
Lecture 10
Write-Optimized Indexes

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

Slides taken from Prof. Alex Conway, Cornell Tech

mailto:prashant.pandey@utah.edu

Model the problem:
external memory dictionary

The Story of SplinterDB

Metadata is fine-grained

4 KiB

IO 4 KiB

Model the problem:
external memory dictionary

The Story of SplinterDB

48 B

Metadata is fine-grained

4 KiB

IO 4 KiB

B

Internal
Memory of size
M

External Memory Model

A B-sized block can be read or
written in 1 IO

B

Model the problem:
external memory dictionary

The Story of SplinterDB

48 B

Metadata is fine-grained

48 B

4 KiB

IO 4 KiB

B

Internal
Memory of size
M

External Memory Model

B

Here B is the number of
items in an IO:
B = 4 KiB / 48 B

If the items were larger, the model
wouldn’t be as good

Model the problem:
external memory dictionary

The Story of SplinterDB

A B-sized block can be read or
written in 1 IO

Two Flavors of
External-Memory Dictionary

Different lower bounds
(performance limits)

Model the problem:
external memory dictionary

The Story of SplinterDB

Comparison-Based Dictionaries
Comparison External Memory
Model

user024299 user082587

>

<

=

Comparison External Memory
Model

user024299 user082587

>

<

=

Hashing Filters

Comparison-Based Dictionaries

𝑂
𝜆
𝐵
log!𝑁

Ω log!𝑁

Insertions in

Lookups in

Comparison External Memory
Model

Lower bounds for external memory dictionaries,
Brodal, G., Fagerberg, R. SODA ‘03

user024299 user082587

>

<

=

Hashing

Brodal-Fagerberg Lower
Bound

Filters

where 𝜆 is a tuning parameter

Comparison-Based Dictionaries

General Dictionaries
External Memory Model

External Memory Model

user024299

General Dictionaries

External Memory Model

user024299

Hashing

XXH(user024299)

General Dictionaries

External Memory Model

user024299

Hashing

Filters

XXH(user024299)

qf_insert(user024299)

General Dictionaries

𝑂
𝜆
𝐵
log!𝑁

Ω log!𝑁

Insertions in

Lookups in

External Memory Model

Using hashing to solve the dictionary problem (in external memory),
Iacono, J., Pătrașcu, M. SODA ‘12

user024299

Hashing

Iacono-Pătrașcu Lower
Bound

Filters

XXH(user024299)

qf_insert(user024299) where 𝜆 is a tuning parameter

General Dictionaries

Lower Bounds
Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

Iacono-Pătrașcu Lower Bound

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

Comparison External Memory Model General External Memory Model

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT
Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT
Hash Table

Iacono-Pătrașcu Lower Bound

Optimal Hashing in External Memory, Conway, Farach-Colton, Shillane, ICALP 2018

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT
Hash Table

No scans!

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

(𝜆 = 𝐵" , 𝐵" = Ω(log#!𝑁)

Mapped Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT
Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

Brodal-Fagerberg Lower Bound

𝑂
𝜆
𝐵
log!𝑁 Ω log!𝑁

Insertions in Lookups in

B-Trees

(𝜆 = 𝐵)

Bε-Trees

(𝜆 = 𝐵" , 𝐵" = Ω(log#!𝑁)

Mapped Bε-Trees

𝑂
𝜆
𝐵

Ω log!𝑁

Insertions in Lookups in

(𝜆 = 𝐵")

Comparison External Memory Model General External Memory Model

Iacono-Patrascu Hash Table

BoA/BoT
Hash Table

Iacono-Pătrașcu Lower Bound

Lower Bounds

I/O Amplification

44

Read amplification is the ratio of the number of blocks read
from the disk versus the number
of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks
written to the disk versus the number of blocks required to
write the key-value pair.

B-Trees

45

46

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

B-Trees

47

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6
Insert

B-Trees

48

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert76

6

B-Trees

49

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

50

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

51

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

52

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

53

845848

37 8624 90

846861

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6

Insert

Insertion	Cost ≤ 𝑂 log-𝑁

Lookup	Cost ≤ 𝑂 log-𝑁

B-Trees

Bε-Trees

54

55

37

12

8475

9290835824

856741

86

48

A Bε-tree is a search tree (like a B-tree)

Bε pivots the rest buffer

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

Bε-Trees

56

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

Bε-Trees

57

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer 94

4

Bε-Trees

58

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

Bε-Trees

59

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

Bε-Trees

60

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

Bε-Trees

61

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

Bε-Trees

62

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

Bε-Trees

63

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

Bε-Trees

64

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

65

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

66

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

67

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

13

1

66

6

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

68

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

B-Trees

69

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1
When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

70

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

71

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

72

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

73

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

74

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

Lookups in Bε-Trees

75

76

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

79

9

40

3

Query(71)

Bε-Trees

77

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

78

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

79

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

80

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71) → 2

71

2

79

9

Bε-Trees

81

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2 72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but check buffers along the way

94

4

39

2

13

1

40

3

Query(71) → 2

79

9

Bε-Trees

Insertions in Bε-Trees are more expensive than they look

82

83

(Also most LSMS)

Insertions in Bε-Trees are more expensive than they look

84

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

85

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

86

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

87

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

88

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

89

8358 39

2

64

8

66

6

65

11

72

50

80

6

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

90

8358 39

2

64

8

66

6

65

11

72

50

80

6

98

1

44

3

Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

91

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6 Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

92

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43

Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

93

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43 Older data gets written over
and over again

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

94

8358 44

3

39

2

65

11

72

50

80

6

98

1

64

8

66

6

28

24

91

43 Older data gets written over
and over again

Up to 𝐵" times per node!

Recall: Insertions in Bε-trees
Insertions in Bε-Trees are more expensive than they look

Size-Tiered Bε-Trees

95

SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020

Size-Tiered Bε-Trees

96

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

97

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

Size-Tiered Bε-Trees

98

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

Size-Tiered Bε-Trees

99

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

trunk [node]

Size-Tiered Bε-Trees

10
0

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer

37 58 93

In an STB
ε-tree, the buffer is

stored separately

and in several discontiguous pieces

trunk [node]

branches

Size-Tiered Bε-Trees

Insertions in Size-Tiered Bε-Trees

10
1

10
2

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

When new data is flushed into the trunk node…

Size-Tiered Bε-Trees

10
3

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1
When new data is flushed into the trunk node…

Size-Tiered Bε-Trees

10
4

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

When new data is flushed into the trunk node…

…it is added as a new branch

Size-Tiered Bε-Trees

10
5

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42
When new data is flushed into the trunk node…

…it is added as a new branch

Size-Tiered Bε-Trees

Size-Tiered Bε-Trees

10
6

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

10
7

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

Branches may have overlapping key ranges

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered Bε-Trees

108

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

109

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9
When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

110

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

111

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

Size-Tiered Bε-Trees

112

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 52

43

11

42

5

41

2

9993

79

1

85

2

91

9

58

5

75

7

76

1

64

8

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

113

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

114

A Size-Tiered Bε-tree is a Bε-tree where the buffer is stored
discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Each key-value pair is read/written once per trunk node

Branches may have overlapping key ranges

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered Bε-Trees

Lookups in Size-Tiered Bε-Trees

115

116

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Query(71)

Size-Tiered Bε-Trees

117

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

118

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

119

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

94

4

13

1

27

3

34

22

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

120

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

121

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

122

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

123

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

124

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

125

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

126

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

127

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 8569

9

71

2

72

50

73

14

74

29

Query(71)

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

128

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71) → 2

69

9

71

2 72

50

73

14

74

29

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

129

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B"−Tree	Lookup	Cost = 𝑂 log#!
𝑁
𝑀

Size−Tiered	B"−Tree	Lookup	Cost = 𝑂 𝐵"log#!
𝑁
𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

130

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B"×moreB"−Tree	Lookup	Cost = 𝑂 log#!
𝑁
𝑀

Size−Tiered	B"−Tree	Lookup	Cost = 𝑂 𝐵"log#!
𝑁
𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

Size-Tiered Bε-Trees

131

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

B"×moreB"−Tree	Lookup	Cost = 𝑂 log#!
𝑁
𝑀

Size−Tiered	B"−Tree	Lookup	Cost = 𝑂 𝐵"log#!
𝑁
𝑀

Lookups in a STBε-tree are like lookups in a Bε-tree, except they must check
each branch

😭

Size-Tiered Bε-Trees

Fixing Lookups (almost)

132

133

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

The problem is that each node has multiple branches

Fixing Lookups (almost)

134

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

The problem is that each node has multiple branches

Fixing Lookups (almost)

135

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

Fixing Lookups (almost)

136

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

137

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

138

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

139

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

140

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

141

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

142

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

143

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

A filter is a probabilistic data structure with
answers membership with no false
negatives

Fixing Lookups (almost)

144

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) → 8

A filter is a probabilistic data structure with
answers membership with no false
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

145

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

False	Positive	Rate ≤ 𝑂
𝜀

𝐵"log#𝑁

Query(64) → 8

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

146

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) → 8

False	Positive	Rate ≤ 𝑂
𝜀

𝐵"log#𝑁
Lookups in O(1) IOs⇒

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key
(plus rare false positives)

Fixing Lookups (almost)

Really Fixing Lookups in Size-Tiered Bε-Trees

148

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

Really Fixing Lookups in Size-Tiered Bε-Trees

149

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

In practice, we see 15-40 filter lookups per point query

Multiple filters per
node

Really Fixing Lookups in Size-Tiered Bε-Trees

150

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

BUT…
Multiple filters per
node

Really Fixing Lookups in Size-Tiered Bε-Trees

151

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

High Memory/Hot Queries No IO, performance limited by CPU

Multiple filters per
node BUT…

Really Fixing Lookups in Size-Tiered Bε-Trees

152

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

High Memory/Hot Queries

Medium Memory

No IO, performance limited by CPU

1 IO per query,
CPU cost of filter lookups ⇒ more threads

Multiple filters per
node BUT…

Really Fixing Lookups in Size-Tiered Bε-Trees

153

1 37 86

Querying all these filters is expensive

37 58 83

58 67 75

Ro
ot

-to
-le

af
 p

at
h

In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

High Memory/Hot Queries

Low Memory

Medium Memory

No IO, performance limited by CPU

1 IO per query,
CPU cost of filter lookups ⇒ more threads

Filters paged out to storage,
Lookup performance degrades

Multiple filters per
node BUT…

Really Fixing Lookups in Size-Tiered Bε-Trees

Maplets

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

Maplet

Is X in the set?

no yes, 4

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

Maplet

Is X in the set?

no yes, 4

yes, 3, 4 and 7

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

Maplet

Is X in the set?

no yes, 4

yes, 3, 4 and 7

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

Maplet

Is X in the set?

no yes, 4

yes, 3, 4 and 7

A maplet is a filter which can also
store small values

Maplets

Filter

Is X in the set?

no yes

Maplet

Is X in the set?

no yes, 4

yes, 3, 4 and 7

A maplet is a filter which can also
store small values

Maplets

Mapped 𝐵!-Trees

SplinterDB and Maplets: Improving the Trade-Offs in LSM Compaction Policy
Conway, Farach-Colton, Johnson,
SIGMOD 2023

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Mapped 𝐵!-Trees

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Mapped 𝐵!-Trees

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

Mapped 𝐵!-Trees

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

Query(64)

Mapped 𝐵!-Trees

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

Query(64)

1

Mapped 𝐵!-Trees

37 58 93

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9Replace individual filters with a single maplet

Use the values to store which buffers contain matching keys

1

64

8

Query(64) → 8

Mapped 𝐵!-Trees

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

Size-tiering can lead to redundant data, wasting space

37

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

Size-tiering can lead to redundant data, wasting space

37

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

43

11

79

1

42

5

41

2

85

2

91

9

64

8

98

1

Compaction can recover disk space when there are many updates

37

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Compaction saves little space when there is little redundant data

So we don't want to waste time compacting branches with few updates
37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Maplets can tell us how much redundant data there is

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Maplets can tell us how much redundant data there is

Maplet

41 → {0,1,2}
42 → {1}
43 → {0,2}
…

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Maplets can tell us how much redundant data there is

Maplet

Lots of multiple entries

41 → {0,1,2}
42 → {1}
43 → {0,2}
…

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Maplets can tell us how much redundant data there is

Maplet

41 → {2}
42 → {2}
43 → {2}
…

Maplet

Lots of multiple entries

41 → {0,1,2}
42 → {1}
43 → {0,2}
…

Using Maplets to Manage Space

58 93

64

8

91

4

43

2

41

1

85

7

98

1

79

5

41

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37

Maplets can tell us how much redundant data there is

Maplet

41 → {2}
42 → {2}
43 → {2}
…

Maplet

Lots of multiple entries Few multiple entries

41 → {0,1,2}
42 → {1}
43 → {0,2}
…

Using Maplets to Manage Space

SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant
data

58 93

Update estimate every time we rebuild maplet

37

58 93

Whenever disk usage gets too high, SplinterDB initiates compaction on top node of the heap.

Goal: maximal gains, minimal pains

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant
data

Update estimate every time we rebuild maplet

37

SplinterDB Adaptive Space Reclamation

SplinterDB Adaptive Space Reclamation

faste
r &

 sm
aller

28 2Ghz cores

24B keys 100B values

Intel Optane 905P

25GiB RAM
80GiB dataset

100% uniform updates

Flush-Then-Compact

Flush-Then-Compact

194

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

195

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

196

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

197

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

198

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

199

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

After inserting the first
message, the root-to-leaf path
is in cache

Flush-Then-Compact

200

Sequential Insertions into a
B-tree

845848

37 8624 90

846861 83

83

71

2

72

50

Subsequent insertions are cheaper.
(only incur IO at node boundaries)

After inserting the first
message, the root-to-leaf path
is in cache

Flush-Then-Compact

201

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

69

9

71

2

72

50

73

14

Flush-Then-Compact

202

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

69

9

71

2

72

50

73

14

Flush-Then-Compact

203

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

Flush-Then-Compact

204

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

Flush-Then-Compact

205

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

Flush-Then-Compact

206

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

Flush-Then-Compact

207

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

79

99

80

6

81

77

82

44

48

Sequential Insertions into a
Bε-tree

Subsequent insertions are cheaper.
(only incur IO at node boundaries)

74

1

75

2

76

3

77

4

B insertions trigger a flush to the leaf
bringing the root-to-leaf path into
cache

Flush-Then-Compact

208

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing another flush will be triggered

Want:
Cheap sequential insertions

Flush-Then-Compact

209

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing another flush will be triggered

Want:
Cheap sequential insertions

Flush-Then-Compact

210

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing another flush will be triggered

Want:
Cheap sequential insertions

Flush-Then-Compact

211

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing another flush will be triggered

74

8

75

4

73

2

72

1

Any data already present will get
merged again

Want:
Cheap sequential insertions

Flush-Then-Compact

212

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing another flush will be triggered

74

8

75

4

73

2

72

1

Any data already present will get
merged again

Can still end up merging on each level

Want:
Cheap sequential insertions

Flush-Then-Compact

213

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5
Want:
Cheap sequential insertions

7858

Idea: Flush-then-compact

41

2

94

4

Flush-Then-Compact

214

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

Idea: Flush-then-compact

Want:
Cheap sequential insertions

Flush-Then-Compact

215

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

First flush references to the branches, but do not compact

41

2

94

4

Idea: Flush-then-compact

Want:
Cheap sequential insertions

Flush-Then-Compact

216

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

217

37 58 93

83584537 999352

7858 Use metadata to mask out data

41

2

94

4

The parent only sees the unflushed data

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

218

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

The child only sees the flushed data

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

219

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

220

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

221

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

222

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Finally, asynchronously compact the flushed buffers in each node

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions

Flush-Then-Compact

223

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

No work on immediately flushed data

First flush references to the branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

224

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately flushed data

Sequential insertions have write amp ~1

First flush references to the branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

225

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately flushed data

First flush references to the branches, but do not compact

Break a serial chain of compactions into parallel

Sequential insertions have write amp ~1

Use metadata to mask out data

Flush-Then-Compact

226

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately flushed data

First flush references to the branches, but do not compact

Break a serial chain of compactions into parallel

Concurrent compactions in trunk nodes

Sequential insertions have write amp ~1

First flush references to the branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

227

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately flushed data

Concurrent compactions in trunk nodes

Break a serial chain of compactions into parallel

Improve insertion concurrency

Sequential insertions have write amp ~1

Flush-Then-Compact

228

Run a single-threaded workload with a percentage sequential insertions and the rest random

430 521
676

799 866

144 152 171 185 1930

250

500

750

1000

0 50 90 99 100
Th

ro
ug

hp
ut

(In

se
rti

on
s/

Se
co

…
Percentage Sequential

SplinterDB

Hi
gh

er
 is

 B
et

te
r

X-axis not to scale

Flush-Then-Compact

229

Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets
more sequential

Run a single-threaded workload with a percentage sequential insertions and the rest random

430 521
676

799 866

144 152 171 185 1930

250

500

750

1000

0 50 90 99 100
Th

ro
ug

hp
ut

(In

se
rti

on
s/

Se
co

…
Percentage Sequential

SplinterDB

Hi
gh

er
 is

 B
et

te
r

X-axis not to scale

Flush-Then-Compact

230

Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets
more sequential

Run a single-threaded workload with a percentage sequential insertions and the rest random

RocksDB improves, but at a much lower rate

430 521
676

799 866

144 152 171 185 1930

250

500

750

1000

0 50 90 99 100
Th

ro
ug

hp
ut

(In

se
rti

on
s/

Se
co

…
Percentage Sequential

SplinterDB

Hi
gh

er
 is

 B
et

te
r

X-axis not to scale

Flush-then-Compact

231

Insertions in SplinterDB scale well

529
981

1348
1664

19582141
2232234523622359

153228279317345352
380359346338

0

750

1500

2250

3000

2 4 6 8 101214161820

Th
ro

ug
hp

ut

(In
se

rti
on

s/
Se

co
nd

)

Number of Threads

SplinterDB

Hi
gh

er
 is

 B
et

te
r

Flush-then-Compact

232

Insertions in SplinterDB scale well

529
981

1348
1664

19582141
2232234523622359

153228279317345352
380359346338

0

750

1500

2250

3000

2 4 6 8 101214161820

Th
ro

ug
hp

ut

(In
se

rti
on

s/
Se

co
nd

)

Number of Threads

SplinterDB

At 12 threads, SplinterDB has 7x the throughput of 1 thread

Hi
gh

er
 is

 B
et

te
r

Flush-then-Compact

233

Insertions in SplinterDB scale well

529
981

1348
1664

19582141
2232234523622359

153228279317345352
380359346338

0

750

1500

2250

3000

2 4 6 8 101214161820

Th
ro

ug
hp

ut

(In
se

rti
on

s/
Se

co
nd

)

Number of Threads

SplinterDB

At 12 threads, SplinterDB has 7x the throughput of 1 thread

At 12+ threads, SplinterDB uses 85%+ of the device bandwidth

Hi
gh

er
 is

 B
et

te
r

Conclusion

vSAN needed a new way of storing metadata

Model the problem:
external memory dictionary

Mapped 𝐵" -tree

SplinterDB

Theory
Systems

Conclusion

vSAN needed a new way of storing metadata

Model the problem:
external memory dictionary

Mapped 𝐵" -tree

SplinterDB

Theory
Systems

SplinterDB is in vSAN 8.0

Open-source at
https://github.com/vmware/splinterdb

