
Lecture 14
Query optimization

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu

So, what is query optimization and how

does it work?

Meet Query Optimization

A given LQP could have several possible
PQPs with very different runtime performanceBasic Idea:

Get the optimal (fastest) PQP for a given LQPGoal (Ideal):

Goal (Realistic): Fine, just avoid the “clearly awful” PQPs!

Query optimization is a metaphor
for life itself! It is often hard to even
know what an optimal plan would
be, but it is feasible to avoid many
obviously bad plans!Jeff Naughton

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

File Scan
Read Index leaf pages

Movies Table

File Scan
Read heapfile

RatingsTable

Hash Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table Concept: Pipelining

Q: Does the hash-based
aggregate have to wait
till the entire output of
the “upstream” hash join
is available?

No! We can
“pipeline” the output
of the join – pass on
a join output tuple as
soon as it is obtained!

Concept: Pipelining

Do not force “downstream” physical operators
to wait till the entire output is availableBasic Idea:

Display output to the user incrementally
CPU Parallelism in multi-core systems!Benefits:

Tuples

File Scan

Hash Join

Hash-based
Aggregate

Concept: Pipelining

❖ Crucial for PQPs with workflow of many phy. ops.

❖ Common feature of almost all RDBMSs

❖ Works for many operators: SCAN, HASH JOIN, etc.

Q: Are all physical operators amenable to pipelining?

No! Some may “stall” the pipeline: “Blocking Op”

Usually, any phy. op. involving sorting is blocking!

A blocking op. requires its output to be Materialized
as a temporary table

File Scan
Read heapfile

Movies Table

File Scan
Read heapfile

RatingsTable

Sort-Merge Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table Blocking Op

This phy. op. is blocking
because we need to sort
Movies and sort Ratings
(materialize the output)
before we can start any
aggregate computations!

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerat Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Mechanism: Iterator Interface

❖ Software API to process PQP; makes pipelining easy to impl.

❖ Enables us to abstract away individual phy. op. impl. details

❖ Three main functions in usage interface of each phy. op.:

 Open(): Initialize the phy. op. “state”, get arguments
 Allocate input and output buffers

 GetNext(): Ask the phy. op. impl. to “deliver” next
output tuple; pass it on; if blocking, wait

 Close(): Clear phy. op. state, free up space

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

Enumerating Alternative PQPs
❖ Plan Enumerator explores various PQPs for a given LQP

❖ Challenge: Space of plans is huge! How to make it
feasible?

❖ RDBMS Plan Enumerator has Rules to help determine what

plans to enumerate, and also consults Cost models
❖ Two main sources of Rules for enumerating plans:

 Logical: Algebraic Rewrites:

 Use relational algebra equivalence to rewrite LQP itself!

 Physical: Choosing Phy. Op. Impl.:
 Use different phy. op. impl. for a given log. op. in LQP

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Algebraic Rewrite Rules

❖ Rewrite a given RA query in to another that is equivalent (a

logical property) but might be faster (a physical property)

❖ RA operators have some formal properties we can exploit

❖ We will cover only a few rewrite rules:

 Single-operator Rewrites

 Unary operators

 Binary operators

 Cross-operator Rewrites

Unary Operator Rewrites

Q: Why are cascading rewrites beneficial?

❖ Key unary operators in RA:

❖ Commutativity of

❖ Cascading of

❖ Cascading of

Binary Operator Rewrites

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

❖ Key binary operator in RA:

❖ Associativity of

❖ Commutativity of

Cross-Operator Rewrites

❖ Commuting and

❖ Combining and

❖ “Pushing the select”

❖ Commuting with and

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Choosing Phy. Op. Impl.

3 options 3 options 4 options = 36 PQPs!

Q: With algebraic
rewrites?!

❖ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

❖ Recall various RA op. impl. with their I/O (and CPU costs)

File scan vs Indexed (B+ Tree vs Hash)

Hashing-based vs Sorting-based vs Indexed

BNLJ vs INLJ vs SMJ vs HJ

etc.

Phy. Op. Impl.: Other Factors

❖ Are the indexes clustered or unclustered?

❖ Are there multiple matching indexes? Use multiple?

❖ Are index-only access paths possible for some ops?

❖ Are there “interesting orderings” among the inputs?

❖ Would sorted outputs benefit downstream ops?

❖ Estimation of cardinality of intermediate results!

❖ How best to reorder multi-table joins?

Still a hard, open
research problem!Query optimizers are complex beasts!

Phy. Op. Impl.: Join Orderings
❖ Since joins are associative, exponential number of orderings!

Left Deep tree Right Deep tree
“Bushy” tree

❖ Almost all RDBMSs consider only left deep join trees
Enables easy pipelining! Why?

❖ “Interesting orderings” idea from System R optimizer paper
❖ Dynamic program to combine enumeration and costing
“Access Path Selection in a Relational Database Management System” SIGMOD’79

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

Costing PQPs

❖ For each PQP considered by the Plan Enumerator, the Plan

Cost Estimator computes “Cost” of the PQP

 Weighted sum of I/O cost and CPU cost

 (Distributed RDBMSs also include Network cost)

❖ Challenge: Given a PQP, compute overall cost
❖ Issues to consider:
 Pipelining vs. blocking ops; cannot simply add costs!

 Cardinality estimation for intermediate tables!

 Q: What statistics does the catalog have to help?

Costing PQPs

❖ Most RDBMSs use various heuristics to make costing
tractable; so, it is approximate!

❖ Example: Complex predicates

Not enough info!

But, most RDBMSs use the independence heuristic!

Selectivity of conjunction = Product of selectivities

Thus, ≈ 0.05 * 0.1 = 0.005, i.e., 0.5%

Query Optimization: Summary

❖ Plan Enumerator and Cost Estimator work in lock step:

 Rules determine what PQPs are enumerated

 Logical: Algebraic rewrites of LQP

 Physical: Op. Impl. and ordering alternatives

 Cost models and heuristics help cost the PQPs

❖ Still an active research area!

 Parametric Q.O., Multi-objective Q.O.,

Multi-objective parametric Q.O., Multiple Q.O.,

 Online/Adaptive Q.O., Dynamic re-optimization, etc.

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

Introducing Materialized Views

❖ A View is a “virtual table” created with an SQL query

❖ A Materialized View is a physically instantiated/stored view

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

SELECT AVG(Stars)
FROM Ratings R, Movies M, Users U
WHERE R.MID = M.MID AND R.UID = U.UID

M.Director = “Christopher Nolan” AND
U.Age >= 20 AND U.Age < 30;

Requires file scans of R, M, and U and, say, hash joins

Materialized Views Example

CREATE MATERIALIZED VIEW NolanRatings AS
SELECT RatingID, Stars, UID, MID
FROM Ratings R, Movies M
WHERE R.MID = M.MID AND

M.Director = “Christopher Nolan”;

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

Creates a subset of R with ratings for only Nolan’s movies

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

Given the materialized view V, RDBMS optimizer can
automatically rewrite to use V to avoid scans of R and M

Likely much faster since V is likely much smaller than R,
but this depends on data statistics; leave it to optimizer!

Q: How did DBA know to materialize a view for Nolan ratings?

Materialized Views Example

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

We are given this materialized view V over R and M

Q: What if new ratings are inserted to R for Nolan’s movies?

Materialized View Maintenance

❖ RDBMS will automatically “trigger” updates to V
❖ Such updates are called Materialized View Maintenance
❖ 2 alternatives: Recompute whole view from scratch vs

Incremental View Maintenance (IVM)

Recomputing V from scratch may be an overkill
Try to incrementally update parts that change

Incremental View Maintenance (IVM)

Basic Idea:

❖ D’ can be the outcome of inserts and/or deletes to D
❖ Q can be a unary query or involve multiple tables
❖ Computing V’ may require inserts and/or deletes to V;

realized as algebraic rewrite rules at LQP level
❖ Whether or not IVM of V is feasible and/or efficient depends

on form of Q, nature of updates to D, data statistics, etc.
❖ We will focus only on inserts to D triggering inserts to V

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Select:

Project:

Select and Project can be composed and reordered as before

Can be just an append (union with “bag” semantics)

Requires full set union with V for deduplication

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Group By Agg:

Feasibility of IVM Depends on Agg() function!
Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags
AVG not possible in general; needs deeper system changes

Incremental View Maintenance (IVM)

Join IVM for insertions:

Alternatively, we can just append the output of the
following query to V (union below is just append too):

IVM for complex queries compose such op-level rewrites

Assume no duplicate inserts

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
❖ Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
❖ Costing PQPs
❖ Materialized Views

