~ |00

SIMD INSTRUCTIONS (1)

 Data Movement
* Moving data in and out of vector registers

* Arithmetic Operations

* Apply operation on multiple data items (e.g., 2 doubles, 4 floats, 16 bytes)
 Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

* Logical Instructions

* Logical operations on multiple data items
* Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS

OOOOOOOOOOOOOOOOO

SIMD INSTRUCTIONS (2)

* Comparison Instructions
 Comparing multiple data items (==,<,<=,>,>=,! =)

* Shuffle instructions
* Move data in between SIMD registers

* Miscellaneous
* Conversion: Transform data between x86 and SIMD registers.

e Cache Control: Move data directly from SIMD registers to memory (bypassing
CPU cache).

OOOOOOOOOOOOOOOOO

Source: James Reinders

U

SCHOOL OF COMPUTING

INTEL SIMD EXTENSIONS

UN

IVERSITY OF UTAH

Width Integers Single-P Double-P
1997 MMX 64 bits v
1999 SSE 128 bits v V (x4)
2001 SSE2 128 bits v v vV (x2)
2004 SSE3 128 bits v v V/
2006 SSSE 3 128 bits v v V/
2006 SSE 4.1 128 bits v v V/
2008 SSE 4.2 128 bits v v V/
2011 AVX 256 bits v V (x8) V (x4)
2013 AVX2 256 bits v v V/
2017 AVX-512 512 bits v V (x16) V (x8)

https://www.youtube.com/watch?v=_OJmxi4-twY

SIMD TRADE-OFFS

* Advantages:

 Significant performance gains and resource utilization if an algorithm can be
vectorized.

* Disadvantages:
* Implementing an algorithm using SIMD is still mostly a manual process.
e SIMD may have restrictions on data alignment.

* Gathering data into SIMD registers and scattering it to the correct locations is
tricky and/or inefficient.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

VECTORIZATION

 Choice #1: Automatic Vectorization Ease of Use
* Choice #2: Compiler Hints
Control

Source: James Reinders

https://www.youtube.com/watch?v=_OJmxi4-twY

AUTOMATIC VECTORIZATION

* The compiler can identify when instructions inside of a loop can be
rewritten as a vectorized operation.

* Works for simple loops only and is rare in database operators.
Requires hardware support for SIMD instructions.

OOOOOOOOOOOOOOOOO

AUTOMATIC VECTORIZATION

void add(int xX, * This loop is not legal to

int *Y, automatically vectorize.
int *7) f&——— */=%X+1
for (int i=0; i<MAX; i++) {

Z[il = X[i] + Y[il: * The code is written such that the
} \\ / addition is described sequentially.
by
N
These might point
to the same

address!

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

COMPILER HINTS

* Provide the compiler with additional information about the code to
let it know that is safe to vectorize.

* Two approaches:
* Give explicit information about memory locations.
* Tell the compiler to ignore vector dependencies.

OOOOOOOOOOOOOOOOO

COMPILER HINTS

void add(int *restrict X, * The restrict keyword in C++
int *restrict Y, tells the compiler that the arrays
int xrestrict 7) { are distinct locations in memory.

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[il;
}
}

U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

COMPILER HINTS

void add(int *X, * This pragma tells the compiler to
int *v, ignore loop dependencies for the
int *2) { vectors.

#pragma ivdep
for (int i=0; i<MAX; i++) { o
Z[i1 = X[i1 + Y[i]l; * It’s up to you make sure that this is
} correct.
3

OOOOOOOOOOOOOOOOO

EXPLICIT VECTORIZATION

* Use CPU intrinsics to manually marshal data between SIMD registers
and execute vectorized instructions.

* Potentially not portable.

OOOOOOOOOOOOOOOOO

EXPLICIT VECTORIZATION

void add(int *X, . Sto_re the vectors in 128-bit SIMD
int *Y, registers.
int *7) {

—-mm128i *vecX = (__m128i%)X; e Then invoke the intrinsic to add
__mm128i *vecY = (__m128i%)Y;

_ mm128i *vecZ = (__m128i*)Z; together the vectors and.write
for (int i=0; i<MAX/4; i++) { them to the output location.

_mm_store_si128(vecZ++,
_mm_add_epi32(*vecX++,
xvecY++));

U SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

VECTORIZATION DIRECTION

* Approach #1: Horizontal

* Perform operation on all elements
together within a single vector.

* Approach #2: Vertical

* Perform operation in an elementwise
manner on elements of each vector.

Source: Przemystaw Karpinski

SIMD Add

[

\

]

]

]

]

https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/

EXPLICIT VECTORIZATION

* Linear Access Operators
* Predicate evaluation
* Compression

 Ad-hoc Vectorization
* Sorting
* Merging

 Composable Operations
* Multi-way trees
* Bucketized hash tables

Source: Orestis Polychroniou

http://www.cs.columbia.edu/~orestis

VECTORIZED DBMS ALGORITHMS

* Principles for efficient vectorization by using fundamental vector
operations to construct more advanced functionality.
* Favor vertical vectorization by processing different input data per lane.

* Maximize lane utilization by executing unique data items per lane subset (i.e.,
no useless computations).

= | RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

FUNDAMENTAL OPERATIONS

e Selective Load
* Selective Store
e Selective Gather

* Selective Scatter

OOOOOOOOOOOOOOOOO

FUNDAMENTAL VECTOR OPERATIONS

Selective Load

Vector

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

AU V
01 1
UV X

Memory

Mask

Vector

Selective Store

BID[W|[X

N

0 0

W s
A

C

A

FUNDAMENTAL VECTOR OPERATIONS

Selective Gather Selective Scatter

0 1
Z
5

M |
o
°
°

2 3 4
Memory (U[(B|A|D|Y

it

Value Vector

N—»E
>|_\—><
W ——— X

Index Vector Index Vector |2 1|53
\A
D O [111
Memory 7|ooe Value Vector |A(B|CI|D
5

®|C
PI<
N =
w| X
&<

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

ISSUES

e Gathers and scatters are not really executed in parallel because the L1
cache only allows one or two distinct accesses per cycle.

e Gathers are only supported in newer CPUs.

* Selective loads and stores are also implemented in Xeon CPUs using
vector permutations.

SCHOOL OF COMPUTING
SITY JTAH

UNIVERSITY

https://software.intel.com/en-us/node/683481

VECTORIZED OPERATORS

e Selection Scans
 Hash Tables
e Partitioning / Histograms

* Paper provides additional vectorized algorithms:
* Joins, Sorting, Bloom filters.

—~= | RETHINKING SIMD VECTORIZATION FOR IN-

MEMORY DATABASES

SIGMOD 2015

OOOOOOOOOOOOOOOOO

SELECTION SCANS

Scalar (Branching) Scalar (Branchless)
1 =0 1 =0
for t in table: for t in table:
key = t.key copy(t, output[il)
if (key=low) && (keyshigh): key = t.key
copy(t, output[il) m = (key=low ? 1 : 0) &
i=1+ 1 (key<high ? 1 : 0)
1 =1 +m

SELECT * FROM table

WHERE key >= $low AND key <=
$high

Source: Bogdan Raducanu

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

" branching

" —nobranching

—r —h
0 OMN
|

—

61
9 ¢
0

CPU cycles / tuple

° 20 40 60 80 100
Selectivity

Source: Bogdan Raducanu

https://dl.acm.org/citation.cfm?id=2465292

SELECTION SCANS

Vectorized

1 =20

|for V. in table:

simdLoad(v,.key, v,)

v, = (vy=low ? 1 : 0) &
(vichigh ? 1 : 09)

simdStore(v,, v,, output[i])

i=1+ |v#zfalse]

OB WwWIN |-
XIClnIK<|IO |

o~ — — e m— —— e n a

SELECT * FROM table
WHERE key >= "0" AND key <= "U"

SCHOOL OF COMPUTING
UUUUUUUUUUUUUUUU

Key Vector

Mask

All Offsets

Matched Offsets

32

SELECTION SCANS

@ Scalar (Branching)
@ Scalar (Branchless)
MIC (Xeon Phi 7120P — 61 Cores + 4xHT)

A

YeonPii Lopreesst Memo.ry
Ry Bandwidth

S

\UMEE

g Selectivity (%)

ORIVERS Y OF UTAH Selectivity (%)

HASH TABLES — PROBING

Scalar

Input Key
k1

hash(key) Hash Index
hl

Vectorized (Horizontal)

Input Key
k1

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

hash(key) Hash Index
hl

Buckdtixstd Tadssh Table
.
k1 | =|k9|k3|k8|[k1
SIMD Compare
L\

0(0]|0]1}

atc

Mangkl \/-/\/-/

Four Keys Four Values

HASH TABLES — PROBING

Vectorized (Vertical) _ ,
Linear Probing
Input Key hash(key) Hash Index Hash Table

Vector Vector SIMD Gather

k99
h5
h2+1 1 1
h3+1 e = k99 0

h6 k3 —

k5
k2
k3
k6

k6

===
X

SIMD Compare\

k4

k5

k88

OOOOOOOOOOOOOOOOO
UUUUUUUUUUUUUUUU

HASH TABLES — PROBING

@ Scalar A Vectorized (Horizontal) Bl Vectorized (Vertical)

MIC (Xeon Phi 7120P — 61 Cores + 4xHT) Multi-Core (Xeon E3-1275v3 — 4 Cores + 2xHT)
12 2
1.8
- -
§ 9 - § 1.6
S 3 £ g 12
o Q 6 - O Q 1
5 2 5 2 0.8
< c Y
S S Out of Cache S S ¢
= 3 : . =
S 8 0.4 Out of Cache
0.2 -
O I I I I I I] O I I I I I I]
XN ® R XX W VR ® O R R ® W
N3 '\’Q)\L Q)bt\{\ q/(,)@F '\Q b‘@ ,\'Q)@ 6&@ N3 '\‘6% Q)b* ,ﬁ,)Q)\L '\@ D«Q ,\b@ 6&@

36

SCHOOL OF COMPUTING Hash Tab,e Size Ha$h Table Size

UNIVERSITY OF UTAH

PARTITIONING — HISTOGRAM

e Use scatter and gathers to increment counts.
* Replicate the histogram to handle collisions.

Input Key Hash Index
Vector Vector

kl > hl \ >
k2 » h2 +1 o > +1

HisReghmoted Histogram Histogram

» L TS Cpdate™ [
k4 » h4 < >
*\+1‘~> +1 » +1
S —
of Vector Lanes

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

JOINS

* No Partitioning
* Build one shared hash table using atomics
 Partially vectorized

* Min Partitioning
 Partition building table
* Build one hash table per thread
* Fully vectorized

* Max Partitioning
* Partition both tables repeatedly
* Build and probe cache-resident hash tables
* Fully vectorized

OOOOOOOOOOOOOOOOO

Rank-Select Primitive

[Jacobson, Guy. "Space-efficient static trees and graphs." 1989]

vector @
‘ 1 O | O 1 0 1 | 0| O

7 6 5 4 3 2 1 0

Rank(7) =3 popcnt(vector) =3

* The operation rank(i) is defined as the number of set bits in the vector..
* This is a generalization of popcnt instruction.
* popcnt: Bit set count.

OOOOOOOOOOOOOOOOO

Rank-Select Primitive

Select(3) =7 pdep(100,10110000) = 10000000
tzcnt(10000000) =7

 The operation select(i) is defined as at which position is the ith set bit.
 We can implement select using pdep and tzcnt instructions.
* pdep: parallel bit deposit tzcnt: trailing zeros count.

OOOOOOOOOOOOOOOOO

PDEP Instruction

[Hilewitz, Yedidya, and Ruby B. Lee. "Fast bit compression and expansion with parallel extract and parallel deposit
instructions.”]

vector a b C d e f g

mask 1 0 1 0 1

-
:

output

pdep: It copies the contiguous low-order bits to selected bits of
the destination; other destination bits are cleared.

OOOOOOOOOOOOOOOOO

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

