CS 6530: Advanced Database Systems Fall 2022

Lecture 14 Query processing and optimization

Prashant Pandey prashant.pandey@utah.edu

Acknowledgement: Slides taken from Prof. Arun Kumar, UCSD

Lifecycle of a Query

The Netflix Schema

Ratings

1	3.5	08/27/15	79	20

<u>UID</u>	Name	Age	JoinDate	Users
79	Alice	23	01/10/13	
80	Bob	41	05/10/13	

Movies

MID	Name	Year	Director
20	Inception	2010	Christopher Nolan
16	Avatar	2009	Jim Cameron

Example SQL Query

<u>RatingID</u>	Stars	Ra	ateDate UID		MID	
UID	Name		Age	JoinDate		
MID	Name	Ye		ar	Dir	ector

SELECT	M.Year, COUNT(*) AS NumBest
FROM	Ratings R, Movies M
WHERE	R.MID = M.MID
	AND R.Stars = 5
GROUP BY	M.Year

ORDER BY NumBest DESC

Suppose, we also have a B+Tree Index on Ratings (Stars)

Logical-Physical Separation in DBMSs

Logical = Tells you "what" is computed Physical = Tells you "how" it is computed

Declarativity!

Declarative "querying" (logical-physical separation) is a key system design principle from the RDBMS world: Declarativity often helps improve <u>user productivity</u> Enables behind-the-scenes <u>performance optimizations</u>

People are still (re)discovering the importance of this key system design principle in diverse contexts...(MapReduce/Hadoop, networking, file system checkers, interactive data-vis, graph systems, large-scale ML, etc.)

Operator Implementations

Select	Need scalability to larger-than-
Project	memory (on-disk) datasets and high <u>performance</u> at scale!
Join	
Group By Aggreg	ate
(Optional) Set Op	erations

But first, what metadata does the RDBMS have?

System Catalog

Set of pre-defined relations for metadata about DB (schema)

For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

For each Index:

Index name, Structure (B+ tree vs. hash, etc.); IndexKey

For each View:

View name, and View definition

Statistics in the System Catalog

RDBMS periodically collects stats about DB (instance)

For each Table R:

Cardinality, i.e., number of tuples, **NTuples (R)**

Size, i.e., number of pages, **NPages (R)**, or just **N**_R or **N**

For each Index X:

Cardinality, i.e., number of distinct keys **IKeys (X)** Size, i.e., number of pages **IPages (X)** (for a B+ tree, this is the number of leaf pages only) Height (for tree indexes) **IHeight (X)** Min and max keys in index **ILow (X)**, **IHigh (X)**

Operator Implementations

Selection: Access Path

$\sigma_{SelectCondition}(\mathbf{R})$

- Access path: <u>how exactly is a table read</u> ("accessed")
- Two common access paths:

File scan:

- Read the heap/sorted file; apply SelectCondition
- I/O cost: O(N)

Indexed:

Use an index that matches the SelectCondition

I/O cost: Depends! For equality check, O(1) for hash index,

and O(log(N)) for B+-tree index

Indexed Access Path

 $\sigma_{SelectCondition}(\mathbf{R})$

An Index <u>matches</u> a predicate if it can avoid accessing most tuples that violate the predicate (reduces I/O!)

Stars RateDate UID

MID

Examples:

 $\sigma_{\text{Stars}=5}$ (**R**) R <u>RatinglD</u>

Hash index on R(Stars) matches this predicate

CI. B+ tree on R(Stars) matches too

What about uncl. B+ tree on R(Stars)?

Selectivity of a Predicate

$\sigma_{SelectCondition}(\mathbf{R})$

 Selectivity of SelectionCondition = percentage of number of tuples in R satisfying it (in practice, count pages, not tuples)

$$\sigma_{Stars=5}(\mathbf{R}) \quad \mathsf{R}$$
Selectivity = 2/7 ~ 28%
$$\sigma_{Stars=2.5}(\mathbf{R})$$
Selectivity = 3/7 ~ 43%
$$\sigma_{Stars<2}(\mathbf{R})$$
Selectivity = 1/7 ~ 14%

2	3.0	 	
39	5.0	 	
12	2.5	 	
402	5.0	 	
293	2.5	 	
49	1.0	 	
66	2.5	 	

Selectivity and Matching Indexes

An Index <u>matches</u> a predicate if it brings I/O cost very close to

(N * predicate's selectivity); compare to file scan!

R

$$\sigma_{Stars=5}(\mathbf{R})$$

N x Selectivity = 2

Hash index on R(Stars) CI. B+ tree on R(Stars) Uncl. B+ tree on R(Stars)?

2	3.0	 	
39	5.0	 	
12	2.5	 	
402	5.0	 	
293	2.5	 	
49	1.0	 	
66	2.5	 	

Assume only one tuple per page

Matching an Index: More Examples

$$\sigma_{Stars>4}(\mathbf{R})$$

Hash index on R(Stars) does not match! Why?

CI. B+ tree on R(Stars) still matches it! Why?

CI. B+ tree on R(Stars,RateDate)?

CI. B+ tree on R(Stars,RateDate,MID)?

CI. B+ tree on R(RateDate,Stars)?

Uncl. B+ tree on R(Stars)?

B+ tree has a nice "prefix-match" property!

Operator Implementations

Group By Aggregate (Optional) Set Operations

RRatingIDStarsRateDateUIDMID

SELECT R.MID, R.Stars FROM Ratings R Trivial to implement! Read R and <u>discard</u> other attributes <u>I/O cost:</u> N_R, i.e., Npages(R) (ignore output write cost)

* SELECT DISTINCT R.MID, R.Stars FROM Ratings R Relational Project! $\pi_{MID,Stars}(\mathbf{R})$

Need to <u>deduplicate</u> tuples of (MID, Stars) after discarding other attributes; but these tuples might not fit in memory!

Project: 2 Alternative Algorithms

$\pi_{ProjectionList}(\mathbf{R})$

Sorting-based:

Idea: Sort R on ProjectionList (External Merge Sort!)

In Sort Phase, discard all other attributes
 In Merge Phase, eliminate duplicates
 Let T be the temporary "table" after step 1
 I/O cost: NR + NT + EMSMerge(NT)

Hashing-based:

Idea: Build a hash table on R(ProjectionList)

Hashing-based Project

$\pi_{ProjectionList}(\mathbf{R})$

To build a hash table on R(ProjectionList), read R and discard other attributes on the fly

✤ If the hash table fits entirely in memory:

Done!

I/O cost: N_R

Needs B >= F x N_R

If not, 2-phase algorithm:

Deduplication

Partition

Q: What is the size of a hash table built on a P-page file? F x P pages ("**Fudge factor**" F ~ 1.4 for overheads)

CHOOL OF COMPUTING

Project: Comparison of Algorithms

Sorting-based vs. Hashing-based:

1. Usually, I/O cost (excluding output write) is the same:

 N_R + 2 N_T (why is EMSMerge(N_T) only 1 read?)

2. Sorting-based gives sorted result ("nice to have")

- 3. I/O could be higher in many cases for hashing (why?)
- In practice, sorting-based is popular for Project
- If we have any index with ProjectionList as <u>subset</u> of IndexKey Use only leaf/bucket pages as the "T" for sorting/hashing
- If we have tree index with ProjectionList as prefix of IndexKey Leaf pages are already sorted on ProjectionList (why?)!

Just scan them in order and deduplicate on-the-fly!

SCHOOL OF COMPUTI UNIVERSITY OF UTAH

Operator Implementations

Group By Aggregate (Optional) Set Operations

Join

This course: we focus primarily on <u>equi-join</u> (the most common, important, and well-studied form of join)

We study 4 major (equi-) join implementation algorithms:

Page/Block Nested Loop Join (PNLJ/BNLJ)

Index Nested Loop Join (INLJ)

Sort-Merge Join (SMJ)

Hash Join (HJ)

Nested Loop Joins: Basic Idea

"Brain-dead" idea: nested for loops over the tuples of R and U!

- 1. For each tuple in Users, t_U :
- 2. For each tuple in Ratings, t_R :
- 3. If they match on join attribute, "stitch" them, output

But we read <u>pages</u> from disk, not single tuples!

Page Nested Loop Join (PNLJ)

"Brain-dead" nested for loops over the pages of R and U!

- 1. For each <u>page</u> in Users, p_U :
- 2. For each <u>page</u> in Ratings, p_R :
- 3. Check each pair of tuples from p_R and p_U
- 4. If any pair of tuples match, stitch them, and output

U is called "Outer table"Outer table should beR is called "Inner table"Outer table should be
the smaller one:I/O Cost: $N_U + N_U \times N_R$ $N_U \leq N_R$

Q: How many buffer pages are needed for PNLJ?

Block Nested Loop Join (BNLJ)

Basic idea: More effective usage of buffer memory (B pages)!

- 1. For each sequence of B-2 pages of Users at-a-time :
- 2. For each page in Ratings, pr :
- 3. Check if any pR tuple matches any U tuple in memory
- 4. If any pair of tuples match, stitch them, and output

I/O Cost:
$$N_U + \left[\frac{N_U}{B-2}\right] \times N_R$$

Step 3 ("brain-dead" in-memory all-pairs comparison) could be quite slow (high CPU cost!)

In practice, a <u>hash table</u> is built on the U pages in-memory to reduce #comparisons (how will I/O cost change above?)

Index Nested Loop Join (INLJ)

Basic idea: If there is an index on R or U, why not use it? Suppose there is an index (tree or hash) on R (UID)

- 1. For each sequence of B-2 pages of Users at-a-time :
- 2. Sort the U tuples (in memory) on UserID
- 3. For each U tuple t_U in memory :
- 4. Lookup/probe index on R with the UserID of t_U
- 5. If any R tuple matches it, stitch with t_U , and output

I/O Cost: Nu + NTuples(U) x IR

Index lookup cost IR depends on index properties (what all?) A.k.a *Block* INLJ (tuple/page INLJ are just silly!)

Q: Why does step 2 help? Why not buffer index pages?

Sort-Merge Join (SMJ)

Basic idea: Sort both R and U on join attr. and merge together!

- 1. Sort R on UID
- 2. Sort U on UserID
- 3. Merge sorted R and U and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

<u>I/O Cost: EMS(N_R) + EMS(N_U) + N_R + N_U</u>

If we have "enough" buffer pages, an improvement possible: No need to sort tables fully; just merge all their runs together!

Sort-Merge Join (SMJ)

Basic idea: Obtain runs of R and U and merge them together!

- 1. Obtain runs of R sorted on UID (only Sort phase)
- 2. Obtain runs of U sorted on UserID (only Sort phase)
- 3. Merge all runs of R and U together and check for matching tuple pairs
- 4. If any pair matches, stitch them, and output

<u>I/O Cost: 3 x (N_R + N_U)</u>

How many buffer pages needed?

runs after steps 1 & 2 ~ N_R/2B + N_U/2B So, we need B > (N_R + N_U)/2B Just to be safe: $B > \sqrt{N_R}$ $N_U \le N_R$

Review Questions!

RRatingIDStarsRateDateUIDMIDUUIDNameAgeJoinDate

Given tables R and U with $N_R = 1000$, $N_U = 500$, NTuples(R) = 80,000, and NTuples(U) = 25,000. Suppose all attributes are 8 bytes long (except Name, which is 40 bytes). Let B = 400. Let UID be *uniformly distributed* in R. Ignore output write costs.

- 1. What is the I/O cost of projecting R on to Stars (with deduplication)?
- 2. What are the I/O costs of BNLJ and SMJ for a join on UID?
- 3. What are the I/O costs of BNLJ and SMJ if **B = 50** only?
- 4. Which buffer replacement policy is best for BNLJ, if **B = 800**?

Hash Join (HJ)

Basic idea: Partition both on join attr.; join each pair of partitions

- 1. Partition U on UserID using h1()
- 2. Partition R on UID using h1()
- 3. For each partition of Ui :
- 4. Build hash table in memory on Ui
- 5. Probe with Ri alone and check for matching tuple pairs
- 6. If any pair matches, stitch them, and output

<u>I/O Cost: 3 x (N_U + N_R)</u>

U becomes "<u>Inner</u> table" R is now "<u>Outer</u> table"

 $N_{II} \leq N_{R}$

This is very similar to the hashing-based Project!

Hash Join

Similarly, partition R with same h1 on UID

 $N_{U} \leq N_{R}$ Memory requirement: $(B-2) \ge F \times N \cup / (B-1)$ Rough: $B > \sqrt{F \times N_U}$

 $I/O \text{ cost: } 3 \times (N_U + N_R)$

Q: What if B is lower? **Q:** What about skews? **Q:** What if $N_{II} > N_R$?

exploits memory better and has slightly lower I/O cost

Join: Comparison of Algorithms

Block Nested Loop Join vs Hash Join:

Identical if (B-2) > F x Nu! Why? I/O cost?

Otherwise, BNLJ is potentially much higher! Why?

Sort Merge Join vs Hash Join:

To get I/O cost of 3 x (Nu + NR), SMJ needs: $B > \sqrt{N_R}$ But to get same I/O cost, HJ needs only: $B > \sqrt{F \times N_U}$ Thus, HJ is often more memory-efficient and faster

 $N_{II} \leq N_{R}$

B buffer pages

Other considerations:

HJ could become much slower if data has skew! Why? SMJ can be faster if input is sorted; gives sorted output Query optimizer considers all these when choosing phy. plan
Join: Crossovers of I/O Costs

UNIVERSITY OF UTAH

More General Join Conditions

$$A \bowtie_{JoinCondition} B$$
 $N_A \leq N_B$

If JoinCondition has only equalities, e.g., A.a1 = B.b1 and A.a2 = B.b2

HJ: works fine; hash on (a1, a2)

SMJ: works fine; sort on (a1, a2)

INLJ: use (build, if needed) a *matching* index on A What about disjunctions of equalities?

If JoinCondition has inequalities, e.g., A.a1 > B.b1
 HJ is useless; SMJ also mostly unhelpful! Why?
 INLJ: build a B+ tree index on A
 Inequality predicates might lead to large outputs!

Operator Implementations

SelectNeed scalability to larger-than-
memory (on-disk) datasets and
high performance at scale!Join

Group By Aggregate

(Optional) Set Operations

Group By Aggregate

 $\begin{array}{l} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$

Easy case: X is empty!

Simply aggregate values of Y

Q: How to scale this to larger-than-memory data?

Difficult case: X is not empty

"Collect" groups of tuples that match on X, apply Agg(Y)

3 algorithms: sorting-based, hashing-based, index-based

Group By Aggregate: Easy Case

All 5 SQL aggregate functions computable *incrementally*, i.e., one tuple at-a-time by tracking some "<u>running information</u>"

2	3.0
39	5.0
12	2.5
402	5.0
293	2.5
49	1.0
66	2.5

SUM: Partial sum so far	3.0; 8.0; 10.5;		
	15.5; 18.0;		
COUNT IS SIMILAR	19, 21.5		

MAX: Maximum seen so far 3.0; 5.0 MIN is similar 3.0; 2.5; 1.0

Q: What about AVG?

Track both SUM and COUNT! In the end, divide SUM / COUNT

Group By Aggregate: Difficult Case

Collect groups of tuples (based on X) and aggregate each

			, A
21	3	3.0	
55	294	5.0	
80	12	2.5	
21	32	5.0	
55	24	2.0	
55	19	1.0	
21	11	4.0	
55	123	4.0	Q

$\gamma_{MID,AVG(Stars)}(\mathbf{R})$						
			21	123	3.0	
	3.0		21	294	5.0	A
	5.0		21	11	4.0	
	2.5		55	294	5.0	
	5.0		55	24	2.0	Λ
	2.0		55	11	1.0	A
	1.0		55	123	4.0	
	4.0		80	123	2.5	A

AVG for 21 is 4.0

AVG for 55 is 3.0

AVG for 80 is 2.5

Q: How to collect groups? Too large?

Group By Agg.: Sorting-Based

- 1. Sort R on X (drop all but X U {Y} in Sort phase to get T)
- 2. Read in sorted order; for every distinct value of X:
- 3. Compute the aggregate on that group ("easy case")
- 4. Output the distinct value of X and the aggregate value

I/O Cost: NR + NT + EMSMerge(NT)

Q: Which other sorting-based op. impl. had this cost?

Improvement: Partial aggregations during Sort Phase!

Q: How does this reduce the above I/O cost?

Group By Agg.: Hashing-Based

- 1. Build h.t. on X; bucket has X value and running info.
- 2. Scan R; for each tuple in each page of R:
- 3. If h(X) is present in h.t., *update* running info.
- 4. Else, *insert* new X value and *initialize* running info.
- 5. H.t. holds the final output in the end!

<u>I/O Cost: N_R</u>

Q: What if h.t. using X does not fit in memory

(Number of distinct values of X in R is too large)?

Group By Agg.: Index-Based

Given B+ Tree index s.t. X U {Y} is a <u>subset</u> of IndexKey:
Use leaf level of index instead of R for sort/hash algo.!

Siven B+ Tree index s.t. X is a <u>prefix</u> of IndexKey: Leaf level already sorted! Can fetch data records in order If AltRecord approach used, just one scan of leaf level!

Q: What if it does not use AltRecord?

Q: What if X is a non-prefix subset of IndexKey?

Review Questions!

- 1. Suppose we have infinite buffer memory. Which join algorithm will have the lowest I/O cost? What about Project?
- 2. Given tables A and B such that they are both sorted on the joining attributes. Which join algorithm is preferable?
- 3. Why does SMJ not suffer from the skew problem HJ does?
- 4. How does SMJ give sorted outputs? Why not HJ?
- 5. Given a B+ Tree on Ratings(UID,MID) with AltRecord, what is the I/O cost of computing the average rating for each user? For each movie?
- 6. How to impl. VARIANCE aggregate efficiently? MEDIAN?

Operator Implementations

Select	Need scalability to larger-than-
Project	memory (on-disk) datasets and high <u>performance</u> at scale!
Join	

Group By Aggregate

(Optional) Set Operations

Set Operations

Cross Product: A × B Trivial! BNLJ suffices!

♦ Intersection: $A \cap B$

Logically, an equi-join with JoinCondition being a conjunction of all attributes; same tradeoffs as before

∻ Union: A ∪ B

✤ Difference: A – B

Similar to intersection, but need to deduplicate upon matches and output only once! Sounds familiar?

Union/Difference Algorithms

Sorting-based: Similar to a SMJ A and B. Twists:

- A ∪ B: *deduplicate* matching tuples during merging
- A B: exclude matching tuples during merging
- Hashing-based: Similar to HJ of A and B. Twists:

Build hash table (h.t.) on Bi

 $A \cup B$: probe h.t. with Ai; if pair matches, discard tuple

else, *insert* Ai tuple into h.t.; <u>h.t. holds output</u>!

A – B: probe h.t. with Ai; if pair matches, discard tuple else, *output* Ai tuple <u>directly</u>

So, what is query optimization and how does it work?

Meet Query Optimization

- Basic Idea:A given LQP could have several possible
PQPs with very different runtime performance
- Goal (Ideal): Get the optimal (fastest) PQP for a given LQP
- Goal (Realistic): F COOD LOCK WITH THAT Ps! August of the iteration of metaphor in the iteration of metaphor in the iteration of male in would be but it is feasible to a dimany

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)
 Concept: Pipelining
 Mechanism: Iterator Interface
- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- Costing PQPs

 $\overset{}{\overset{}}{\overset{}}$

Materialized Views

Overview of Query Optimizer

UNIVERSITY OF UTAH

System Catalog

Set of pre-defined relations for metadata about DB (schema)

For each Relation:

Relation name, File name

File structure (heap file vs. clustered B+ tree, etc.)

Attribute names and types; Integrity constraints; Indexes

For each Index:

Index name, Structure (B+ tree vs. hash, etc.); Index key

For each View:

View name, and View definition

Statistics in the System Catalog

RDBMS periodically collects stats about DB (instance)

For each Table R:

Cardinality, i.e., number of tuples, **NTuples (R)** Size, i.e., number of pages, **NPages (R)**, or just **N**_R

For each Index X:

Cardinality, i.e., number of distinct keys **IKeys (X)** Size, i.e., number of pages **IPages (X)** (for a B+ tree, this is the number of leaf pages only) Height (for tree indexes) **IHeight (X)** Min and max keys in index **ILow (X)**, **IHigh (X)**

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)
 Concept: Pipelining

Mechanism: Iterator Interface

- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- Costing PQPs

 \mathbf{x}

Materialized Views

Concept: Pipelining

Basic Idea:

Do not force "downstream" physical operators to wait till the entire output is available

Benefits:

File Scan Hash Join Hash-based Aggregate

Display output to the user incrementally

CPU Parallelism in multi-core systems!

Tuples

Concept: Pipelining

- Crucial for PQPs with workflow of many phy. ops.
- Common feature of almost all RDBMSs
- Works for many operators: SCAN, HASH JOIN, etc.
 - **Q:** Are all physical operators amenable to pipelining?
 - No! Some may "stall" the pipeline: "Blocking Op"
 - A blocking op. requires its output to be **Materialized** as a temporary table
 - Usually, any phy. op. involving <u>sorting</u> is blocking!

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- Costing PQPs

 \bullet

Materialized Views

Mechanism: Iterator Interface

Software API to process PQP; makes pipelining easy to impl.
 Enables us to abstract away individual phy. op. impl. details
 Three main functions in usage interface of each phy. op.:
 Open(): Initialize the phy. op. "state", get
 arguments

Allocate input and output buffers

- GetNext(): Ask the phy. op. impl. to "deliver" next output tuple; pass it on; if blocking, wait
- Close(): Clear phy. op. state, free up space

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

Enumerating Alternative PQPs

Logical: Algebraic Rewrites Physical: Choosing Phy. Op. Impl.

Costing PQPs

 \bullet

Materialized Views

Overview of Query Optimizer

Enumerating Alternative PQPs

- Plan Enumerator explores various PQPs for a given LQP
- Challenge: Space of plans is huge! How to make it feasible?
- RDBMS Plan Enumerator has **Rules** to help determine what plans to enumerate, and also consults **Cost models**
- Two main sources of Rules for enumerating plans:

Logical: Algebraic Rewrites:

Use relational algebra <u>equivalence</u> to rewrite LQP itself!

Physical: Choosing Phy. Op. Impl.:

Use different phy. op. impl. for a given log. op. in LQP

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

Enumerating Alternative PQPs

Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

Costing PQPs

 \bullet

Materialized Views

Algebraic Rewrite Rules

- Rewrite a given RA query in to another that is <u>equivalent</u> (a logical property) but might be <u>faster</u> (a physical property)
 RA operators have some formal properties we can exploit
- ♦ We will cover only a few rewrite rules:
 - Single-operator Rewrites
 - **Unary** operators
 - **Binary** operators
 - **Cross-operator** Rewrites

Unary Operator Rewrites

lpha Key unary operators in RA: $\sigma~\pi$

lpha Commutativity of σ

$$\sigma_{p_1}(\sigma_{p_2}(\mathbf{R})) = \sigma_{p_2}(\sigma_{p_1}(\mathbf{R}))$$

 \diamond Cascading of σ $\sigma_{p_1}(\sigma_{p_2}(\ldots \sigma_{p_n}(\mathbf{R})\ldots)) = \sigma_{p_1 \wedge p_2 \wedge \cdots \wedge p_n}(\mathbf{R})$

 $\text{Cascading of } \pi \qquad A_i \subseteq A_{i+1} \forall i = 1 \dots (n-1)$ $\pi_{A_1}(\pi_{A_2}(\dots \pi_{A_n}(\mathbf{R})\dots)) = \pi_{A_1}(\mathbf{R})$

Q: Why are cascading rewrites beneficial?

Binary Operator Rewrites

- ♦ Key binary operator in RA:
- \diamond Commutativity of \bowtie $R \bowtie S = S \bowtie R$
- $\ \ \, \hbox{Associativity of} \, \boxtimes \, (R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Q: Why are these properties beneficial?

Q: What other binary operators in RA satisfy these?

Cross-Operator Rewrites

 \diamond Commuting σ and π $A \subseteq B$ $\sigma_{p(A)}(\pi_B(R)) = \pi_B(\sigma_{p(A)}(R))$ \diamond Combining σ and imes $\sigma_p(R \times S) = R \bowtie_p S$ "Pushing the select" $A \subseteq R.*$ $\sigma_{p(A)}(R \bowtie S) = \sigma_{p(A)}(R) \bowtie S$ $\sigma_{p(A)}(R \times S) = \sigma_{p(A)}(R) \times S$ \diamond Commuting π with imes and \bowtie $\pi_A(R \times S) = \pi_{A \cap R_*}(R) \times \pi_{A \cap S_*}(S) \quad B \subset A$ $\pi_A(R \bowtie_{p(B)} S) = \pi_{A \cap R_*}(R) \bowtie_{p(B)} \pi_{A \cap S_*}(S)$

SCHOOL OF COMPUTING UNIVERSITY OF UTAH

Review Question

Which of the following hold?

$$\pi_{A}(R \times S) = \pi_{A}(R) \times S \qquad A \subseteq R$$

$$C = A \cup B$$

$$\pi_{A}\left(R \bowtie_{p(B)} S\right) = \pi_{A}(\pi_{C \cap R}(R) \bowtie_{p(B)} \pi_{C \cap S}(S))$$

$$\sigma_{p_{1} \wedge p_{2} \vee p_{3}}(R) = \sigma_{p_{1}}(R) \cap \sigma_{p_{2}}(R) \cup \sigma_{p_{3}}(R)$$

$$A \subseteq R \text{ and } B \subseteq S$$

$$\sigma_{p(A) \wedge q(B)}(R \bowtie S) = \sigma_{p(A)}(R) \bowtie \sigma_{q(B)}(S)$$
Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

Enumerating Alternative PQPs
 Logical: Algebraic Rewrites

Physical: Choosing Phy. Op. Impl.

Costing PQPs

**

Materialized Views

Choosing Phy. Op. Impl.

♦ Given a (rewritten) LQP, pick phy. op. impl. for each log. op.

Recall various RA op. impl. with their I/O (and CPU costs)

- σ File scan vs Indexed (B+ Tree vs Hash)
- π Hashing-based vs Sorting-based vs Indexed

M BNLJ vs INLJ vs SMJ vs HJ

etc.

$$\pi_B(\sigma_{p(A)}(R) \bowtie S)$$
 Q: With algebraic
 $rewrites?!$
3 options 3 options 4 options = **36** PQPs!

Phy. Op. Impl.: Other Factors

- Are the indexes clustered or unclustered?
- Are there multiple matching indexes? Use multiple?
- Are index-only access paths possible for some ops?
- Are there "interesting orderings" among the inputs?
- Would sorted outputs benefit downstream ops?
- Estimation of <u>cardinality</u> of intermediate results!
- How best to reorder multi-table joins?

Query optimizers are complex beasts!

Still a hard, open research problem!

Phy. Op. Impl.: Join Orderings

Since joins are associative, exponential number of orderings!

 $R \bowtie S \bowtie T \bowtie U$

- Almost all RDBMSs consider only left deep join trees Enables easy pipelining! Why?
- Interesting orderings" idea from System R optimizer paper

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)

Concept: Pipelining

Mechanism: Iterator Interface

- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- *

 \diamond

Costing PQPs

Materialized Views

Overview of Query Optimizer

Costing PQPs

- For each PQP considered by the Plan Enumerator, the Plan Cost Estimator computes "Cost" of the PQP Weighted sum of I/O cost and CPU cost (Distributed RDBMSs also include Network cost)
 Challenge: Given a PQP, compute overall cost
- Issues to consider:

Pipelining vs. blocking ops; cannot simply add costs!

Cardinality estimation for intermediate tables!

Q: What statistics does the catalog have to help?

Costing PQPs

Most RDBMSs use various heuristics to make costing tractable; so, it is approximate!

Example: Complex predicates

 $\sigma_{p_1 \wedge p_2}(R)$ Suppose selectivity of p_1 is 5% and selectivity of p_2 is 10%

Q. What is the selectivity of $p_1 \land p_2$? Not enough info!

But, most RDBMSs use the **independence** heuristic!

Selectivity of conjunction = Product of selectivities

Thus, ≈ 0.05 * 0.1 = 0.005, i.e., 0.5%

Query Optimization: Summary

Plan Enumerator and Cost Estimator work in lock step: **Rules** determine what PQPs are enumerated Logical: Algebraic rewrites of LQP Physical: Op. Impl. and ordering alternatives **Cost models** and **heuristics** help cost the PQPs Still an active research area! Parametric Q.O., Multi-objective Q.O., Multi-objective parametric Q.O., Multiple Q.O., Online/Adaptive Q.O., Dynamic re-optimization, etc.

Review Question

RatingID Stars RateDate UID MID 10m pages

Page size 8KB; Buffer memory 4GB; 8B for each field

SELECT COUNT (DISTINCT UID) FROM Ratings

Propose an efficient physical plan and compute its I/O cost.

Q: What if there was an unclustered B+ tree index on UID? (RecordID pointers can be assumed to be 8B too)

Review Question

Propose an efficient physical plan that does not materialize any intermediate data (fully pipelined) and compute its I/O cost.

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)
 Concept: Pipelining

Mechanism: Iterator Interface

- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- Costing PQPs

Materialized Views

Introducing Materialized Views

♦ A View is a "virtual table" created with an SQL query

♦ A Materialized View is a physically instantiated/stored view

Example:RatingIDStarsRateDateUIDMIDUIDNameAgeJoinDateMIDNameYearDirector

SELECT AVG(Stars)

FROM Ratings R, Movies M, Users U

WHERE R.MID = M.MID AND R.UID = U.UID

M.Director = "Christopher Nolan" AND

U.Age >= 20 AND U.Age < 30;

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Director="Christopher Nolan"}(M) \bowtie \sigma_{20 \leq Age < 30}(U))$ Requires file scans of R, M, and U and, say, hash joins

Materialized Views Example

Example:RatingIDStarsRateDateUIDMIDUIDNameAgeJoinDateMIDNameYearDirector

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Director="Christopher Nolan"}(M) \bowtie \sigma_{20 \leq Age < 30}(U))$

- CREATE MATERIALIZED VIEW NolanRatings AS
- SELECT RatingID, Stars, UID, MID
- FROM Ratings R, Movies M
- WHERE R.MID = M.MID AND

M.Director = "Christopher Nolan"; Creates a subset of R with ratings for only Nolan's movies $V \leftarrow \pi_{RatingID,Stars,UID,MID}(R \bowtie \sigma_{Director}="Christopher Nolan"(M))$

Materialized Views Example

Example:RatingIDStarsRateDateUIDMIDUIDNameAgeJoinDateMIDNameYearDirector

 $\gamma_{AVG(Stars)}(R \bowtie \sigma_{Director="Christopher Nolan"}(M) \bowtie \sigma_{20 \le Age < 30}(U))$

Given the materialized view V, RDBMS optimizer can automatically *rewrite* to use V to avoid scans of R and M $V \leftarrow \pi_{RatingID,Stars,UID,MID}(R \bowtie \sigma_{Director="Christopher Nolan"}(M))$ $\gamma_{AVG(Stars)}(V \bowtie \sigma_{20 \leq Age < 30}(U))$

Likely much faster since V is likely much smaller than R, but this depends on data statistics; leave it to optimizer! *Q:* How did DBA know to materialize a view for Nolan ratings?

Materialized View Maintenance

Example:RatingIDStarsRateDateUIDMIDUIDNameAgeJoinDateMIDNameYearDirector

We are given this materialized view V over R and M

 $V \leftarrow \pi_{RatingID,Stars,UID,MID}(R \bowtie \sigma_{Director="Christopher Nolan"}(M))$

Q: What if new ratings are inserted to R for Nolan's movies?

- RDBMS will automatically "trigger" updates to V
- Such updates are called Materialized View Maintenance
- 2 alternatives: Recompute whole view from scratch vs

Incremental View Maintenance (IVM)

Basic Idea:Recomputing V from scratch may be an overkill
Try to *incrementally* update parts that change

$$V = Q(D) \qquad V' = Q(D')$$

D' can be the outcome of inserts and/or deletes to D

- Q can be a unary query or involve multiple tables
- Computing V' may require inserts and/or deletes to V; realized as algebraic rewrite rules at LQP level
- Whether or not IVM of V is feasible and/or efficient depends on form of Q, nature of updates to D, data statistics, etc.

We will focus only on inserts to D triggering inserts to V

Unary IVM for insertions:

 $R' = R \cup \Delta R$ — Newly inserted tuples Select: $V \leftarrow \sigma_{SelectCondition}(R)$ $V' = V \cup \sigma_{SelectCondition}(\Delta R)$ Can be just an *append* (union with "bag" semantics) Project: $V \leftarrow \pi_{ProjectionList}(R)$ $V' = V \cup \pi_{ProjectionList}(\Delta R)$ Requires full set union with V for deduplication Select and Project can be composed and reordered as before

Unary IVM for insertions:

 $R' = R \cup \Delta R$ — Newly inserted tuples Group By Agg: $V \leftarrow \gamma_{AggList,Agg(Y)}(R)$

Feasibility of IVM Depends on Agg() function! Rewrite rules exist for SUM, COUNT, and MIN/MAX over bags AVG not possible in general; needs deeper system changes

$$V' = \gamma_{AggList,SUM(Y)} (V \cup \gamma_{AggList,SUM(Y)} \Delta R)$$
$$V' = \gamma_{AggList,SUM(Y)} (V \cup \gamma_{AggList,COUNT(Y)} \Delta R)$$
$$V' = \gamma_{AggList,MIN(Y)} (V \cup \gamma_{AggList,MIN(Y)} \Delta R)$$

UNIVERSITY OF UTAH

Join IVM for insertions:

Assume no duplicate inserts

 $V \leftarrow A \bowtie B \qquad \begin{array}{c} A' = A \cup \Delta A \\ B' = B \cup \Delta B \end{array}$

$$V' = V \cup (\Delta A \bowtie B') \cup (A' \bowtie \Delta B)$$

Alternatively, we can just append the output of the following query to V (union below is just append too):

$$(\Delta A \bowtie B') \cup (A' \bowtie \Delta B) - (\Delta A \bowtie \Delta B)$$

IVM for complex queries compose such op-level rewrites

Query Optimization

- Overview of Query Optimizer
- Physical Query Plan (PQP)
 Concept: Pipelining
 - Mechanism: Iterator Interface
- Enumerating Alternative PQPs
 Logical: Algebraic Rewrites
 Physical: Choosing Phy. Op. Impl.
- Costing PQPs

 \mathbf{x}

Materialized Views

