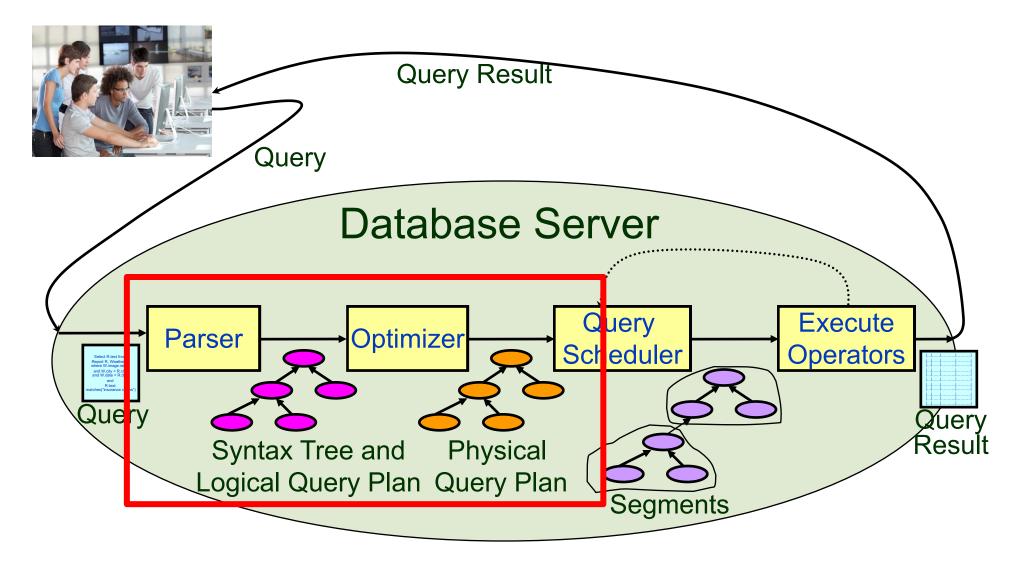
CS 6530: Advanced Database Systems Fall 2023

Lecture 13 Query processing

Prashant Pandey prashant.pandey@utah.edu

Lifecycle of a Query



The Netflix Schema

Ratings

1	3.5	08/27/15	79	20

<u>UID</u>	Name	Age	JoinDate
79	Alice	23	01/10/13
80	Bob	41	05/10/13

Movies

MID	Name	Year	Director
20	Inception	2010	Christopher Nolan
16	Avatar	2009	Jim Cameron

Example SQL Query

<u>RatingID</u>	Stars	RateDate		UID	MID	
<u>UID</u>	Name		Age JoinDate			
MID	Name		Year		Director	

SELECT M. Year, COUNT(*) AS NumBest

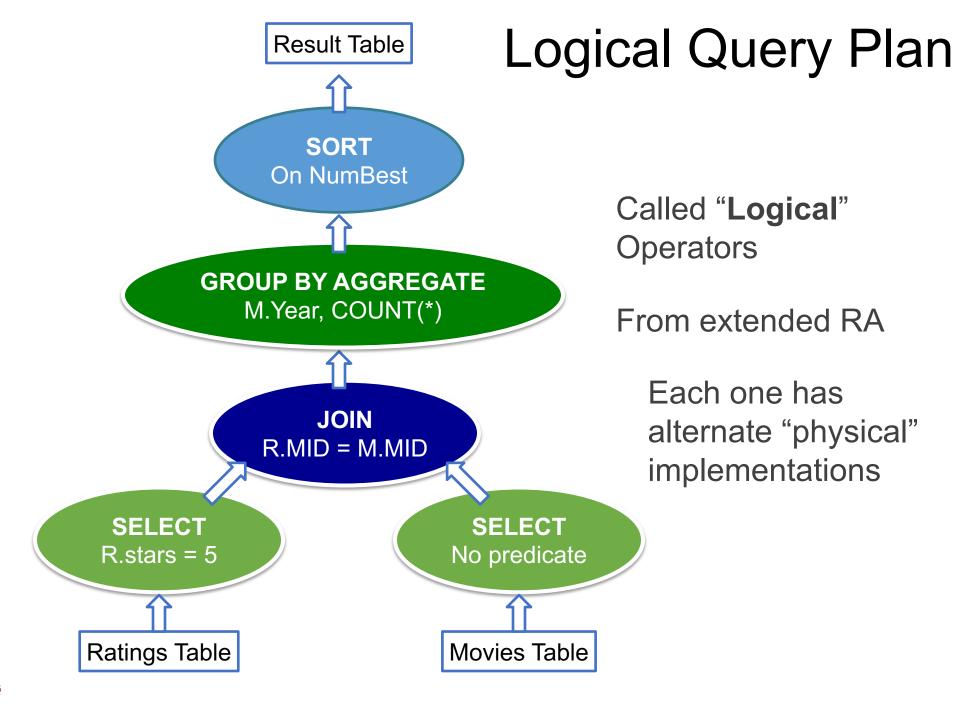
FROM Ratings R, Movies M

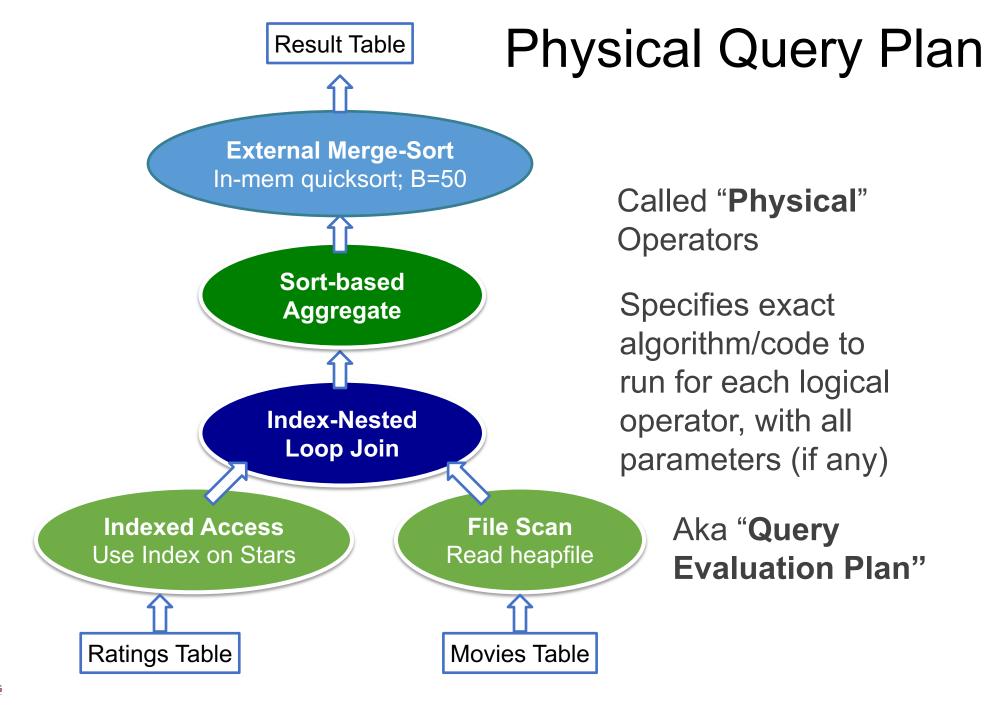
WHERE R.MID = M.MID

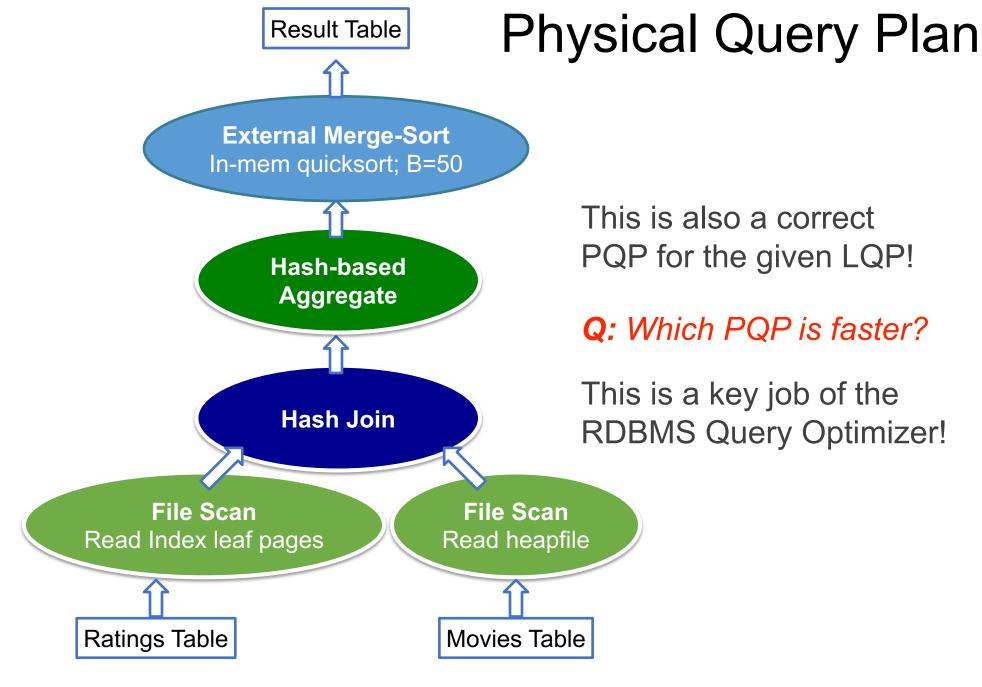
AND R.Stars = 5

GROUP BY M. Year

ORDER BY NumBest DESC







Logical-Physical Separation in DBMSs

Logical = Tells you "what" is computed Physical = Tells you "how" it is computed

Declarativity!

Declarative "querying" (logical-physical separation) is a key system design principle from the RDBMS world:

Declarativity often helps improve <u>user productivity</u>

Enables behind-the-scenes <u>performance optimizations</u>

People are still (re)discovering the importance of this key system design principle in diverse contexts... (MapReduce/Hadoop, networking, file system checkers, interactive data-vis, graph systems, large-scale ML, etc.)

Operator Implementations

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

But first, what metadata does the RDBMS have?

System Catalog

- Set of pre-defined relations for metadata about DB (schema)
- For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

For each Index:

Index name, Structure (B+ tree vs. hash, etc.); IndexKey

For each View:

View name, and View definition

Statistics in the System Catalog

- RDBMS periodically collects stats about DB (instance)
- For each Table R:

Cardinality, i.e., number of tuples, NTuples (R)

Size, i.e., number of pages, **NPages** (**R**), or just **N**_R or **N**

For each Index X:

Cardinality, i.e., number of distinct keys IKeys (X)

Size, i.e., number of pages IPages (X) (for a B+ tree, this

is the number of leaf pages only)

Height (for tree indexes) IHeight (X)

Min and max keys in index ILow (X), IHigh (X)

Operator Implementations

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

Selection: Access Path

$\sigma_{SelectCondition}(\mathbf{R})$

- Access path: <u>how exactly is a table read</u> ("accessed")
- Two common access paths:

File scan:

Read the heap/sorted file; apply SelectCondition

I/O cost: O(N)

Indexed:

Use an index that matches the SelectCondition

I/O cost: Depends! For equality check, O(1) for hash index, and O(log(N)) for B+-tree index

Indexed Access Path

$$\sigma_{SelectCondition}(\mathbf{R})$$

- An Index <u>matches</u> a predicate if it can avoid accessing most tuples that violate the predicate (reduces I/O!)
- Examples:
 R RatingID Stars RateDate UID MI

$$\sigma_{\text{Stars}=5}(\mathbf{R})$$

Hash index on R(Stars) matches this predicate

Cl. B+ tree on R(Stars) matches too

What about uncl. B+ tree on R(Stars)?

Selectivity of a Predicate

$\sigma_{SelectCondition}(\mathbf{R})$

Selectivity of SelectionCondition = percentage of number of tuples in R satisfying it (in practice, count pages, not tuples)

$$\sigma_{Stars=5}(\mathbf{R})$$

Selectivity = $2/7 \sim 28\%$

$$\sigma_{Stars=2.5}(\mathbf{R})$$

Selectivity = $3/7 \sim 43\%$

$$\sigma_{Stars<2}(\mathbf{R})$$

Selectivity = $1/7 \sim 14\%$

2	3.0	•••	:	
39	5.0	•••		
12	2.5	•••		
402	5.0	•••		
293	2.5			
49	1.0			
66	2.5	• • •		

Selectivity and Matching Indexes

An Index <u>matches</u> a predicate if it brings I/O cost very close to (N * predicate's selectivity); compare to file scan!

$$\sigma_{Stars=5}(\mathbf{R})$$

 $N \times Selectivity = 2$

Hash index on R(Stars)

CI. B+ tree on R(Stars)

Uncl. B+ tree on R(Stars)?

2	3.0	•••	•••	•••
39	5.0			
12	2.5			
402	5.0			
293	2.5			
49	1.0			
66	2.5	•••		

Assume only one tuple per page

Matching an Index: More Examples

R RatingID Stars RateDate UID MID

$$\sigma_{Stars>4}(\mathbf{R})$$

Hash index on R(Stars) does not match! Why?

Cl. B+ tree on R(Stars) still matches it! Why?

CI. B+ tree on R(Stars,RateDate)?

Cl. B+ tree on R(Stars,RateDate,MID)?

CI. B+ tree on R(RateDate,Stars)?

Uncl. B+ tree on R(Stars)?

B+ tree has a nice "prefix-match" property!

Operator Implementations

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

Project

R RatingID Stars RateDate UID MID

- ❖ SELECT R.MID, R.Stars FROM Ratings R

 Trivial to implement! Read R and <u>discard</u> other attributes

 <u>I/O cost:</u> N_R, i.e., Npages(R) (ignore output write cost)
- \diamond SELECT DISTINCT R.MID, R.Stars FROM Ratings R Relational Project! $\pi_{MID,Stars}(\mathbf{R})$

Need to <u>deduplicate</u> tuples of (MID,Stars) after discarding other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

$$\pi_{ProjectionList}(\mathbf{R})$$

Sorting-based:

Idea: Sort R on ProjectionList (External Merge Sort!)

- 1. In Sort Phase, discard all other attributes
- 2. In Merge Phase, eliminate duplicates

Let T be the temporary "table" after step 1

I/O cost: NR + NT + EMSMerge(NT)

Hashing-based:

Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

$$\pi_{ProjectionList}(\mathbf{R})$$

- To build a hash table on R(ProjectionList), read R and discard other attributes on the fly
- If the hash table fits entirely in memory:

Done!

I/O cost: N_R

Needs B \geq F x N_R

If not, 2-phase algorithm:

Partition

Deduplication

Q: What is the size of a hash table built on a P-page file?

F x P pages

("Fudge factor" F ~ 1.4

for overheads)

Hashing

Assuming uniformity, size of a T partition = $N_T/(B-1)$

Size of a hash table on a partition = $F \times N_T / (B-1)$

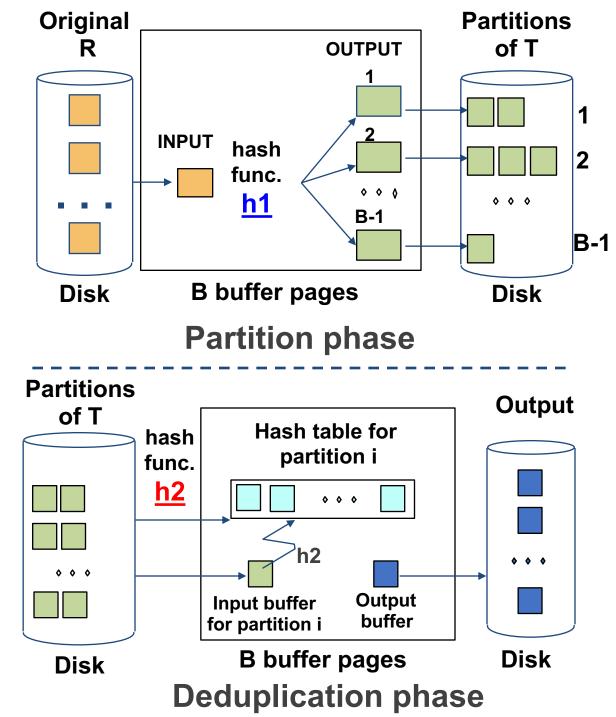
Thus, we need:

$$(B-2) >= F \times N_T / (B-1)$$

Rough: $B > \sqrt{F \times N_T}$

 $I/O cost: N_R + N_T + N_T$

If B is smaller, need to partition recursively!



Project: Comparison of Algorithms

- Sorting-based vs. Hashing-based:
 - 1. Usually, I/O cost (excluding output write) is the same:
 - $N_R + 2N_T$ (why is EMSMerge(N_T) only 1 read?)
 - 2. Sorting-based gives sorted result ("nice to have")
 - 3. I/O could be higher in many cases for hashing (why?)
- In practice, sorting-based is popular for Project
- If we have any index with ProjectionList as <u>subset</u> of IndexKey Use only leaf/bucket pages as the "T" for sorting/hashing
- ❖ If we have <u>tree</u> index with ProjectionList as <u>prefix</u> of IndexKey Leaf pages are already sorted on ProjectionList (why?)!
 Just scan them in order and deduplicate on-the-fly!

Operator Implementations

Select

Project

Join

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

Group By Aggregate

(Optional) Set Operations

Join

This course: we focus primarily on <u>equi-join</u> (the most common, important, and well-studied form of join)

We study 4 major (equi-) join implementation algorithms:

Page/Block Nested Loop Join (PNLJ/BNLJ)

Index Nested Loop Join (INLJ)

Sort-Merge Join (SMJ)

Hash Join (HJ)

Nested Loop Joins: Basic Idea

"Brain-dead" idea: nested for loops over the tuples of R and U!

- 1. For each tuple in Users, t_U:
- 2. For each tuple in Ratings, t_R:
- 3. If they match on join attribute, "stitch" them, output

But we read <u>pages</u> from disk, not single tuples!

Page Nested Loop Join (PNLJ)

"Brain-dead" nested for loops over the pages of R and U!

- 1. For each <u>page</u> in Users, p_U:
- 2. For each <u>page</u> in Ratings, p_R :
- 3. Check each pair of tuples from p_R and p_U
- 4. If any pair of tuples match, stitch them, and output

U is called "Outer table" R is called "Inner table"

I/O Cost:
$$N_U + N_U \times N_R$$

Outer table should be the smaller one:

$$N_U \le N_R$$

Q: How many buffer pages are needed for PNLJ?

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

- 1. For each sequence of B-2 pages of Users at-a-time:
- 2. For each page in Ratings, pr :
- 3. Check if any pre tuple matches any U tuple in memory
- 4. If any pair of tuples match, stitch them, and output

I/O Cost:
$$N_U + \left\lceil \frac{N_U}{B-2} \right\rceil \times N_R$$

Step 3 ("brain-dead" in-memory all-pairs comparison) could be quite slow (high CPU cost!)

In practice, a <u>hash table</u> is built on the U pages in-memory to reduce #comparisons (how will I/O cost change above?)

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it?

Suppose there is an index (tree or hash) on R (UID)

- 1. For each sequence of B-2 pages of Users at-a-time:
- Sort the U tuples (in memory) on UserID
- 3. For each U tuple t_U in memory :
- 4. Lookup/probe index on R with the UserID of t_U
- 5. If any R tuple matches it, stitch with t_U , and output

I/O Cost: Nu + NTuples(U) x IR

Index lookup cost IR depends on index properties (what all?)

A.k.a *Block* INLJ (tuple/page INLJ are just silly!)

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

- 1. Sort R on UID
- Sort U on UserID
- 3. Merge sorted R and U and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

I/O Cost: EMS(N_R) + EMS(N_U) + N_R + N_U

If we have "enough" buffer pages, an improvement possible: No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

- 1. Obtain runs of R sorted on UID (only Sort phase)
- 2. Obtain runs of U sorted on UserID (only Sort phase)
- Merge all runs of R and U together and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

I/O Cost: $3 \times (N_R + N_U)$

How many buffer # runs after steps 1 & 2 ~ N_R/2B + N_U/2B pages needed? So, we need B > (N_R + N_U)/2B N_U \leq N_R

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

- 1. Partition U on UserID using h1()
- 2. Partition R on UID using h1()
- 3. For each partition of Ui:
- 4. Build hash table in memory on Ui

$$N_U \le N_R$$

- 5. Probe with Ri alone and check for matching tuple pairs
- 6. If any pair matches, stitch them, and output

I/O Cost:
$$3 \times (N_U + N_R)$$

U becomes "Inner table" R is now "Outer table"

This is very similar to the hashing-based Project!

Join: Comparison of Algorithms

Block Nested Loop Join vs Hash Join:

 $N_U \le N_R$

Identical if $(B-2) > F \times N_{U}!$ Why? I/O cost?

B buffer pages

Otherwise, BNLJ is potentially much higher! Why?

Sort Merge Join vs Hash Join:

To get I/O cost of 3 x (Nu + NR), SMJ needs: $B > \sqrt{N_R}$ But to get same I/O cost, HJ needs only: $B > \sqrt{F \times N_U}$

Thus, HJ is often more memory-efficient and faster

Other considerations:

HJ could become much slower if data has skew! Why?

SMJ can be faster if input is sorted; gives sorted output

Query optimizer considers all these when choosing phy. plan

More General Join Conditions

$A\bowtie_{JoinCondition} B$

 $N_A \leq N_B$

If JoinCondition has only equalities, e.g., A.a1 = B.b1 and A.a2 = B.b2

HJ: works fine; hash on (a1, a2)

SMJ: works fine; sort on (a1, a2)

INLJ: use (build, if needed) a matching index on A

What about disjunctions of equalities?

If JoinCondition has inequalities, e.g., A.a1 > B.b1

HJ is useless; SMJ also mostly unhelpful! Why?

INLJ: build a B+ tree index on A

Inequality predicates might lead to large outputs!

Operator Implementations

Select

Project

Join

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

 $\gamma_{X,Agg[Y]}(\mathbf{R})$

"Grouping Attributes"

(Subset of R's attributes)

A numerical attribute in R

"Aggregate Function"

(SUM, COUNT, MIN, MAX, AVG)

Easy case: X is empty!

Simply aggregate values of Y

Q: How to scale this to larger-than-memory data?

Difficult case: X is not empty

"Collect" groups of tuples that match on X, apply Agg(Y)

3 algorithms: sorting-based, hashing-based, index-based

Operator Implementations

Select

Project

Join

Group By Aggregate

(Optional) Set Operations

Need <u>scalability</u> to larger-thanmemory (on-disk) datasets and high <u>performance</u> at scale!

Set Operations

Cross Product: A × B
Trivial! BNLJ suffices!

❖ Intersection: A ∩ B

Logically, an equi-join with JoinCondition being a conjunction of all attributes; same tradeoffs as before

♦ Union: A ∪ B

❖ Difference: A – B

Similar to intersection, but need to deduplicate upon matches and output only once!
Sounds familiar?

Union/Difference Algorithms

Sorting-based: Similar to a SMJ A and B. Twists:

A ∪ B: deduplicate matching tuples during merging

A – B: exclude matching tuples during merging

Hashing-based: Similar to HJ of A and B. Twists:

Build hash table (h.t.) on Bi

A ∪ B: probe h.t. with Ai; if pair matches, discard tuple else, *insert* Ai tuple into h.t.; <u>h.t. holds output!</u>

A – B: probe h.t. with Ai; if pair matches, discard tuple else, *output* Ai tuple <u>directly</u>

