
Lecture 08
Multi Version Concurrency

Control

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2023

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

• Paper report #1 grades posted
• Don’t copy full sentences from different sources
• Write your analysis of the paper in your own words!!!

• Project #1 due Tuesday Sep 12th

• Start forming Project #2 groups
• Post a discussion on Canvas to find group members.

Some announcements…

MULTI-VERSION CONCURRENCY CONTROL

• The DBMS maintains multiple physical versions of a single logical
object in the database:
• When a txn writes to an object, the DBMS creates a new version of that object.
• When a txn reads an object, it reads the newest version that existed when the

txn started.

• First proposed in 1978 MIT PhD dissertation.
• First implementation was InterBase (Firebird).
• Used in almost every new DBMS in last 10 years.

3

http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

MULTI-VERSION CONCURRENCY CONTROL

• Writers don't block readers.
Readers don't block writers.

• Read-only txns can read a consistent snapshot without acquiring
locks or txn ids.
• Use timestamps to determine visibility.

• Easily support time-travel queries.

5

SNAPSHOT ISOLATION (SI)

• When a txn starts, it sees a consistent snapshot of the database that
existed when that the txn started.
• No torn writes from active txns.
• If two txns update the same object, then first writer wins.

• SI is susceptible to the Write Skew Anomaly.

5

WRITE SKEW ANOMALY

6

Txn #1
Change white
marbles to black.

Txn #2
Change black
marbles to white.

Txn #1
Change white
marbles to black.

Txn #2
Change black
marbles to white.

MVCC DESIGN DECISIONS

• Concurrency Control Protocol
• Version Storage
• Garbage Collection
• Index Management

8

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

CONCURRENCY CONTROL PROTOCOL

• Approach #1: Timestamp Ordering
• Assign txns timestamps that determine serial order.
• Considered to be original MVCC protocol.

• Approach #2: Optimistic Concurrency Control
• Three-phase protocol from last class.
• Use private workspace for new versions.

• Approach #3: Two-Phase Locking
• Txns acquire appropriate lock on physical version before they

can read/write a logical tuple.

9

TUPLE FORMAT

10

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

Additional
Meta-data

TXN-ID DATABEGIN-TS END-TS POINTER ...

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

11

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn can read version if the
latch is unset and its Tid is
between begin-ts and end-
ts.

Txn creates a new version if
no other txn holds latch
and Tid is greater than
read-ts.

10
B2 10 0 10 ∞

10

0

Thread #1
Tid=10

TXN-ID READ-CNT BEGIN-TS END-TS

A1 0 0 1 ∞
B1 0 0 1 ∞

TWO-PHASE LOCKING (MV2PL)

12

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

READ(A)

WRITE(B)

1

If txn-id is zero, then the
txn acquires the SHARED
lock by incrementing the
read-cnt field.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

10
B2 10 0 10 ∞

10

0

1

Thread #1
Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 - 99999 ∞

OBSERVATION

13

• If the DBMS reaches the max value for its timestamps,
it will have to wrap around and restart at one. This will
make all previous versions be in the "future" from new
transactions.

A3 0 - 1 ∞1

Thread #1
Tid=231-1

Thread #2
Tid=1

WRITE(A)

WRITE(A)

231-1

A2 0 - 231-1 ∞231-1 1
231-1

1

POSTGRES TXN ID WRAPAROUND

• Set a flag in each tuple header that says that it is "frozen" in the past.
Any new txn id will always be newer than a frozen version.

• Runs the vacuum before the system gets close to this upper limit.
• Otherwise it must stop accepting new commands when the system

gets close to the max txn id.

14

VERSION STORAGE

• The DBMS uses the tuples’ pointer field to create a latch-free version
chain per logical tuple.
• This allows the DBMS to find the version that is visible to a particular txn at

runtime.
• Indexes always point to the “head” of the chain.

• Different storage schemes determine where/what to store for each
version.

15

VERSION STORAGE

• Approach #1: Append-Only Storage
• New versions are appended to the same table space.

• Approach #2: Time-Travel Storage
• Old versions are copied to separate table space.

• Approach #3: Delta Storage
• The original values of the modified attributes are copied into a separate delta

record space.

16

APPEND-ONLY STORAGE

• All the physical versions of a logical
tuple are stored in the same table
space. The versions are mixed
together.

• On every update, append a new
version of the tuple into an empty
space in the table.

17

Main Table

VALUE

A0 $111

POINTER

A1 $222 Ø

A2 $333 Ø

B1 $10 Ø

VERSION CHAIN ORDERING

• Approach #1: Oldest-to-Newest (O2N)
• Append every new version to end of the chain.
• Must traverse chain on look-ups.

• Approach #2: Newest-to-Oldest (N2O)
• Must update index pointers for every new version.
• Don’t have to traverse chain on look ups.

• The ordering of the chain has different performance trade-offs.

18

TIME-TRAVEL STORAGE

19

Overwrite master version in
the main table and update
pointers.

Main Table

VALUE

A2 $222

POINTER

B1 $10

A3 $333

Time-Travel Table

VALUE

A1 $111

POINTER

A2 $222

Ø

On every update, copy the
current version to the time-
travel table. Update
pointers.

DELTA STORAGE

20

Txns can recreate old
versions by applying the
delta in reverse order.

Main Table

VALUE

A1 $111

POINTER

B1 $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

On every update, copy only
the values that were
modified to the delta
storage and overwrite the
master version.

NON-INLINE ATTRIBUTES

21

Requires reference counters
to know when it is safe to
free memory. Unable to
relocate memory easily.

INT_VAL

A1 $100

A2 $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRINGRefs=2

Main Table

Reuse pointers to variable-
length pool for values that
do not change between
versions.

GARBAGE COLLECTION

• The DBMS needs to remove reclaimable physical versions from the
database over time.
• No active txn in the DBMS can “see” that version (SI).
• The version was created by an aborted txn.

• Three additional design decisions:
• How to look for expired versions?
• How to decide when it is safe to reclaim memory?
• Where to look for expired versions?

22

GARBAGE COLLECTION

• Approach #1: Tuple-level
• Find old versions by examining tuples directly.
• Background Vacuuming vs. Cooperative Cleaning

• Approach #2: Transaction-level
• Txns keep track of their old versions so the DBMS does not have to scan tuples

to determine visibility.

23

Thread #1
Tid=12

Thread #2
Tid=25

BEGIN-TS END-TS

A100 1 9

B100 1 9

B101 10 20

TUPLE-LEVEL GC

24

Background Vacuuming:
Separate thread(s)
periodically scan the table
and look for reclaimable
versions. Works with any
storage.

Vacuum

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

Dirty Block
BitM

ap A2 A3

B0 B1 B2 B3

INDEX
A0 A1X XGET(A)

TRANSACTION-LEVEL GC

• Each txn keeps track of its read/write set.

• The DBMS determines when all versions created by a finished txn are
no longer visible.

• May still require multiple threads to reclaim the memory fast enough
for the workload.

25

TRANSACTION-LEVEL GC

26

UPDATE(B)

Thread #1
UPDATE(A)Begin @ 10

Vacuum

Old Versions
A2

B6

A2
B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-

-

A3 10 ∞ -

B7 10 ∞ -

10
10

TS<15

Commit @ 15 15
15

15
15

INDEX MANAGEMENT

• PKey indexes always point to version chain head.
• How often the DBMS must update the pkey index depends on whether the

system creates new versions when a tuple is updated.
• If a txn updates a tuple’s pkey attribute(s), then this is treated as a DELETE

followed by an INSERT.

• Secondary indexes are more complicated…

27

SECONDARY INDEXES

• Approach #1: Logical Pointers
• Use a fixed identifier per tuple that does not change.
• Requires an extra indirection layer.
• Primary Key vs. Tuple Id

• Approach #2: Physical Pointers
• Use the physical address to the version chain head.

28

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

29

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-
Oldest

GET(A)

TupleId→AddressPhysical
Address

Physical
Address

Primary
Key

TupleId

Physical
Address

MVCC INDEXES

• MVCC DBMS indexes (usually) do not store version information about
tuples with their keys.
• Exception: Index-organized tables (e.g., MySQL)

• Every index must support duplicate keys from different snapshots:
• The same key may point to different logical tuples in different snapshots.

30

MVCC DUPLICATE KEY PROBLEM

31

Index

DELETE(A)

Thread #2
Begin @ 20

INSERT(A)

Thread #3
Begin @ 30

A1

BEGIN-TS END-TS

1 ∞
POINTER

Ø

UPDATE(A)

A2 20 ∞ Ø

20

A1 30 ∞ Ø

READ(A)

Thread #1
Begin @ 10

Commit @ 25

25 25
25

READ(A)

MVCC INDEXES

• Each index's underlying data structure must support the storage of
non-unique keys.

• Use additional execution logic to perform conditional inserts for pkey
/ unique indexes.
• Atomically check whether the key exists and then insert.

• Workers may get back multiple entries for a single fetch. They then
must follow the pointers to find the proper physical version.

32

MVCC EVALUATION PAPER

• Two categories of experiments:
• Evaluate each of the design decisions in isolation to determine their trade-

offs.
• Compare configurations of real-world MVCC systems.

33

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

MVCC DESIGN DECISIONS

• CC Protocol: Inconclusive results…

• Version Storage: Deltas

• Garbage Collection: Tuple-Level Vacuuming

• Indexes: Logical Pointers

34

MVCC CONFIGURATION EVALUATION

35

Protocol Version Storage Garbage
Collection

Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

CMU's TBD MV-OCC Delta Txn-level Logical

https://github.com/cmu-db/terrier

MVCC CONFIGURATION EVALUATION

36

0

25

50

75

100

0 8 16 24 32 40

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Threads

 Oracle/MySQL

 NuoDB

HyPer

HYRISE

MemSQL

 HANA

HEKATON

 Postgres

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

PARTING THOUGHTS

• MVCC is the best approach for supporting txns in mixed workloads.

• We only discussed MVCC for OLTP.
• Design decisions may be different for HTAP

37

