CS 6530: Advanced Database Systems Fall 2023

Lecture 10
 Write-Optimized Indexes

Prashant Pandey prashant.pandey@utah.edu

Slides taken from Prof. Alex Conway, Cornell Tech

The Story of SplinterDB

The Story of SplinterDB

Metadata is fine-grained

4 KiB

The Story of SplinterDB

Model the problem:
external memory dictionary

External Memory Model

The Story of SplinterDB

Model the problem:
external memory dictionary

Metadata is fine-grained

Here B is the number of items in an IO:
$B=4 \mathrm{KiB} / 48 \mathrm{~B}$

If the items were larger, the model wouldn't be as good

Internal
Memory of size M

4 KiB

104 KiB

A B-sized block can be read or written in 1 IO

The Story of SplinterDB

Two Flavors of
 External-Memory Dictionary

Different lower bounds (performance limits)

Comparison-Based Dictionaries

Comparison External Memory
Model

Comparison-Based Dictionaries

Comparison External Memory
Model

Comparison-Based Dictionaries

Comparison External Memory Model

Brodal-Fagerberg Lower Bound

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$
Lookups in
$\Omega\left(\log _{\lambda} N\right)$
${ }_{\text {where }} \lambda_{\text {is a tuning parameter }}$

General Dictionaries

External Memory Model

General Dictionaries

External Memory Model

user024299

```
YOU REALIY
CAN DO
WHATEVER
YOU WANT
```


General Dictionaries

External Memory Model

user024299

Hashing

General Dictionaries

External Memory Model

user024299

Hashing

```
YOU REALIY
CAN DO WHATEVER YOU WANT
```

XXH(user024299)

Filters

General Dictionaries

External Memory Model
user024299

Hashing

XXH(user024299)

Filters

Iacono-Pătrașcu Lower Bound

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N H\right)$
Lookups in
$\Omega\left(\log _{\lambda} N\right)$
where $\lambda_{\text {is a tuning parameter }}$

Lower Bounds

Insertions in

$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$ | Lookups in |
| :--- |
| $\Omega\left(\log _{\lambda} N\right)$ |\quad| Insertions in |
| :--- |
| $O\left(\frac{\lambda}{B}\right)$ | | Lookups in |
| :--- |
| $\Omega\left(\log _{\lambda} N\right)$ |

Lower Bounds

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

B-Trees

$$
(\lambda=B)
$$

B^{ε}-Trees

$$
\left(\lambda=B^{\varepsilon}\right)
$$

Insertions in

$$
O\left(\frac{\lambda}{B}\right)
$$

Iacono-Pătrașcu Lower Bound

Lower Bounds

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

Insertions in

$$
O\left(\frac{\lambda}{B}\right)
$$

B-Trees

$$
(\lambda=B)
$$

B^{ε}-Trees

$$
\left(\lambda=B^{\varepsilon}\right)
$$

Lower Bounds

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

Insertions in
$O\left(\frac{\lambda}{B}\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

B-Trees

$$
(\lambda=B)
$$

B^{ε}-Trees

$$
\left(\lambda=B^{\varepsilon}\right)
$$

Lower Bounds

Iacono-Pătrașcu Lower Bound

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

Insertions in
$O\left(\frac{\lambda}{B}\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

B-Trees

$$
(\lambda=B)
$$

B^{ε}-Trees

$$
\left(\lambda=B^{\varepsilon}\right)
$$

Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$

Iacono-Pătrașcu Lower Bound

B-Trees

$$
(\lambda=B)
$$

B^{ε}-Trees

$$
\left(\lambda=B^{\varepsilon}\right)
$$

Lower Bounds

Brodal-Fagerberg Lower Bound

Insertions in
$O\left(\frac{\lambda}{B} \log _{\lambda} N\right)$

Lookups in
$\Omega\left(\log _{\lambda} N\right)$
lacono-Pătrașcu Lower Bound

$$
\begin{aligned}
& \text { Insertions in } \\
& \qquad \begin{array}{l}
\text { Lookups in } \\
O\left(\frac{\lambda}{B}\right)
\end{array} \quad \Omega\left(\log _{\lambda} N\right)
\end{aligned}
$$

B-Trees
$(\lambda=B)$

B^{ε}-Trees
$\left(\lambda=B^{\varepsilon}\right)$

I/O Amplification

Read amplification is the ratio of the number of blocks read from the disk versus the number of blocks required to read the key-value pair.

Write amplification is the ratio of the number of blocks written to the disk versus the number of blocks required to write the key-value pair.

B-Trees

B-Trees

B-ary Search Tree

B-Trees

B-ary Search Tree
Insert
$\frac{76}{6}$

B-Trees

B-Trees

B-Trees

B-Trees

B-Trees

B-Trees

B-ary Search Tree

B^{ε}-Trees

B^{ε}-Trees

A B^{ε}-tree is a search tree (like a B-tree)
B^{ε} pivots

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

When a buffer is full:

B-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

When a buffer is full:

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

B^{ε}-Trees

Inserts get put in the root buffer

Lookups in B^{ε}-Trees

B^{ε}-Trees

Lookups follow pivots, but check buffers along the way

B^{ε}-Trees

Lookups follow pivots, but check buffers along the way

B^{ε}-Trees

Lookups follow pivots, but check buffers along the way

B^{ε}-Trees

Lookups follow pivots, but check buffers along the way

B^{ε}-Trees

B^{ε}-Trees

Insertions in B^{ε}-Trees are more expensive than they look

Insertions in B^{ε}-Trees are more expensive than they look

 (Also most LSMS)
Insertions in B^{ε}-Trees are more expensive than they look

 Recall: Insertions in B^{ε}-trees| 65 | 72 | 80 |
| :--- | :--- | :--- |
| 11 | 50 | 6 |

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

65	72	80
11	50	6

58	83	39	64	66
	\mapsto	2	8	6

Read the
node

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Read the
node

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Read the

node

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Merge the
data

58	83	39	64	65	66	72	80
\leftrightarrow	-	2	8	11	6	50	6

Read the node

CPU Work $=$ O(old + new $)$
Volume of $\mathbf{I O}=\mathrm{O}($ old + new $)$

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

58	83	39	64	65	66	72	80
\leftrightarrow	$(4$	2	8	11	6	50	6

\uparrow Read the node

Merge the data

$$
\begin{aligned}
& \text { CPU Work = O(old + new }) \\
& \text { Volume of } \mathbf{I O}=\mathrm{O}(\text { old }+ \text { new })
\end{aligned}
$$

Older data gets written over and over again

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Merge the
data

58	83	39	44	64	65	66	72	80	98
\leftrightarrow	(4)	2	3	8	11	6	50	6	1

Read the

 node

CPU Work $=$ O(old + new $)$
Volume of $\mathbf{I O}=\mathrm{O}($ old + new $)$

Older data gets written over and over again

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

$$
\begin{aligned}
& \text { CPU Work }=\mathrm{O}(\text { old }+ \text { new }) \\
& \text { Volume of } \mathbf{I O}=\mathrm{O}(\text { old }+ \text { new })
\end{aligned}
$$

58	83	39	44	64	65	66	72	80	98
(4)	2	3	8	11	6	50	6	1	

Older data gets written over and over again

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Merge the
data

$\begin{array}{ll}58 & 83 \\ \Theta\end{array}$

28	39	44	64	65	66	72	80	91	98
24	2	3	8	11	6	50	6	43	1

Read the node

CPU Work $=$ O(old + new $)$
Volume of $\mathbf{I O}=\mathrm{O}($ old + new $)$

Older data gets written over and over again

Insertions in B^{ε}-Trees are more expensive than they look Recall: Insertions in B^{ε}-trees

Merge the
data

58	83	28	39	44	64	65	66	72	80	91	98
(4)	24	2	3	8	11	6	50	6	43	1	

\uparrow Read the node

CPU Work $=$ O(old + new $)$
Volume of $\mathbf{I O}=\mathrm{O}($ old + new $)$

Older data gets written over and over again

Up to B^{ε} times per node!

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Recall:
a B^{ε}-tree node has pivots and a buffer
B^{ε} pivots
the rest buffer

37	58	93

$\Theta \Theta$

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Recall:
a B^{ε}-tree node has pivots and a buffer

In an sтв ${ }^{\varepsilon}$-tree, the buffer is
stored separately

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Recall:
a B^{ε}-tree node has pivots and a buffer

and in several discontiguous pieces
${ }^{\text {In an } 5_{8}}{ }^{\varepsilon}$-tree, the buffer is
stored separately

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Recall:
a B^{ε}-tree node has pivots and a buffer

and in several discontiguous pieces
${ }^{\text {In an } 5 т 8}$-tree, the buffer is
stored separately

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

 discontiguouslyRecall:
a B^{ε}-tree node has pivots and a buffer

[^0]
Insertions in Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

38	39	64	94
1	2	8	4

When new data is flushed into the trunk node...

37	58	93

$\Leftrightarrow \Theta$

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

discontiguously

45	58	75	76
42	5	7	1

Size-Tiered B^{ε}-Trees

...it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

 discontiguously
When new data is flushed into the trunk node...

Branches may have overlapping key ranges

...it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

 discontiguously
When new data is flushed into the trunk node...

Branches may have overlapping key ranges

...it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored discontiguously

41	42	43	79	85	91
2	5	11	1	2	9

When new data is flushed into the trunk node...

Branches may have overlapping key ranges

...it is added as a new branch

The old branches do not need to be rewritten

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored

 discontiguously

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored discontiguously

When the node is full:

1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored discontiguously

When the node is full:

1. Pick child receiving most messages
2. Merge them into a new branch for the child

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored discontiguously

When the node is full:

1. Pick child receiving most messages
2. Merge them into a new branch for the child

41	42	43
2	5	11

Branches may have overlapping key ranges

Size-Tiered B^{ε}-Trees

A Size-Tiered B^{ε}-tree is a B^{ε}-tree where the buffer is stored discontiguously

When the node is full:

1. Pick child receiving most messages
2. Merge them into a new branch for the child

Lookups in Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

Lookups in a STB $^{\varepsilon}$-tree are like lookups in a B^{ε}-tree, except they must check each branch

Size-Tiered B^{ε}-Trees

Size-Tiered B^{ε}-Trees

$$
\begin{aligned}
& B^{\varepsilon}-\text { Tree Lookup Cost }=O\left(\log _{B^{\varepsilon}} \frac{N}{M}\right) \\
& \text { Size-Tiered } B^{\varepsilon}-\text { Tree Lookup Cost }=O\left(B^{\varepsilon} \log _{B^{\varepsilon}} \frac{N}{M}\right)
\end{aligned}
$$

$$
B^{\varepsilon} \times \text { more }
$$

Size-Tiered B^{ε}-Trees

Fixing Lookups (almost)

Fixing Lookups (almost)

The problem is that each node has multiple branches

Fixing Lookups (almost)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false negatives

Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

Query(64)

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

$$
\text { Query(64) } \longrightarrow_{8}
$$

The problem is that each node has multiple branches

Idea: use filters to avoid searching them

Now a lookup will only search those branches which contain the key (plus rare false positives)

A filter is a probabilistic data structure with answers membership with no false
negatives
Examples: Bloom, cuckoo, quotient

Fixing Lookups (almost)

$$
\text { Query(64) } \longrightarrow_{8}
$$

The problem is that each node has multiple branches

$$
\text { False Positive Rate } \leq O\left(\frac{\varepsilon}{B^{\varepsilon} \log _{B} N}\right)
$$

Fixing Lookups (almost)

$$
\text { Query(64) } \longrightarrow_{8}
$$

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key (plus rare false positives)

$$
\text { False Positive Rate } \leq O\left(\frac{\varepsilon}{B^{\varepsilon} \log _{B} N}\right)
$$

$$
\longrightarrow \text { Lookups in O(1) IOs }
$$

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Querying all these filters is expensive

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Querying all these filters is expensive
In practice, we see 15-40 filter lookups per point query

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Querying all these filters is expensive
In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

BUT...

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Querying all these filters is expensive
In practice, we see 15-40 filter lookups per point query

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Really Fixing Lookups in Size-Tiered B^{ε}-Trees

Maplets

Maplets

A maplet is a filter which can also store small values

Maplets

A maplet is a filter which can also store small values

Filter

Maplets

A maplet is a filter which can also store small values

Filter

Is X in the set?

Maplet

Maplets

A maplet is a filter which can also store small values

Filter

Is X in the set?

Maplet

Maplets

A maplet is a filter which can also store small values

no

Is X in the set?
No false negatives, same
false positive guarantee

Filter

Maplet

Maplets

A maplet is a filter which can also store small values

no

Filter

Is X in the set?
No false negatives, same
false positive guarantee

Same memory footprint as multiple filters

Maplet

Maplets

A maplet is a filter which can also

 store small values
no

Is X in the set?

Maplet

No false negatives, same false positive guarantee

Same memory footprint as multiple filters

Lookups same cost as 1 quotient filter:
2 cache line misses
110

Mapped $B^{\mathcal{E}}$-Trees

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Query(64)

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Query(64)

Mapped $B^{\mathcal{E}}$-Trees

Replace individual filters with a single maplet

Using Maplets to Manage Space

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Size-tiering can lead to redundant data, wasting space

Using Maplets to Manage Space

Compaction saves little space when there is little redundant data

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

$41 \rightarrow\{0,1,2\}$
$42 \rightarrow\{1\}$
$43 \rightarrow\{0,2\}$

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

$\begin{aligned} & 41 \rightarrow\{0,1,2\} \\ & 42 \rightarrow\{1\} \\ & 43 \rightarrow\{0,2\} \quad \text { Lots of multiple entries } \\ & \ldots\end{aligned}$

```
41 }->{2
42->{2}
43->{2}
```


Using Maplets to Manage Space

Maplets can tell us how much redundant data there is

SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant data

SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant data

Update estimate every time we rebuild maplet

SplinterDB,

- SplinterDB+Maplets - - SplinterDB $\rightarrow-$ RocksDB

100% uniform updates

Flush-Then-Compact

Flush-Then-Compact B-tree

Flush-Then-Compact

Flysh-Then-Compact

Flysh-Then-Compact

Flysh-Then-Compact

Flush-Then-Compact

B-tree

$\underset{\text { Seauntial Insertions into a }}{\text { Find }}$ B^{ε}-tree

Flush-Then-Compact

Sequential Insertions into a
B^{ε}-tree

Flush-Then-Compact ${ }^{78} 7575 \pi$

Sequential Insertions into a

| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |

B^{ε}-tree
B insertions trigger a flush to the leaf bringing the root-to-leaf path into cache

59	60	61	65
5	40	29	11

69	71	72	73
9	2	50	14

14

79	80	81	82
99	6	77	44

Flush-Then-Compact

Want:
Cheap sequential insertions

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

\Leftrightarrow

Flush-Then-Compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Then can flush again

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Then can flush again

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Then can flush again

Flush-Then-Compact

Want:
Cheap sequential insertions

Idea: Flush-then-compact

Then can flush again

Finally, asynchronously compact the flushed buffers in each node

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

Flush-Then-Compact

OPerchtageSeq9ention

Flush-Then-Compact

Run a single-threaded workload with a percentage sequential insertions and the rest random

Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets more sequential

Flush-Then-Compact

Run a single-threaded workload with a percentage sequential insertions and the rest random

Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets more sequential

Flush-then-Compact 3000 SplinterDB

2 Numben @1 Thfetalk820

Flush-then-Compact 3000 SplinterDB

2 Numben @1 Tれ\#fedik820

Flush-then-Compact 3000 SplinterDB

Conclusion

external memory dictionary

Conclusion

Model the problem:
external memory dictionary

Mapped $B^{\varepsilon}{ }_{\text {-tree }}$

Theory

Systems

- \ddagger SCHOOL OF COMPUTING

[^0]: In an s st $^{\varepsilon}$-tree, the buffer is
 stored separately

