
Lecture 10
Logging & Recovery Protocols I

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu


TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

A=1

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

A=1

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

A=A=2

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

A=A=2

Schedule
T1



TI
M
E

MOTIVATION

BEGIN 
R(A)
W(A)
⋮

COMMIT

Buffer Pool

A=1

Page

Schedule
T1



CRASH RECOVERY

Recovery algorithms are techniques to ensure 
database consistency, transaction atomicity, and 
durability despite failures.

Recovery algorithms have two parts:
→ Actions during normal txn processing to ensure that 

the DBMS can recover from a failure.
→ Actions after a failure to recover the database to a 

state that ensures atomicity, consistency, and 
durability.



OBSERVATION

The primary storage location of the database is 
on non-volatile storage, but this is much slower 
than volatile storage.

Use volatile memory for faster access:
→ First copy target record into memory.
→ Perform the writes in memory.
→ Write dirty records back to disk.

13



TODAY’ S AGENDA

Buffer Pool Policies 
Write-Ahead Log 
Logging Schemes 
Checkpoints



OBSERVATION

The DBMS needs to ensure the following 
guarantees:
→ The changes for any txn are durable once the DBMS 

has told somebody that it committed.
→ No partial changes are durable if the txn aborted.



UNDO VS. REDO

Undo: The process of removing the effects of an 
incomplete or aborted txn.
Redo: The process of re-instating the effects of a 
committed txn for durability.

How the DBMS supports this functionality
depends on how it manages the buffer pool…



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7



TI
M
E

Schedule
T1 T2

Buffer Pool

BUFFER POOL

A=1 B=9 C=7

A= B=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=8 C=7



TI
M
E

Schedule
T1 T2

BUFFER POOL

A=1 B=9 C=7

A= B= C=7B=8

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3

Do we force T2’s changes
to be written to disk?

Buffer Pool



TI
M
E

Schedule
T1 T2

BUFFER POOL

A=1 B=9 C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?Is T1 allowed to overwrite A even 

though it has not committed?



TI
M
E

Schedule
T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?

B=8A=3

Is T1 allowed to overwrite A even 
though it has not committed?



TI
M
E

Schedule
T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8 C=7

Do we force T2’s changes
to be written to disk?

B=8A=3

Is T1 allowed to overwrite A even 
though it has not committed?



Buffer Pool

TI
M
E

Schedule
T1 T2

BUFFER POOL

A=
1

B=
9

C=7

A= B=

BEGI
N 
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8 C=7

What ha
we need

ppens when
to rollback T1?

B=8A=3



STEAL POLICY

Whether the DBMS allows an uncommitted txn 
to overwrite the most recent committed value of 
an object in non-volatile storage.

STEAL: Is allowed.
NO-STEAL: Is not allowed.



FORCE POLICY

Whether the DBMS requires that all updates 
made by a txn are reflected on non-volatile 
storage before the txn can commit.

FORCE: Is required.
NO-FORCE: Is not required.



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=1 B=9 C=7

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=9 C=7



TI
M
E

Schedule
T1 T2

Buffer Pool

NO- STEAL + FORCE

A=1 B=9 C=7

A= B=

BEGIN
R(A)
W(A)

BEGIN
R(B)
W(B)
COMMIT

⋮
ABORT

A=3 B=8 C=7



Buffer Pool

TI
M
E

Schedule
T1 T2

NO- STEAL + FORCE

A=1 B=9 C=7

A= B=

BEGIN 
R(A)
W(A)

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8 C=7

2FORCE means that T changes must
be written to disk at this point.



TI
M
E

NO- STEAL + FORCE

A=1 B=9 C=7

A= B= C=7
W(A)

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3 B=8

2FORCE means that T changes must
be written to disk at this point.

Schedule
T1 T2

NO STEAL means that T1 changes 
cannot be written to disk yet.



TI
M
E

NO- STEAL + FORCE

A=1 B=9 C=7

A= B= C=7B=8
W(A)

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3

2FORCE means that T changes must
be written to disk at this point.

Schedule
T1 T2

A=1 B=8 C=7

Copy

NO STEAL means that T1 changes 
cannot be written to disk yet.



TI
M
E

NO- STEAL + FORCE

A=1 B=
9

C=7

A= B= C=7B=8
W(A)

⋮
ABORT

BEGIN
R(B)
W(B) 
COMMIT

A=3

2FORCE means that T changes must
be written to disk at this point.

Schedule
T1 T2

B=8
A=1 B=8 C=7

Copy

NO STEAL means that T1 changes 
cannot be written to disk yet.



Buffer Pool

TI
M
E

Schedule
T1 T2

NO- STEAL + FORCE

A=1 B=
9

C=7

A= B=

BEGI
N 
R(A)
W(A) BEGIN

R(B)
W(B) 
COMMIT

A=3 B=8 C=7

⋮
ABORT

Now it’s trivial
to rollback T1

B=8



NO- STEAL + FORCE

This approach is the easiest to implement:
→ Never have to undo changes of an aborted txn because

the changes were not written to disk.
→ Never have to redo changes of a committed txn 

because all the changes are guaranteed to be written 
to disk at commit time (assuming atomic hardware 
writes).

Previous example cannot support write sets that 
exceed the amount of physical memory 
available.



WRITE-  AHEAD LOG

Buffer Pool Policy: STEAL + NO-FORCE

Maintain a log file separate from data files that 
contains the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the 

necessary undo and redo actions to restore the database.

DBMS must write to disk the log file records that 
correspond to changes made to a database object 
before it can flush that object to disk.



WRITE-  AHEAD LOG

Maintain a log file separate from data files that 
contains the changes that txns make to database.
→ Assume that the log is on stable storage.
→ Log contains enough information to perform the 

necessary undo and redo actions to restore the database.

DBMS must write to disk the log file records that
correspond to changes made to a database object
before it can flush that object to disk.

Buffer Pool Policy: STEAL + NO-FORCE



WAL PROTOCOL

The DBMS stages all txn's log records in volatile 
storage (usually backed by buffer pool).

All log records pertaining to an updated page are 
written to non-volatile storage before the page 
itself is over-written in non-volatile storage.

A txn is not considered committed until all its log
records have been written to stable storage.



WAL PROTOCOL

Write a <BEGIN> record to the log for each txn to 
mark its starting point.

When a txn finishes, the DBMS will:
→ Write a <COMMIT> record on the log
→ Make sure that all log records are flushed before it 

returns an acknowledgement to application.



WAL PROTOCOL

Each log entry contains information about the 
change to a single object:
→ Transaction Id
→ Object Id
→ Before Value (UNDO)
→ After Value (REDO)



Buffer Pool

A=1 B=5 C=7

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

A=1 B=5 C=7



Buffer Pool

A=1 B=5 C=7

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL – EXAMPLE

WAL Buffer
<T1 BEGIN>

A=1 B=5 C=7



Buffer Pool

A=1 B=5 C=7

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL – EXAMPLE

WAL Buffer
<T1 BEGIN>

A=1 B=5 C=7



Buffer Pool

A=1 B=5 C=7

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1



Buffer Pool

A=A=8 B=5 C=7

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

<T1 BEGIN>
<T1, A, 1, 8>

A=1 B=5 C=7

1

2



Buffer Pool

A= B=

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL – EXAMPLE

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

A=8 B=9 C=7

A=1 B=5 C=7



Buffer Pool

A= B=

TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>



TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to 
return to application.

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>



TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

A=8 B=9 C=7

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to 
return to application.

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>



TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

WAL – EXAMPLE

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Buffer PoolTxn result is now safe to 
return to application.



WAL – EXAMPLE
TI
M
E

BEGIN 
W(A)
W(B)
⋮

COMMIT

Schedule
T1

WAL Buffer

A=1 B=5 C=7

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T1 COMMIT>

Everything we need to
restore T1 is in the log!

Buffer PoolTxn result is now safe to 
return to application.



WAL – IMPLEMENTATION

When should the DBMS write log entries to 
disk?



WAL – IMPLEMENTATION

When should the DBMS write log entries to 
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes 

together to amortize overhead.



WAL – GROUP COMMIT
TI
M
E

Schedule

COMM
IT COMM

IT

T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

WAL Buffer



WAL – GROUP COMMIT
TI
M
E

Schedule
T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT
TI
M
E

Schedule
T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer
<T1 BEGIN>



WAL – GROUP COMMIT
TI
M
E

Schedule
T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>



WAL – GROUP COMMIT
TI
M
E

Schedule
T1 T2

BEGIN
W(A)
W(B)

BEGIN
W(C)
W(D)

⋮ ⋮

COMMIT
COMMIT

WAL Buffer
<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

Flush the buffer 
when it is full.

COMMIT
COMMIT



Buffers

WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

COMMIT
COMMIT

Flush the buffer 
when it is full.



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

<T2, D, 3, 4>

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

COMMIT
COMMIT

Flush after an elapsed 
amount of time.

WAL Buffer

<T2, D, 3, 4>



WAL – GROUP COMMIT

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>

TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

<T2, D, 3, 4>

Flush after an elapsed 
amount of time.

COMMIT
COMMIT

WAL Buffer



WAL – GROUP COMMIT
TI
M
E

Schedule
T1 T2

BEGI
N 
W(A)
W(B)

⋮

BEGIN
W(C)
W(D)
⋮

<T2, D, 3, 4>

<T1 BEGIN>
<T1, A, 1, 8>
<T1, B, 5, 9>
<T2 BEGIN>
<T2, C, 1, 2>
<T2, D, 3, 4>

Flush after an elapsed 
amount of time.

COMMIT
COMMIT



WAL – IMPLEMENTATION

When should the DBMS write log entries to 
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes 

together to amortize overhead.

When should the DBMS write dirty records to 
disk?



WAL – IMPLEMENTATION

When should the DBMS write log entries to 
disk?
→ When the transaction commits.
→ Can use group commit to batch multiple log flushes 

together to amortize overhead.

When should the DBMS write dirty records to 
disk?
→ Every time the txn executes an update?
→ Once when the txn commits?



BUFFER POOL POLICIES

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –

NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance



NO-STEAL STEAL

NO-FORCE – Slowest

FORCE Fastest –

BUFFER POOL POLICIES

Almost every DBMS uses NO-FORCE + STEAL

Runtime Performance Recovery Performance
Undo + Redo

No Undo + No Redo

NO-STEAL STEAL

NO-FORCE – Fastest

FORCE Slowest –



LOGGING SCHEMES

Physical Logging
→ Record the changes made to a specific location in the

database.
→ Example: git diff

Logical Logging
→ Record the high-level operations executed by txns.
→ Not necessarily restricted to single page.
→ Example: The UPDATE, DELETE, and INSERT queries

invoked by a txn.



PHYSICAL VS. LOGICAL LOGGING

Logical logging requires less data written in each 
log record than physical logging.

Difficult to implement recovery with logical 
logging if you have concurrent txns.
→ Hard to determine which parts of the database may 

have been modified by a query before crash.
→ Also takes longer to recover because you must re- 

execute every txn all over again.



PHYSIOLOGICAL LOGGING

Hybrid approach where log records target a 
single page but do not specify organization of 
the page.
→ Identify tuples based on their slot number.
→ Allows DBMS to reorganize pages after a log record has

been written to disk.

This is the most popular approach.



LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;



LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical
<T1,

Table=X, 
Page=99, 
Offset=4, 
Before=ABC, 
After=XYZ>

<T1,
Index=X_PKEY, 
Page=45, 
Offset=9, 
Key=(1,Record1)>



LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical
<T1,

Table=X, 
Page=99, 
Offset=4, 
Before=ABC, 
After=XYZ>

<T1,
Index=X_PKEY, 
Page=45, 
Offset=9,

Logical

<T1,
Query="UPDATE foo

SET val=XYZ
WHERE id=1">

Key=(1,Record1)>



LOGGING SCHEMES

UPDATE foo SET val = XYZ WHERE id = 1;

Physical
<T1,

Table=X, 
Page=99, 
Offset=4, 
Before=ABC, 
After=XYZ>

<T1,
Index=X_PKEY, 
Page=45, 
Offset=9,

<T1,
Query="UPDATE foo

SET val=XYZ
WHERE id=1">

Logical Physiological

Key=(1,Record1)>

<T1,
Table=X, 
Page=99, 
Slot=1, 
Before=ABC, 
After=XYZ>

<T1,
Index=X_PKEY, 
IndexPage=45, 
Key=(1,Record1)>



CHECKPOINTS

The WAL will grow forever.

After a crash, the DBMS must replay the entire 
log, which will take a long time.

The DBMS periodically takes a checkpoint where 
it flushes all buffers out to disk.



CHECKPOINTS

Output onto stable storage all log records 
currently residing in main memory.

Output to the disk all modified blocks.

Write a <CHECKPOINT> entry to the log and 
flush to stable storage.



WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS



WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS



WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮
CRASH!

CHECKPOINTS

Any txn that committed before the 
checkpoint is ignored (T1).



WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Any txn that committed before the 
checkpoint is ignored (T1).
T2 + T3 did not commit before the 
last checkpoint.

CRASH!



WAL
<T1 BEGIN>
<T1, A, 1, 2>
<T1 COMMIT>
<T2 BEGIN>
<T2, A, 2, 3>
<T3 BEGIN>
<CHECKPOINT>
<T2 COMMIT>
<T3, A, 3, 4>

⋮

CHECKPOINTS

Any txn that committed before the 
checkpoint is ignored (T1).
T2 + T3 did not commit before the 
last checkpoint.
→ Need to redo T2 because it committed

after checkpoint.
→ Need to undo T3 because it did not

commit before the crash. CRASH!



CHECKPOINTS – CHALLENGES

The DBMS must stall txns when it takes a 
checkpoint to ensure a consistent snapshot.

Scanning the log to find uncommitted txns can 
take a long time.

Not obvious how often the DBMS should take a
checkpoint…



CHECKPOINTS – FREQUENCY

Checkpointing too often causes the runtime 
performance to degrade.
→ System spends too much time flushing buffers.

But waiting a long time is just as bad:
→ The checkpoint will be large and slow.
→ Makes recovery time much longer.



CONCLUSION

Write-Ahead Logging is (almost) always the best 
approach to handle loss of volatile storage.

Use incremental updates (STEAL + NO-FORCE) 
with checkpoints.

On Recovery: undo uncommitted txns + redo 
committed txns.


