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I/O Amplification

44

Read amplification is the ratio of the number of blocks read 
from the disk versus the number
of blocks required to read the key-value pair. 

Write amplification is the ratio of the number of blocks 
written to the disk versus the number of blocks required to 
write the key-value pair.
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SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores
Conway, Gupta, Chidambaram, Farach-Colton, Spillane, Tai, Johnson,
ATC 2020
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Bε pivots the rest buffer

Recall:
a Bε-tree node has pivots and a buffer
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In an STB
ε-tree, the buffer is 

stored separately

and in several discontiguous pieces

trunk [node]

branches
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When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child
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When new data is flushed into the trunk node…

…it is added as a new branch

The old branches do not need to be rewritten

Each key-value pair is read/written once per trunk node

Branches may have overlapping key ranges 

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child
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Idea: use filters to avoid searching them

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient
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Fixing Lookups (almost)



135

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

Fixing Lookups (almost)



136

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)



137

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)



138

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)



139

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives
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A filter is a probabilistic data structure with 
answers membership with no false 
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Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them
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Now a lookup will only search those branches which contain the key 
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A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
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Query(64)

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Fixing Lookups (almost)
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Query(64) → 8

A filter is a probabilistic data structure with 
answers membership with no false 
negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)
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False	Positive	Rate ≤ 𝑂
𝜀

𝐵"log#𝑁

Query(64) → 8

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)
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Query(64) → 8

False	Positive	Rate ≤ 𝑂
𝜀

𝐵"log#𝑁
Lookups in O(1) IOs⇒

Idea: use filters to avoid searching them

The problem is that each node has multiple branches

Now a lookup will only search those branches which contain the key 
(plus rare false positives)

Fixing Lookups (almost)
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In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

BUT…
Multiple filters per 
node
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In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

High Memory/Hot Queries
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No IO, performance limited by CPU
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Multiple filters per 
node BUT…
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Querying all these filters is expensive
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In practice, we see 15-40 filter lookups per point query

We could hope to amortize against IO

High Memory/Hot Queries

Low Memory

Medium Memory

No IO, performance limited by CPU

1 IO per query,
CPU cost of filter lookups ⇒ more threads

Filters paged out to storage,
Lookup performance degrades

Multiple filters per 
node BUT…

Really Fixing Lookups in Size-Tiered Bε-Trees
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Mapped 𝐵!-Trees

SplinterDB and Maplets: Improving the Trade-Offs in LSM Compaction Policy
Conway, Farach-Colton, Johnson,
SIGMOD 2023
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Size-tiering can lead to redundant data, wasting space
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Compaction saves little space when there is little redundant data

So we don't want to waste time compacting branches with few updates
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Maplets can tell us how much redundant data there is

Maplet
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…
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SplinterDB Adaptive Space Reclamation

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant 
data

58 93

Update estimate every time we rebuild maplet

37



58 93

Whenever disk usage gets too high, SplinterDB initiates compaction on top node of the heap.

Goal: maximal gains, minimal pains

SplinterDB maintains a heap of trunk nodes, sorted by estimated amount of redundant 
data

Update estimate every time we rebuild maplet

37

SplinterDB Adaptive Space Reclamation



SplinterDB Adaptive Space Reclamation
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28 2Ghz cores

24B keys 100B values

Intel Optane 905P

25GiB RAM
80GiB dataset

100% uniform updates
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After inserting the first 
message, the root-to-leaf path 
is in cache
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Sequential Insertions into a 
B-tree

845848

37 8624 90

846861 83

83

71

2

72

50

Subsequent insertions are cheaper.
(only incur IO at node boundaries)

After inserting the first 
message, the root-to-leaf path 
is in cache
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Subsequent insertions are cheaper.
(only incur IO at node boundaries)
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After merging and flushing another flush will be triggered

Want:
Cheap sequential insertions
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Can still end up merging on each level

Want:
Cheap sequential insertions
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Idea: Flush-then-compact

Want:
Cheap sequential insertions
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Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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The parent only sees the unflushed data 

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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The child only sees the flushed data

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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Then can flush again

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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Then can flush again

Finally, asynchronously compact the flushed buffers in each node

Idea: Flush-then-compact

First flush references to the branches, but do not compact

Want:
Cheap sequential insertions
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No work on immediately flushed data

First flush references to the branches, but do not compact
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No work on immediately flushed data

Sequential insertions have write amp ~1

First flush references to the branches, but do not compact
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No work on immediately flushed data

First flush references to the branches, but do not compact

Break a serial chain of compactions into parallel

Sequential insertions have write amp ~1
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No work on immediately flushed data

First flush references to the branches, but do not compact

Break a serial chain of compactions into parallel

Concurrent compactions in trunk nodes

Sequential insertions have write amp ~1



First flush references to the branches, but do not compact

Use metadata to mask out data
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No work on immediately flushed data

Concurrent compactions in trunk nodes

Break a serial chain of compactions into parallel

Improve insertion concurrency

Sequential insertions have write amp ~1
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Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets 
more sequential

Run a single-threaded workload with a percentage sequential insertions and the rest random
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Because of flush-then-compact, SplinterDB smoothly increases throughput as the workload gets 
more sequential

Run a single-threaded workload with a percentage sequential insertions and the rest random

RocksDB improves, but at a much lower rate
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Insertions in SplinterDB scale well
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Insertions in SplinterDB scale well
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Insertions in SplinterDB scale well

529
981

1348
1664

19582141
2232234523622359

153228279317345352
380359346338

0

750

1500

2250

3000

2 4 6 8 101214161820

Th
ro

ug
hp

ut
 

(In
se

rti
on

s/
Se

co
nd

)

Number of Threads

SplinterDB

At 12 threads, SplinterDB has 7x the throughput of 1 thread

At 12+ threads, SplinterDB uses 85%+ of the device bandwidth

Hi
gh

er
 is

 B
et

te
r



Conclusion

vSAN needed a new way of storing metadata

Model the problem:
external memory dictionary

Mapped 𝐵" -tree

SplinterDB

Theory
Systems



Conclusion

vSAN needed a new way of storing metadata

Model the problem:
external memory dictionary

Mapped 𝐵" -tree

SplinterDB

Theory
Systems

SplinterDB is in vSAN 8.0

Open-source at
https://github.com/vmware/splinterdb




