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VECTORIZATION

• The process of converting an algorithm's scalar implementation that 
processes a single pair of operands at a time, to a vector 
implementation that processes one operation on multiple pairs of 
operands at once.



WHY THIS MATTERS

• Say we can parallelize our algorithm over 32 cores.
• Each core has a 4-wide SIMD registers.

• Potential Speed-up: 32x × 4x = 128x



SINGLE INSTRUCTION, MULTIPLE DATA

• A class of CPU instructions that allow the processor to perform the 
same operation on multiple data points simultaneously.

• All major ISAs have microarchitecture support SIMD operations.
• x86: MMX, SSE, SSE2, SSE3, SSE4, AVX, AVX2, AVX512
• PowerPC: Altivec
• ARM: NEON, SVE

https://developer.arm.com/docs/100891/0606/sve-overview/introducing-sve
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SIMD INSTRUCTIONS (1)

• Data Movement
• Moving data in and out of vector registers

• Arithmetic Operations
• Apply operation on multiple data items (e.g., 2 doubles, 4 floats, 16 bytes)
• Example: ADD, SUB, MUL, DIV, SQRT, MAX, MIN

• Logical Instructions
• Logical operations on multiple data items
• Example: AND, OR, XOR, ANDN, ANDPS, ANDNPS



SIMD INSTRUCTIONS (2)

• Comparison Instructions
• Comparing multiple data items (==,<,<=,>,>=,!=)

• Shuffle instructions
• Move data in between SIMD registers

• Miscellaneous
• Conversion: Transform data between x86 and SIMD registers.
• Cache Control: Move data directly from SIMD registers to memory (bypassing 

CPU cache).



INTEL SIMD EXTENSIONS
Width Integers Single-P Double-P

1997 MMX 64 bits ✔

1999 SSE 128 bits ✔ ✔(×4)

2001 SSE2 128 bits ✔ ✔ ✔(×2)

2004 SSE3 128 bits ✔ ✔ ✔

2006 SSSE 3 128 bits ✔ ✔ ✔

2006 SSE 4.1 128 bits ✔ ✔ ✔

2008 SSE 4.2 128 bits ✔ ✔ ✔

2011 AVX 256 bits ✔ ✔(×8) ✔(×4)

2013 AVX2 256 bits ✔ ✔ ✔

2017 AVX-512 512 bits ✔ ✔(×16) ✔(×8)
Source: James Reinders

https://www.youtube.com/watch?v=_OJmxi4-twY


SIMD TRADE-OFFS

• Advantages:
• Significant performance gains and resource utilization if an algorithm can be 

vectorized.

• Disadvantages:
• Implementing an algorithm using SIMD is still mostly a manual process.
• SIMD may have restrictions on data alignment.
• Gathering data into SIMD registers and scattering it to the correct locations is 

tricky and/or inefficient.



VECTORIZATION

• Choice #1: Automatic Vectorization

• Choice #2: Compiler Hints

• Choice #3: Explicit Vectorization

Source: James Reinders

Ease of Use

Programmer
Control

https://www.youtube.com/watch?v=_OJmxi4-twY


AUTOMATIC VECTORIZATION

• The compiler can identify when instructions inside of a loop can be 
rewritten as a vectorized operation.

• Works for simple loops only and is rare in database operators. 
Requires hardware support for SIMD instructions.



AUTOMATIC VECTORIZATION

• This loop is not legal to 
automatically vectorize.

• The code is written such that the 
addition is described sequentially.

These might point 
to the same 
address!

void add(int *X,
int *Y,
int *Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}

*Z=*X+1



COMPILER HINTS

• Provide the compiler with additional information about the code to 
let it know that is safe to vectorize.

• Two approaches:
• Give explicit information about memory locations.
• Tell the compiler to ignore vector dependencies.



COMPILER HINTS

• The restrict keyword in C++ 
tells the compiler that the arrays 
are distinct locations in memory.

void add(int *restrict X,
int *restrict Y,
int *restrict Z) {

for (int i=0; i<MAX; i++) {
Z[i] = X[i] + Y[i];

}
}



COMPILER HINTS

• This pragma tells the compiler to 
ignore loop dependencies for the 
vectors.

• It’s up to you make sure that this is 
correct.

void add(int *X,
int *Y,
int *Z) {

#pragma ivdep
for (int i=0; i<MAX; i++) {

Z[i] = X[i] + Y[i];
}

}



EXPLICIT VECTORIZATION

• Use CPU intrinsics to manually marshal data between SIMD registers 
and execute vectorized instructions.

• Potentially not portable.



EXPLICIT VECTORIZATION
• Store the vectors in 128-bit SIMD 

registers.

• Then invoke the intrinsic to add 
together the vectors and write 
them to the output location.

void add(int *X,
int *Y,
int *Z) {

__mm128i *vecX = (__m128i*)X;
__mm128i *vecY = (__m128i*)Y;
__mm128i *vecZ = (__m128i*)Z;
for (int i=0; i<MAX/4; i++) {

_mm_store_si128(vecZ++,
�_mm_add_epi32(*vecX++,

�*vecY++));
}

}



VECTORIZATION DIRECTION

• Approach #1: Horizontal
• Perform operation on all elements 

together within a single vector.

• Approach #2: Vertical
• Perform operation in an elementwise 

manner on elements of each vector.

Source: Przemysław Karpiński
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https://gain-performance.com/2017/05/01/umesimd-tutorial-2-calculation/


EXPLICIT VECTORIZATION

• Linear Access Operators
• Predicate evaluation
• Compression

• Ad-hoc Vectorization
• Sorting
• Merging

• Composable Operations
• Multi-way trees
• Bucketized hash tables

Source: Orestis Polychroniou

http://www.cs.columbia.edu/~orestis


VECTORIZED DBMS ALGORITHMS

• Principles for efficient vectorization by using fundamental vector 
operations to construct more advanced functionality.
• Favor vertical vectorization by processing different input data per lane.
• Maximize lane utilization by executing unique data items per lane subset (i.e., 

no useless computations).

RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015



FUNDAMENTAL OPERATIONS

• Selective Load
• Selective Store
• Selective Gather
• Selective Scatter



FUNDAMENTAL VECTOR OPERATIONS
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Selective Gather

FUNDAMENTAL VECTOR OPERATIONS

Selective Scatter
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ISSUES

• Gathers and scatters are not really executed in parallel because the L1 
cache only allows one or two distinct accesses per cycle.

• Gathers are only supported in newer CPUs.

• Selective loads and stores are also implemented in Xeon CPUs using 
vector permutations.

https://software.intel.com/en-us/node/683481


VECTORIZED OPERATORS

• Selection Scans
• Hash Tables
• Partitioning / Histograms

• Paper provides additional vectorized algorithms:
• Joins, Sorting, Bloom filters.

RETHINKING SIMD VECTORIZATION FOR IN-
MEMORY DATABASES
SIGMOD 2015



SELECTION SCANS

Scalar (Branching)

i = 0
for t in table:
  key = t.key
  if (key≥low) && (key≤high):
    copy(t, output[i])
    i = i + 1

Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  m = (key≥low ? 1 : 0) &
      �(key≤high ? 1 : 0)
  i = i + m

Source: Bogdan Raducanu

SELECT * FROM table
 WHERE key >= $low AND key <= 
$high

https://dl.acm.org/citation.cfm?id=2465292


SELECTION SCANS

Source: Bogdan Raducanu

https://dl.acm.org/citation.cfm?id=2465292


SELECT * FROM table
 WHERE key >= $low AND key <= 
$high

SELECTION SCANS

32

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
 (vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

J O Y S U XKey VectorID
1

KEY
J

2 O
3 Y
4 S
5 U
6 X

Mask 0 1 0 1 1 0

SIMD Compare

0 1 2 3 4 5All Offsets

SIMD Store

1 3 4Matched Offsets
SELECT * FROM table
 WHERE key >= "O" AND key <= "U"



SELECTION SCANS
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PAYLOADKEY
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HASH TABLES – PROBING
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PARTITIONING – HISTOGRAM

• Use scatter and gathers to increment counts.
• Replicate the histogram to handle collisions.
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JOINS

• No Partitioning
• Build one shared hash table using atomics
• Partially vectorized
• Min Partitioning
• Partition building table
• Build one hash table per thread
• Fully vectorized
• Max Partitioning
• Partition both tables repeatedly
• Build and probe cache-resident hash tables
• Fully vectorized

38



Rank-Select Primitive
[Jacobson, Guy. "Space-efficient static trees and graphs." 1989]

1 0 0 1 0 1 0 0

vector

7 6 5 4 3 2 1 0

• The operation rank(i) is defined as the number of set bits in the vector..
• This is a generalization of popcnt instruction.
• popcnt: Bit set count.

Rank(7) = 3                                                popcnt(vector) = 3



Rank-Select Primitive

Select(3) = 7

vector

1 0 1 1 0 0 0 0

7 6 5 4 3 2 1 0

• The operation select(i) is defined as at which position is the ith set bit.
• We can implement select using pdep and tzcnt instructions.
• pdep: parallel bit deposit tzcnt: trailing zeros count.

pdep(100,10110000) = 10000000
tzcnt(10000000) = 7



PDEP Instruction

1 0 1 0 1 1 0 1

d 0 e 0 f g 0 h

[Hilewitz, Yedidya, and Ruby B. Lee. "Fast bit compression and expansion with parallel extract and parallel deposit 
instructions.”]

7 6 5 4 3 2 1 0

a b c d e f g hvector

mask

output

pdep: It copies the contiguous low-order bits to selected bits of 
the destination; other destination bits are cleared.




