
Lecture 14
Query processing and optimization

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

mailto:prashant.pandey@utah.edu

Query

Query Result

Database Server

Select R.text from
Report R, Weather W
where W.image.rain()

and W.city = R.city
and W.date = R.date

and
R.text.

matches(“insurance claims”)

Query
Syntax Tree and

Logical Query Plan

Parser

Physical
Query Plan

Optimizer

Segments

Query
Scheduler |…|……|………..|………..|

…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..
…	……	………..	………..

Query
Result

Execute
Operators

Lifecycle of a Query

The Netflix Schema

RatingID Stars RateDate UID MID
1 3.5 08/27/15 79 20
… … … … …

UID Name Age JoinDate
79 Alice 23 01/10/13
80 Bob 41 05/10/13

MID Name Year Director
20 Inception 2010 Christopher Nolan
16 Avatar 2009 Jim Cameron

Ratings

Users

Movies

Example SQL Query

RatingID Stars RateDate UID MID
UID Name Age JoinDate
MID Name Year Director

SELECT M.Year, COUNT(*) AS NumBest
FROM Ratings R, Movies M
WHERE R.MID = M.MID

AND R.Stars = 5
GROUP BY M.Year
ORDER BY NumBest DESC

Suppose, we also have a B+Tree Index on Ratings (Stars)

SELECT
R.stars = 5

Ratings Table

SELECT
No predicate

Movies Table

JOIN
R.MID = M.MID

GROUP BY AGGREGATE
M.Year, COUNT(*)

SORT
On NumBest

Result Table

Called “Logical”
Operators

From extended RA

Each one has
alternate “physical”
implementations

Logical Query Plan

Indexed Access
Use Index on Stars

Ratings Table

File Scan
Read heapfile

Movies Table

Index-Nested
Loop Join

Sort-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table

Called “Physical”
Operators

Specifies exact
algorithm/code to
run for each logical
operator, with all
parameters (if any)

Aka “Query
Evaluation Plan”

Physical Query Plan

File Scan
Read Index leaf pages

Ratings Table

File Scan
Read heapfile

Movies Table

Hash Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table

This is also a correct
PQP for the given LQP!

Q: Which PQP is faster?

This is a key job of the
RDBMS Query Optimizer!

Physical Query Plan

Logical = Tells you “what” is computed
Physical = Tells you “how” it is computed

Logical-Physical Separation in DBMSs

Declarative “querying” (logical-physical separation) is a
key system design principle from the RDBMS world:
Declarativity often helps improve user productivity

Enables behind-the-scenes performance optimizations

People are still (re)discovering the importance of this key
system design principle in diverse contexts…

(MapReduce/Hadoop, networking, file system checkers,
interactive data-vis, graph systems, large-scale ML, etc.)

Declarativity!

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

But first, what metadata does the

RDBMS have?

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)
❖ For each Relation:

Relation name, File name
File structure (heap file vs. clustered B+ tree, etc.)
Attribute names and types; Integrity constraints; Indexes

❖ For each Index:
Index name, Structure (B+ tree vs. hash, etc.); IndexKey

❖ For each View:
View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)
❖ For each Table R:

Cardinality, i.e., number of tuples, NTuples (R)
Size, i.e., number of pages, NPages (R), or just NR or N

❖ For each Index X:
Cardinality, i.e., number of distinct keys IKeys (X)
Size, i.e., number of pages IPages (X) (for a B+ tree, this
is the number of leaf pages only)
Height (for tree indexes) IHeight (X)
Min and max keys in index ILow (X), IHigh (X)

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Selection: Access Path

❖ Access path: how exactly is a table read (“accessed”)
❖ Two common access paths:

File scan:
Read the heap/sorted file; apply SelectCondition
I/O cost: O(N)
Indexed:
Use an index that matches the SelectCondition
I/O cost: Depends! For equality check, O(1) for hash index,
and O(log(N)) for B+-tree index

Indexed Access Path

RatingID Stars RateDate UID MIDR

Selectivity of a Predicate

❖ Selectivity of SelectionCondition = percentage of number of
tuples in R satisfying it (in practice, count pages, not tuples)

RatingID Stars RateDate UID MID
2 3.0 … … …

39 5.0 … … …
12 2.5 … … …

402 5.0 … … …
293 2.5 … … …
49 1.0 … … …
66 2.5 … … …

R

Selectivity = 2/7 ~ 28%

Selectivity = 3/7 ~ 43%

Selectivity = 1/7 ~ 14%

Selectivity and Matching Indexes

❖ An Index matches a predicate if it brings I/O cost very close to
(N * predicate’s selectivity); compare to file scan!

RatingID Stars RateDate UID MID
2 3.0 … … …

39 5.0 … … …
12 2.5 … … …

402 5.0 … … …
293 2.5 … … …
49 1.0 … … …
66 2.5 … … …

R

Hash index on R(Stars)
Cl. B+ tree on R(Stars)
Uncl. B+ tree on R(Stars)?

Assume only one tuple per page

N x Selectivity = 2

Matching an Index: More Examples

RatingID Stars RateDate UID MIDR

B+ tree has a
nice “prefix-match”
property!

Hash index on R(Stars) does not match! Why?
Cl. B+ tree on R(Stars) still matches it! Why?
Cl. B+ tree on R(Stars,RateDate)?
Cl. B+ tree on R(Stars,RateDate,MID)?
Cl. B+ tree on R(RateDate,Stars)?
Uncl. B+ tree on R(Stars)?

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Project

❖ SELECT R.MID, R.Stars FROM Ratings R
Trivial to implement! Read R and discard other attributes
I/O cost: NR, i.e., Npages(R) (ignore output write cost)

❖ SELECT DISTINCT R.MID, R.Stars FROM Ratings R
Relational Project!

RatingID Stars RateDate UID MIDR

Need to deduplicate tuples of (MID,Stars) after discarding
other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

❖ Sorting-based:
Idea: Sort R on ProjectionList (External Merge

Sort!)
1. In Sort Phase, discard all other attributes
2. In Merge Phase, eliminate duplicates
Let T be the temporary “table” after step 1
I/O cost: NR + NT + EMSMerge(NT)

❖ Hashing-based:
Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

❖ To build a hash table on R(ProjectionList), read R and
discard other attributes on the fly

❖ If the hash table fits entirely in memory:
Done!
I/O cost: NR

❖ If not, 2-phase algorithm:
Partition
Deduplication

F x P pages
(“Fudge factor” F ~ 1.4

for overheads)

Q: What is the size of a hash
table built on a P-page file?

Needs B >= F x NR

Hashing

Partitions
of T

Input buffer
for partition i

Hash table for
partition i

B buffer pagesDisk

Output
buffer

Disk

Output
hash
func.
h2

h2

B buffer pages DiskDisk

Original
R OUTPUT

2INPUT

1

hash
func.
h1 B-1

Partitions
of T

1

2

B-1
. . .

Partition phase

Deduplication phase

Assuming uniformity,
size of a T partition

= NT / (B-1)
Size of a hash table

on a partition
= F x NT / (B-1)

If B is smaller, need to
partition recursively!

I/O cost: NR + NT + NT

Thus, we need:
(B-2) >= F x NT / (B-1)
Rough:

Project: Comparison of Algorithms
❖ Sorting-based vs. Hashing-based:

1. Usually, I/O cost (excluding output write) is the same:
NR + 2NT (why is EMSMerge(NT) only 1 read?)

2. Sorting-based gives sorted result (“nice to have”)
3. I/O could be higher in many cases for hashing (why?)

❖ In practice, sorting-based is popular for Project
❖ If we have any index with ProjectionList as subset of IndexKey

Use only leaf/bucket pages as the “T” for sorting/hashing
❖ If we have tree index with ProjectionList as prefix of IndexKey

Leaf pages are already sorted on ProjectionList (why?)!
Just scan them in order and deduplicate on-the-fly!

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Join

This course: we focus primarily on equi-join
(the most common, important, and well-studied form of join)

R RatingID Stars RateDate UID MID
UserID Name Age JoinDateU

We study 4 major (equi-) join implementation algorithms:
Page/Block Nested Loop Join (PNLJ/BNLJ)
Index Nested Loop Join (INLJ)
Sort-Merge Join (SMJ)
Hash Join (HJ)

Nested Loop Joins: Basic Idea

“Brain-dead” idea: nested for loops over the tuples of R and U!

1. For each tuple in Users, tU :
2. For each tuple in Ratings, tR :
3. If they match on join attribute, “stitch” them, output

But we read pages from disk, not single tuples!

Page Nested Loop Join (PNLJ)

“Brain-dead” nested for loops over the pages of R and U!

1. For each page in Users, pU :
2. For each page in Ratings, pR :
3. Check each pair of tuples from pR and pU

4. If any pair of tuples match, stitch them, and output

U is called “Outer table”
R is called “Inner table”

I/O Cost:

Q: How many buffer pages are needed for PNLJ?

Outer table should be
the smaller one:

NU ≤ NR

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

1. For each sequence of B-2 pages of Users at-a-time :
2. For each page in Ratings, pR :
3. Check if any pR tuple matches any U tuple in memory
4. If any pair of tuples match, stitch them, and output

Step 3 (“brain-dead” in-memory all-pairs comparison) could be
quite slow (high CPU cost!)
In practice, a hash table is built on the U pages in-memory to
reduce #comparisons (how will I/O cost change above?)

I/O Cost:

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it?

1. For each sequence of B-2 pages of Users at-a-time :
2. Sort the U tuples (in memory) on UserID
3. For each U tuple tU in memory :
4. Lookup/probe index on R with the UserID of tU
5. If any R tuple matches it, stitch with tU, and output

Suppose there is an index (tree or hash) on R (UID)

I/O Cost: NU + NTuples(U) x IR
Index lookup cost IR depends on index properties (what all?)

A.k.a Block INLJ (tuple/page INLJ are just silly!)
Q: Why does step 2 help? Why not buffer index pages?

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

I/O Cost: EMS(NR) + EMS(NU) + NR + NU

1. Sort R on UID
2. Sort U on UserID
3. Merge sorted R and U and check for matching tuple pairs
4. If any pair matches, stitch them, and output

If we have “enough” buffer pages, an improvement possible:
No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

I/O Cost: 3 x (NR + NU)

1. Obtain runs of R sorted on UID (only Sort phase)
2. Obtain runs of U sorted on UserID (only Sort phase)
3. Merge all runs of R and U together and check for

matching tuple pairs
4. If any pair matches, stitch them, and output

How many buffer
pages needed? NU ≤ NR

runs after steps 1 & 2 ~ NR/2B + NU/2B
So, we need B > (NR + NU)/2B
Just to be safe:

Review Questions!

Given tables R and U with NR = 1000, NU = 500, NTuples(R) =
80,000, and NTuples(U) = 25,000. Suppose all attributes are 8
bytes long (except Name, which is 40 bytes). Let B = 400. Let
UID be uniformly distributed in R. Ignore output write costs.

R RatingID Stars RateDate UID MID
UID Name Age JoinDateU

1. What is the I/O cost of projecting R on to Stars (with
deduplication)?

2. What are the I/O costs of BNLJ and SMJ for a join on UID?
3. What are the I/O costs of BNLJ and SMJ if B = 50 only?
4. Which buffer replacement policy is best for BNLJ, if B = 800?

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

I/O Cost: 3 x (NU + NR)

1. Partition U on UserID using h1()
2. Partition R on UID using h1()
3. For each partition of Ui :
4. Build hash table in memory on Ui
5. Probe with Ri alone and check for matching tuple pairs
6. If any pair matches, stitch them, and output

This is very similar to the hashing-based Project!

NU ≤ NR

U becomes “Inner table”
R is now “Outer table”

Hash Join

B buffer pages DiskDisk

Original U OUTPUT

2INPUT

1

hash
func.
h1 B-1

Partitions of U

1

2

B-1
. . .Similarly, partition R

with same h1 on UID

Q: What if B is lower?

Memory requirement:

Partitions
of U and R

Input buffer
for Ri

Hash table on Ui

B buffer pagesDisk

Output
buffer

Disk

Output
hash
func.
h2

h2

NU ≤ NR

Q: What about skews?

“Hybrid” Hash Join algorithm
exploits memory better and has slightly lower I/O cost

Q: What if NU > NR?

Partition phase

Stitching Phase

I/O cost: 3 x (NU + NR)

(B-2) >= F x NU / (B-1)
Rough:

❖ Block Nested Loop Join vs Hash Join:
Identical if (B-2) > F x NU! Why? I/O cost?
Otherwise, BNLJ is potentially much higher! Why?

❖ Sort Merge Join vs Hash Join:
To get I/O cost of 3 x (NU + NR), SMJ needs:
But to get same I/O cost, HJ needs only:
Thus, HJ is often more memory-efficient and faster

❖ Other considerations:
HJ could become much slower if data has skew! Why?
SMJ can be faster if input is sorted; gives sorted output

❖ Query optimizer considers all these when choosing phy. plan

Join: Comparison of Algorithms
NU ≤ NR

B buffer pages

Join: Crossovers of I/O Costs

We plot the I/O costs of BNLJ, SMJ, and HJ

Arity of both R and U = 408GB memory; 8KB pages
(So, B = 1024)

I/O
 c

os
t i

n
pa

ge
s

|U| = 5m; NU ~ 195K
|U| = 5m; NU ~ 195K
|R| = 500m; NR ~ 19.5M

NTuples(R) / 5m Vary buffer memory

fails
Usually, HJ
dominates!

More General Join Conditions

❖ If JoinCondition has only equalities, e.g., A.a1 = B.b1
and A.a2 = B.b2

HJ: works fine; hash on (a1, a2)
SMJ: works fine; sort on (a1, a2)
INLJ: use (build, if needed) a matching index on A
What about disjunctions of equalities?

❖ If JoinCondition has inequalities, e.g., A.a1 > B.b1
HJ is useless; SMJ also mostly unhelpful! Why?
INLJ: build a B+ tree index on A
Inequality predicates might lead to large outputs!

NA ≤ NB

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

❖ Easy case: X is empty!
Simply aggregate values of Y
Q: How to scale this to larger-than-memory data?

❖ Difficult case: X is not empty
“Collect” groups of tuples that match on X, apply Agg(Y)
3 algorithms: sorting-based, hashing-based, index-based

“Grouping Attributes”
(Subset of R’s attributes)

A numerical attribute in R
“Aggregate Function”

(SUM, COUNT, MIN, MAX, AVG)

Group By Aggregate: Easy Case

❖ All 5 SQL aggregate functions computable incrementally, i.e.,
one tuple at-a-time by tracking some “running information”

RatingID Stars
2 3.0
39 5.0
12 2.5
402 5.0
293 2.5
49 1.0
66 2.5

SUM: Partial sum so far 3.0; 8.0; 10.5;
15.5; 18.0;
19, 21.5 COUNT is similar

MAX: Maximum seen so far 3.0; 5.0
MIN is similar

Q: What about AVG?

Track both SUM and COUNT!
In the end, divide SUM / COUNT

3.0; 2.5; 1.0

Group By Aggregate: Difficult Case

❖ Collect groups of tuples (based on X) and aggregate each

MID UID Stars
21 3 3.0
55 294 5.0
80 12 2.5
21 32 5.0
55 24 2.0
55 19 1.0
21 11 4.0
55 123 4.0

21 123 3.0
21 294 5.0
21 11 4.0

55 294 5.0
55 24 2.0
55 11 1.0
55 123 4.0

80 123 2.5

AVG for 21 is 4.0

AVG for 55 is 3.0

AVG for 80 is 2.5

Q: How to collect groups? Too large?

Group By Agg.: Sorting-Based

I/O Cost: NR + NT + EMSMerge(NT)

1. Sort R on X (drop all but X U {Y} in Sort phase to get T)
2. Read in sorted order; for every distinct value of X:
3. Compute the aggregate on that group (“easy case”)
4. Output the distinct value of X and the aggregate value

Improvement: Partial aggregations during Sort Phase!

Q: How does this reduce the above I/O cost?

Q: Which other sorting-based op. impl. had this cost?

Group By Agg.: Hashing-Based

I/O Cost: NR

1. Build h.t. on X; bucket has X value and running info.
2. Scan R; for each tuple in each page of R:
3. If h(X) is present in h.t., update running info.
4. Else, insert new X value and initialize running info.
5. H.t. holds the final output in the end!

Q: What if h.t. using X does not fit in memory

(Number of distinct values of X in R is too large)?

Group By Agg.: Index-Based

❖ Given B+ Tree index s.t. X U {Y} is a subset of IndexKey:
Use leaf level of index instead of R for sort/hash algo.!

❖ Given B+ Tree index s.t. X is a prefix of IndexKey:
Leaf level already sorted! Can fetch data records in order
If AltRecord approach used, just one scan of leaf level!

Q: What if X is a non-prefix subset of IndexKey?

Q: What if it does not use AltRecord?

Review Questions!

1. Suppose we have infinite buffer memory. Which join
algorithm will have the lowest I/O cost? What about Project?

2. Given tables A and B such that they are both sorted on the
joining attributes. Which join algorithm is preferable?

3. Why does SMJ not suffer from the skew problem HJ does?
4. How does SMJ give sorted outputs? Why not HJ?
5. Given a B+ Tree on Ratings(UID,MID) with AltRecord, what is

the I/O cost of computing the average rating for each user?
For each movie?

6. How to impl. VARIANCE aggregate efficiently? MEDIAN?

Operator Implementations

Need scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!

Select

Project
Join

Group By Aggregate

(Optional) Set Operations

Set Operations

Similar to intersection, but need
to deduplicate upon matches
and output only once!
Sounds familiar?

Union/Difference Algorithms

So, what is query optimization and how

does it work?

Meet Query Optimization

A given LQP could have several possible
PQPs with very different runtime performanceBasic Idea:

Get the optimal (fastest) PQP for a given LQPGoal (Ideal):

Goal (Realistic): Fine, just avoid the “clearly awful” PQPs!

Query optimization is a metaphor
for life itself! It is often hard to even
know what an optimal plan would
be, but it is feasible to avoid many
obviously bad plans!Jeff Naughton

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

System Catalog

❖ Set of pre-defined relations for metadata about DB (schema)

❖ For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

❖ For each Index:

Index name, Structure (B+ tree vs. hash, etc.); Index key

❖ For each View:

View name, and View definition

Statistics in the System Catalog

❖ RDBMS periodically collects stats about DB (instance)

❖ For each Table R:
Cardinality, i.e., number of tuples, NTuples (R)
Size, i.e., number of pages, NPages (R), or just NR

❖ For each Index X:
Cardinality, i.e., number of distinct keys IKeys (X)
Size, i.e., number of pages IPages (X) (for a B+ tree,
this is the number of leaf pages only)

Height (for tree indexes) IHeight (X)
Min and max keys in index ILow (X), IHigh (X)

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

File Scan
Read Index leaf pages

Movies Table

File Scan
Read heapfile

RatingsTable

Hash Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table Concept: Pipelining

Q: Does the hash-based
aggregate have to wait
till the entire output of
the “upstream” hash join
is available?

No! We can
“pipeline” the output
of the join – pass on
a join output tuple as
soon as it is obtained!

Concept: Pipelining

Do not force “downstream” physical operators
to wait till the entire output is availableBasic Idea:

Display output to the user incrementally
CPU Parallelism in multi-core systems!Benefits:

Tuples

File Scan

Hash Join

Hash-based
Aggregate

Concept: Pipelining

❖ Crucial for PQPs with workflow of many phy. ops.

❖ Common feature of almost all RDBMSs

❖ Works for many operators: SCAN, HASH JOIN, etc.

Q: Are all physical operators amenable to pipelining?

No! Some may “stall” the pipeline: “Blocking Op”

Usually, any phy. op. involving sorting is blocking!

A blocking op. requires its output to be Materialized
as a temporary table

File Scan
Read heapfile

Movies Table

File Scan
Read heapfile

RatingsTable

Sort-Merge Join

Hash-based
Aggregate

External Merge-Sort
In-mem quicksort; B=50

Result Table Blocking Op

This phy. op. is blocking
because we need to sort
Movies and sort Ratings
(materialize the output)
before we can start any
aggregate computations!

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Mechanism: Iterator Interface

❖ Software API to process PQP; makes pipelining easy to impl.

❖ Enables us to abstract away individual phy. op. impl. details

❖ Three main functions in usage interface of each phy. op.:

Open(): Initialize the phy. op. “state”, get
arguments

Allocate input and output buffers

GetNext(): Ask the phy. op. impl. to “deliver” next
output tuple; pass it on; if blocking, wait

Close(): Clear phy. op. state, free up space

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

Enumerating Alternative PQPs

❖ Plan Enumerator explores various PQPs for a given LQP

❖ Challenge: Space of plans is huge! How to make it
feasible?

❖ RDBMS Plan Enumerator has Rules to help determine what

plans to enumerate, and also consults Cost models
❖ Two main sources of Rules for enumerating plans:

Logical: Algebraic Rewrites:

Use relational algebra equivalence to rewrite LQP itself!

Physical: Choosing Phy. Op. Impl.:
Use different phy. op. impl. for a given log. op. in LQP

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Algebraic Rewrite Rules

❖ Rewrite a given RA query in to another that is equivalent (a

logical property) but might be faster (a physical property)

❖ RA operators have some formal properties we can exploit

❖ We will cover only a few rewrite rules:

Single-operator Rewrites

Unary operators

Binary operators

Cross-operator Rewrites

Unary Operator Rewrites

Q: Why are cascading rewrites beneficial?

❖ Key unary operators in RA:

❖ Commutativity of

❖ Cascading of

❖ Cascading of

Binary Operator Rewrites

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

❖ Key binary operator in RA:

❖ Associativity of

❖ Commutativity of

Cross-Operator Rewrites

❖ Commuting and

❖ Combining and

❖ “Pushing the select”

❖ Commuting with and

Review Question

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Choosing Phy. Op. Impl.

3 options 3 options 4 options = 36 PQPs!

Q: With algebraic
rewrites?!

❖ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

❖ Recall various RA op. impl. with their I/O (and CPU costs)

File scan vs Indexed (B+ Tree vs Hash)

Hashing-based vs Sorting-based vs Indexed

BNLJ vs INLJ vs SMJ vs HJ

etc.

Phy. Op. Impl.: Other Factors

❖ Are the indexes clustered or unclustered?

❖ Are there multiple matching indexes? Use multiple?

❖ Are index-only access paths possible for some ops?

❖ Are there “interesting orderings” among the inputs?

❖ Would sorted outputs benefit downstream ops?

❖ Estimation of cardinality of intermediate results!

❖ How best to reorder multi-table joins?

Still a hard, open
research problem!Query optimizers are complex beasts!

Phy. Op. Impl.: Join Orderings
❖ Since joins are associative, exponential number of orderings!

Left Deep tree Right Deep tree
“Bushy” tree

❖ Almost all RDBMSs consider only left deep join trees
Enables easy pipelining! Why?

❖ “Interesting orderings” idea from System R optimizer paper
❖ Dynamic program to combine enumeration and costing
“Access Path Selection in a Relational Database Management System” SIGMOD’79

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Overview of Query Optimizer

SQL Query

Logical Query Plan

Physical Query Plan
(Optimized)

Parser

Plan
Enumerator

Plan Cost
Estimator

Optimizer

To Scheduler/Executor

Catalog

Costing PQPs

❖ For each PQP considered by the Plan Enumerator, the Plan

Cost Estimator computes “Cost” of the PQP

Weighted sum of I/O cost and CPU cost

(Distributed RDBMSs also include Network cost)

❖ Challenge: Given a PQP, compute overall cost
❖ Issues to consider:

Pipelining vs. blocking ops; cannot simply add costs!

Cardinality estimation for intermediate tables!

Q: What statistics does the catalog have to help?

Costing PQPs

❖ Most RDBMSs use various heuristics to make costing
tractable; so, it is approximate!

❖ Example: Complex predicates

Not enough info!

But, most RDBMSs use the independence heuristic!

Selectivity of conjunction = Product of selectivities

Thus, ≈ 0.05 * 0.1 = 0.005, i.e., 0.5%

Query Optimization: Summary

❖ Plan Enumerator and Cost Estimator work in lock step:

Rules determine what PQPs are enumerated

Logical: Algebraic rewrites of LQP

Physical: Op. Impl. and ordering alternatives

Cost models and heuristics help cost the PQPs

❖ Still an active research area!

Parametric Q.O., Multi-objective Q.O.,

Multi-objective parametric Q.O., Multiple Q.O.,

Online/Adaptive Q.O., Dynamic re-optimization, etc.

Review Question

RatingID Stars RateDate UID MID

SELECT COUNT(DISTINCT UID) FROM Ratings

Page size 8KB; Buffer memory 4GB; 8B for each field

Propose an efficient physical plan and compute its I/O cost.

10m pages

Q: What if there was an unclustered B+ tree index on UID?
(RecordID pointers can be assumed to be 8B too)

Review Question

RatingID Stars RateDate UID MID

MID Name Year Director

SELECT AVG(Stars) FROM Ratings R, Movies M
WHERE R.MID = M.MID AND

M.Director = “Christopher Nolan” AND
R.UID = 1234;

10m pages

100k pages
Page size 8KB; Buffer memory 4GB

Propose an efficient physical plan that does not materialize any
intermediate data (fully pipelined) and compute its I/O cost.

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

Introducing Materialized Views

❖ A View is a “virtual table” created with an SQL query

❖ A Materialized View is a physically instantiated/stored view

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

SELECT AVG(Stars)
FROM Ratings R, Movies M, Users U
WHERE R.MID = M.MID AND R.UID = U.UID

M.Director = “Christopher Nolan” AND
U.Age >= 20 AND U.Age < 30;

Requires file scans of R, M, and U and, say, hash joins

Materialized Views Example

CREATE MATERIALIZED VIEW NolanRatings AS
SELECT RatingID, Stars, UID, MID
FROM Ratings R, Movies M
WHERE R.MID = M.MID AND

M.Director = “Christopher Nolan”;

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

Creates a subset of R with ratings for only Nolan’s movies

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

Given the materialized view V, RDBMS optimizer can
automatically rewrite to use V to avoid scans of R and M

Likely much faster since V is likely much smaller than R,
but this depends on data statistics; leave it to optimizer!

Q: How did DBA know to materialize a view for Nolan ratings?

Materialized Views Example

RatingID Stars RateDate UID MID
UID Name Age JoinDate MID Name Year Director

Example:

We are given this materialized view V over R and M

Q: What if new ratings are inserted to R for Nolan’s movies?

Materialized View Maintenance

❖ RDBMS will automatically “trigger” updates to V
❖ Such updates are called Materialized View Maintenance
❖ 2 alternatives: Recompute whole view from scratch vs

Incremental View Maintenance (IVM)

Recomputing V from scratch may be an overkill
Try to incrementally update parts that change

Incremental View Maintenance (IVM)

Basic Idea:

❖ D’ can be the outcome of inserts and/or deletes to D
❖ Q can be a unary query or involve multiple tables
❖ Computing V’ may require inserts and/or deletes to V;

realized as algebraic rewrite rules at LQP level
❖ Whether or not IVM of V is feasible and/or efficient depends

on form of Q, nature of updates to D, data statistics, etc.
❖ We will focus only on inserts to D triggering inserts to V

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Select:

Project:

Select and Project can be composed and reordered as before

Can be just an append (union with “bag” semantics)

Requires full set union with V for deduplication

Incremental View Maintenance (IVM)

Unary IVM for insertions:

Newly inserted tuples

Group By Agg:

Feasibility of IVM Depends on Agg() function!
Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags
AVG not possible in general; needs deeper system changes

Incremental View Maintenance (IVM)

Join IVM for insertions:

Alternatively, we can just append the output of the
following query to V (union below is just append too):

IVM for complex queries compose such op-level rewrites

Assume no duplicate inserts

Query Optimization

❖ Overview of Query Optimizer
❖ Physical Query Plan (PQP)

Concept: Pipelining
Mechanism: Iterator Interface

❖ Enumerating Alternative PQPs
Logical: Algebraic Rewrites
Physical: Choosing Phy. Op. Impl.

❖ Costing PQPs
❖ Materialized Views

