
Lecture 07
Concurrency control #2

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

http://prashant.pandey@utah.edu

CONCURRENCY CONTROL

• The system assumes that a txn could stall at any time whenever it
tries to access data that is not in memory.

• Execute other txns at the same time so that if one txn stalls then
others can keep running.
• Set locks to provide ACID guarantees for txns.
• Locks are stored in a separate data structure to avoid being swapped to disk.

2

ACID guarantee
• Atomicity - each statement in a transaction (to read, write, update or

delete data) is treated as a single unit. Either the entire statement is
executed, or none of it is executed.
• Consistency - ensures that transactions only make changes to tables

in predefined, predictable ways
• Isolation - when multiple users are reading and writing from the same

table all at once, isolation of their transactions ensures that the
concurrent transactions don’t interfere with or affect one another.
• Durability - ensures that changes to your data made by successfully

executed transactions will be saved, even in the event of system
failure.

STORAGE ACCESS LATENCIES

4

L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

LET’S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015

CONCURRENCY CONTROL

• The protocol to allow txns to access a database in a multi-
programmed fashion while preserving the illusion that each of them
is executing alone on a dedicated system.
• The goal is to have the effect of a group of txns on the database’s state is

equivalent to any serial execution of all txns.

• Provides Atomicity + Isolation in ACID

5

CONCURRENCY CONTROL

• For in-memory DBMSs, the cost of a txn acquiring a lock is the same
as accessing data.
• New bottleneck is contention caused from txns trying access data at

the same time.

• The DBMS can store locking information about each tuple together
with its data.
• This helps with CPU cache locality.
• Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.

6

COMPARE-AND-SWAP

• Atomic instruction that compares contents of a memory location M to
a given value V
• If values are equal, installs new given value V’ in M
• Otherwise operation fails

7

M
__sync_bool_compare_and_swap(&M, 20, 30)2030

Compar
e Value

Address
New
Value

CONCURRENCY CONTROL SCHEMES

• Two-Phase Locking (2PL)
• Assume txns will conflict so they must acquire locks on database objects before

they are allowed to access them.

• Timestamp Ordering (T/O)
• Assume that conflicts are rare so txns do not need to first acquire locks on

database objects and instead check for conflicts at commit time.

9

TWO-PHASE LOCKING

10

Txn #2

BE
GI

N

CO
MM

IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI

N

CO
MM

IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

TWO-PHASE LOCKING

• Deadlock Detection
• Each txn maintains a queue of the txns that hold the locks that it waiting for.
• A separate thread checks these queues for deadlocks.
• If deadlock found, use a heuristic to decide what txn to kill in order to break

deadlock.

• Deadlock Prevention
• Check whether another txn already holds a lock when another txn requests it.
• If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill

the other txn.

11

TIMESTAMP ORDERING

• Basic T/O
• Check for conflicts on each read/write.
• Copy tuples on each access to ensure repeatable reads.

• Optimistic Currency Control (OCC)
• Store all changes in private workspace.
• Check for conflicts at commit time and then merge.

12

BASIC T/O

13

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI

N

CO
MM

IT

READ(A) WRITE(B) WRITE(A)

• • • •

1000010001

1000010001

• • •

1000010005

10001

OPTIMISTIC CONCURRENCY CONTROL

• Timestamp-ordering scheme where txns copy data read/write into a
private workspace that is not visible to other active txns.
• When a txn commits, the DBMS verifies that there are no conflicts.

• First proposed in 1981 at CMU by H.T. Kung.

14

ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981

http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung

OPTIMISTIC CONCURRENCY CONTROL

15

Txn #1

BE
GI

N

READ(A) WRITE(A) WRITE(B)

Read Phase

VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM

IT

888

999 10001

10001

OBSERVATION

• When there is low contention, optimistic protocols perform better
because the DBMS spends less time checking for conflicts.

• At high contention, the both classes of protocols degenerate to
essentially the same serial execution.

16

CONCURRENCY CONTROL EVALUATION

• Compare in-memory concurrency control protocols at high levels of
parallelism.
• Single test-bed system.
• Evaluate protocols using core counts beyond what is available on today's

CPUs.

• Running in extreme environments exposes what are the main
bottlenecks in the DBMS.

17

STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY CONTROL WITH
ONE THOUSAND CORES
VLDB 2014

1000-CORE CPU SIMULATOR

• DBx1000 Database System
• In-memory DBMS with pluggable lock manager.
• No network access, logging, or concurrent indexes.
• All txns execute using stored procedures.

• MIT Graphite CPU Simulator
• Single-socket, tile-based CPU.
• Shared L2 cache for groups of cores.
• Tiles communicate over 2D-mesh network.

18

https://github.com/yxymit/DBx1000
http://groups.csail.mit.edu/carbon/?page_id=111

TARGET WORKLOAD

• Yahoo! Cloud Serving Benchmark (YCSB)
• 20 million tuples
• Each tuple is 1KB (total database is ~20GB)

• Each transactions reads/modifies 16 tuples.
• Varying skew in transaction access patterns.
• Serializable isolation level.

19

CONCURRENCY CONTROL SCHEMES

20

DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control

READ-ONLY WORKLOAD

21

WRITE-INTENSIVE / MEDIUM-CONTENTION

22

WRITE-INTENSIVE / HIGH-CONTENTION

23

BOTTLENECKS

• Lock Thrashing
• DL_DETECT, WAIT_DIE

• Timestamp Allocation
• All T/O algorithms + WAIT_DIE

• Memory Allocations
• OCC + MVCC

24

LOCK THRASHING

• Each txn waits longer to acquire locks, causing other txn to wait
longer to acquire locks.

• Can measure this phenomenon by removing deadlock
detection/prevention overhead.
• Force txns to acquire locks in primary key order.
• Deadlocks are not possible.

25

LOCK THRASHING

26

TIMESTAMP ALLOCATION

• Mutex
• Worst option.
• Atomic Addition
• Requires cache invalidation on write.
• Batched Atomic Addition
• Needs a back-off mechanism to prevent fast burn.
• Hardware Clock
• Not sure if it will exist in future CPUs.
• Hardware Counter
• Not implemented in existing CPUs.

27

TIMESTAMP ALLOCATION

28

MEMORY ALLOCATIONS

• Copying data on every read/write access slows down the DBMS
because of contention on the memory controller.
• In-place updates and non-copying reads are not affected as much.

• Default libc malloc is slow. Never use it.
• We will discuss this further later in the semester.

29

NOTABLE IN-MEMORY DBMSs

• Oracle TimesTen
• Dali / DataBlitz
• Altibase
• P*TIME
• SAP HANA
• VoltDB / H-Store

31

Microsoft Hekaton
Harvard Silo
TUM HyPer
MemSQL
IBM DB2 BLU
Apache Geode

Acknowledgement: Prof. Andy Pavlo, CMU

http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/

TIMESTEN

• Originally SmallBase from HP Labs in 1995.
• Multi-process, shared memory DBMS.
• Single-version database using two-phase locking.
• Dictionary-encoded columnar compression.

• Bought by Oracle in 2005.
• Can work as a cache in front of Oracle DBMS.

32

ORACLE TIMESTEN: AN IN-MEMORY DATABASE FOR
ENTERPRISE APPLICATIONS
VLDB 2004

Acknowledgement: Prof. Andy Pavlo, CMU

DALI / DATABLITZ

• Developed at AT&T Labs in the early 1990s.
• Multi-process, shared memory storage manager using memory-

mapped files.
• Employed additional safety measures to make sure that erroneous

writes to memory do not corrupt the database.
• Meta-data is stored in a non-shared location.
• A page’s checksum is always tested on a read; if the checksum is invalid, recover

page from log.

33

DALI: A HIGH PERFORMANCE MAIN MEMORY STORAGE
MANAGER
VLDB 1994

Acknowledgement: Prof. Andy Pavlo, CMU

P*TIME

• Korean in-memory DBMS from the 2000s.
• Performance numbers are still impressive.
• Lots of interesting features:
• Uses differential encoding (XOR) for log records.
• Hybrid storage layouts.
• Support for larger-than-memory databases.

• Sold to SAP in 2005. Now part of HANA.

34

P*TIME: HIGHLY SCALABLE OLTP DBMS FOR MANAGING UPDATE-
INTENSIVE STREAM WORKLOAD
VLDB 2004

Acknowledgement: Prof. Andy Pavlo, CMU

WHY NOT MMAP?

• Memory-map (mmap) a database file into DRAM and let the OS control
swapping data in and out.
• Use madvise and msync to give hints to the OS about what data is

safe to flush.

• Notable mmap DBMSs:
• MongoDB (pre WiredTiger)
• MonetDB
• LMDB
• MemSQL (before 2017)

35
Acknowledgement: Prof. Andy Pavlo, CMU

http://mongodb.org/
http://wiredtiger.com/
https://www.monetdb.org/
http://symas.com/mdb/
https://memsql.com/

WHY NOT MMAP?

• Using mmap gives up fine-grained control on the contents of memory.
• Cannot perform non-blocking memory access.
• The "on-disk" representation has to be the same as the "in-memory"

representation.
• The DBMS has no way of knowing what pages are in memory or not.
• Various mmap-related syscalls are not portable.

• A well-written DBMS always knows best.

36
Acknowledgement: Prof. Andy Pavlo, CMU

CONCURRENCY CONTROL

• Observation: The cost of a txn acquiring a lock is the same as
accessing data.

• In-memory DBMS may want to detect conflicts between txns at a
different granularity.
• Fine-grained locking allows for better concurrency but requires more locks.
• Coarse-grained locking requires fewer locks but limits the amount of

concurrency.

37
Acknowledgement: Prof. Andy Pavlo, CMU

LARGER-THAN-MEMORY DATABASES

• DRAM is fast, but data is not accessed with the same frequency and
in the same manner.
• Hot Data: OLTP Operations
• Cold Data: OLAP Queries

• We will study techniques for how to bring back disk-resident data
without slowing down the entire system.

38
Acknowledgement: Prof. Andy Pavlo, CMU

NEXT CLASS

• Multi-Version Concurrency Control

39

