
Lecture 22
Learned Indexes

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

http://prashant.pandey@utah.edu

• Please fill course evaluations!!
• Final paper report due on December 1st.
• Please write reports on paper based on the current topics.

• Final quiz due on December 6th.
• Project presentations slots are up.
• Prepare your final presentations and reports according to the guidelines.

• Final project reports due on December 8th.

Some reminders…

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to replace the
navigational part of an Index

B-Trees vs. Learned Indexes

What is the difference?

B-Tree

key

page

Conceptually, a B-Tree maps a key to a location (page)

Alternative view: data is sorted

B-Tree

key

position

(a) B-tree: key à position
(b) Search within position, position+error
(binary, linear, interpolation, exponential search)

error

A B-Tree is a Model

Model

key

position

(a) Model: key à position estimate
(b) Search within [position-error, position+error]

error

A B-Tree is already a model!

A B-Tree is a Model

key

position

A form of regression model
key à pos is equivalent to modeling

the empirical CDF of the data
position estimate = 𝐏 𝐗 ≤ 𝒌𝒆𝒚 ∗ #𝒌𝒆𝒚𝒔

error

Model

𝐏 𝐗 ≤ 𝒂 ∗ #𝒌𝒆𝒚𝒔

𝒂

B-Trees are regression trees

B-Tree

key

position

What does this mean?B-Trees is already a form of a learned index

Learned Indexes

key

position

A form of regression model
key à pos is equivalent to modeling

the empirical CDF of the data
position estimate = 𝐏 𝐗 ≤ 𝒌𝒆𝒚 ∗ #𝒌𝒆𝒚𝒔

error

Model

What is the problem if we use an arbitrary model?

B-Trees have bounded error

Can we bound the
error here?

Last-mile indexing

Every level provides gain in accuracy

B-TreeB-Tree

Some models can be replaced sub-B-Trees

Use case: FITing-Tree

Piece-wise linear approximation

A segment from (x1,y1) to (x3,y3) is not
valid if (x2,y2) is further than error from
the interpolated line.

Point 4 is outside the dotted cone and
therefore starts a new segment

Point 1 is the origin of the cone

Point 2 is then added,
resulting in the dashed cone

Point 3 is added next, yielding in the
dotted cone

What if base data is not sorted?

Need to materialize sorted data

What about updates and learned indexes?

B+ Tree

• Traverses tree using comparisons
• Supports OLTP-style mixed workloads

• Point lookups, range queries
• Inserts, updates, deletes

• Traverses tree using computations (models)
• Supports point lookups and range queries
• Advantages: 3X faster reads, 10X smaller size
• Limitation: does not support writes

Learned Index (Kraska et al., 2018)

20

ALEX goals

21

B+ Tree Learned Index ALEX

Lookup time Slow Fast Faster

Insert time Fast Not Supported Fast

Space usage High Low Low

(every row should be read independently)

ALEX goals

22

B+ Tree Learned Index ALEX

Lookup time Slow Fast Faster

Insert time Fast Not Supported Fast

Space usage High Low Low

(every row should be read independently)

ALEX goals

23

B+ Tree Learned Index ALEX

Lookup time Slow Fast Faster

Insert time Fast Not Supported Fast

Space usage High Low Low

(every row should be read independently)

ALEX design overview

Structure
• Dynamic tree structure
• Each node contains a linear model

• internal nodes à models select the child node
• data nodes à models predict the position of a key

Core operations
• Lookup

• Use RMI to predict location of key in a data node
• Do local search to correct for prediction error

• Insert
• Do a lookup to find the insert position
• Insert the new key/value (might require shifting)

Current design constraints
a) In memory
b) Numeric data types
c) Single threaded

24

ALEX Core Ideas

Faster Reads Faster Writes Adaptiveness
1. Gapped Array ✔

2. Model-based Inserts ✔

3. Exponential Search ✔

4. Adaptive Tree Structure ✔ ✔ ✔

25

1. Gapped Array

26

How should data be stored in data nodes?

1. Gapped Array

27

1 2 3 4 5 6 7 8Dense Array

1. Gapped Array

28

1 2 3 4 5 6 7 8Dense Array

1. Gapped Array

29

1 2 3 4 5 6 7 8Dense Array

1 2 3 4 5 6 7 8

1. Gapped Array

30

1 2 3 4 5 6 7 8Dense Array

0 1 2 3 4 5 6 7 8

1. Gapped Array

31

Dense Array 0 1 2 3 4 5 6 7 8

1. Gapped Array

32

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8

1. Gapped Array

33

Dense Array 𝑂(𝑛)

Insertion Time

1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

1. Gapped Array

34

Dense Array 𝑂(𝑛)

Insertion Time

1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

1. Gapped Array

35

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

1. Gapped Array

36

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

1. Gapped Array

37

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

1 2 3 4 5 6 7 8Gapped Array

1. Gapped Array

38

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

1 2 3 4 5 6 7 8Gapped Array

1. Gapped Array

39

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

0 1 2 3 4 5 6 7 8Gapped Array

1. Gapped Array

40

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

0 1 2 3 4 5 6 7 8Gapped Array 𝑂(log 𝑛)

1. Gapped Array

41

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

0 1 2 3 4 5 6 7 8Gapped Array 𝑂(log 𝑛)

Storing data in Gapped Arrays achieves inserts using fewer shifts, leading to faster writes

1. Gapped Array

42

Dense Array 𝑂(𝑛)

Insertion Time

0 1 2 3 4 5 6 7 8B+ Tree Node

0 1 2 3 4 5 6 7 8

𝑂(𝑛)

0 1 2 3 4 5 5 6 7 7 8 SGapped Array 𝑂(log 𝑛)

Storing data in Gapped Arrays achieves inserts using fewer shifts, leading to faster writes

2. Model-based Inserts

43

Where do we put gaps in the Gapped Array?

2. Model-based Inserts

44

1 2 3 4 5 6 7 8Gapped Array

2. Model-based Inserts

45

1 2 3 4 5 6 7 8Gapped Array

Model Key 1 2 3 4 5 6 7 8

2. Model-based Inserts

46

Gapped Array

Model Key 1 2 3 4 5 6 7 8

2. Model-based Inserts

47

1Gapped Array

Model Key 1 2 3 4 5 6 7 8

2. Model-based Inserts

48

1 2Gapped Array

Model Key 1 2 3 4 5 6 7 8

2. Model-based Inserts

49

1 2 3 4 5 6 7 8Gapped Array

Model Key 1 2 3 4 5 6 7 8

2. Model-based Inserts

50

Model-based inserts achieve lower prediction error, leading to faster reads

3. Exponential Search

51

Can we do better than binary search?

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

Core algorithm: binary search! Key difference: exp. increasing search bound

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 3

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 3

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 3

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 3

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

search for 22

Explanation: Exponential Search
1 2 3 5 6 7 8 13 15 17 18 21 22 23

Exp. Search is ideal for a search key at the beginning of the array!

Why is this helpful in our case?

We begin our search from the “predicted” location, low error expected!

3. Exponential Search

64

Model errors are low, so exponential search is faster than binary search

4. Adaptive Structure

65

What happens if data nodes become full?

What happens if models become inaccurate?

4. Adaptive Structure

• Flexible tree structure
• Split nodes sideways
• Split nodes downwards
• Expand nodes
• Merge nodes, contract nodes

• Key idea: all decisions are made
to maximize performance
• Use cost model of query runtime
• No hand-tuning
• Robust to data and workload shifts

66

Results

• High-level results
• Fast reads
• Fast writes

67

~4x faster than B+ Tree
~2x faster than Learned Index

~2-3x faster than B+ Tree

Results

• High-level results
• Fast reads
• Fast writes
• Smaller index size

• Other results
• Efficient bulk loading
• Scales
• Robust to data and

workload shift

68~3 orders of magnitude less space for index

ALEX Summary

• Combines the best of B+
Tree and Learned Indexes
• Supports OLTP-style mixed

workloads
• Point lookups, range queries
• Inserts, updates, deletes

• Up to 4X faster, 2000X
smaller than B+ Tree

• Current research
• String keys
• Concurrency
• Persistence

69

Faster
Reads

Faster
Writes

Adaptiveness

Gapped Array ✔

Model-based Inserts ✔

Exponential Search ✔

Adaptive Tree Structure ✔ ✔ ✔

github.com/microsoft/ALEX

https://github.com/microsoft/ALEX

Learned Indexes

Replace data structure with learned models

üSimple approaches like linear approximation work well
üEmpty space for updates
üError bounds to split model nodes
üExponential search for last-mile searching

ØA very fertile area of research!
ØA comprehensive list of papers:

http://dsg.csail.mit.edu/mlforsystems/papers/#learned-range-indexes

http://dsg.csail.mit.edu/mlforsystems/papers/

