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CONCURRENCY CONTROL

• The system assumes that a txn could stall at any time whenever it 
tries to access data that is not in memory.

• Execute other txns at the same time so that if one txn stalls then 
others can keep running.
• Set locks to provide ACID guarantees for txns.
• Locks are stored in a separate data structure to avoid being swapped to disk.
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ACID guarantee
• Atomicity - each statement in a transaction (to read, write, update or 

delete data) is treated as a single unit. Either the entire statement is 
executed, or none of it is executed. 
• Consistency - ensures that transactions only make changes to tables 

in predefined, predictable ways
• Isolation - when multiple users are reading and writing from the same 

table all at once, isolation of their transactions ensures that the 
concurrent transactions don’t interfere with or affect one another. 
• Durability - ensures that changes to your data made by successfully 

executed transactions will be saved, even in the event of system 
failure.



STORAGE ACCESS LATENCIES
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L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

LET’S TALK ABOUT STORAGE & RECOVERY METHODS FOR NON-
VOLATILE MEMORY DATABASE SYSTEMS
SIGMOD 2015
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CONCURRENCY CONTROL

• The protocol to allow txns to access a database in a multi-
programmed fashion while preserving the illusion that each of them 
is executing alone on a dedicated system.
• The goal is to have the effect of a group of txns on the database’s state is 

equivalent to any serial execution of all txns.

• Provides Atomicity + Isolation in ACID
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CONCURRENCY CONTROL

• For in-memory DBMSs, the cost of a txn acquiring a lock is the same 
as accessing data.
• New bottleneck is contention caused from txns trying access data at 

the same time.

• The DBMS can store locking information about each tuple together 
with its data.
• This helps with CPU cache locality.
• Mutexes are too slow. Need to use compare-and-swap (CAS) instructions.
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COMPARE-AND-SWAP

• Atomic instruction that compares contents of a memory location M to 
a given value V
• If values are equal, installs new given value V’ in M
• Otherwise operation fails
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CONCURRENCY CONTROL SCHEMES

• Two-Phase Locking (2PL)
• Assume txns will conflict so they must acquire locks on database objects before 

they are allowed to access them.

• Timestamp Ordering (T/O)
• Assume that conflicts are rare so txns do not need to first acquire locks on 

database objects and instead check for conflicts at commit time.
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TWO-PHASE LOCKING
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TWO-PHASE LOCKING

• Deadlock Detection
• Each txn maintains a queue of the txns that hold the locks that it waiting for.
• A separate thread checks these queues for deadlocks.
• If deadlock found, use a heuristic to decide what txn to kill in order to break 

deadlock.

• Deadlock Prevention
• Check whether another txn already holds a lock when another txn requests it.
• If lock is not available, the txn will either (1) wait, (2) commit suicide, or (3) kill 

the other txn.
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TIMESTAMP ORDERING

• Basic T/O
• Check for conflicts on each read/write.
• Copy tuples on each access to ensure repeatable reads.

• Optimistic Currency Control (OCC)
• Store all changes in private workspace.
• Check for conflicts at commit time and then merge.
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BASIC T/O

13

Record Read 
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

•  •  •  •

1000010001

1000010001

•  •  •

1000010005

10001

Acknowledgement: Prof. Andy Pavlo, CMU



OPTIMISTIC CONCURRENCY CONTROL

• Timestamp-ordering scheme where txns copy data read/write into a 
private workspace that is not visible to other active txns.
• When a txn commits, the DBMS verifies that there are no conflicts.

• First proposed in 1981 at CMU by H.T. Kung.
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ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM TRANSACTIONS ON DATABASE SYSTEMS 1981
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OPTIMISTIC CONCURRENCY CONTROL
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OBSERVATION

• When there is low contention, optimistic protocols perform better 
because the DBMS spends less time checking for conflicts.

• At high contention, the both classes of protocols degenerate to 
essentially the same serial execution.
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CONCURRENCY CONTROL EVALUATION

• Compare in-memory concurrency control protocols at high levels of 
parallelism.
• Single test-bed system.
• Evaluate protocols using core counts beyond what is available on today's 

CPUs.

• Running in extreme environments exposes what are the main 
bottlenecks in the DBMS.
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STARING INTO THE ABYSS: AN EVALUATION OF CONCURRENCY CONTROL WITH 
ONE THOUSAND CORES
VLDB 2014
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1000-CORE CPU SIMULATOR

• DBx1000 Database System
• In-memory DBMS with pluggable lock manager.
• No network access, logging, or concurrent indexes.
• All txns execute using stored procedures.

• MIT Graphite CPU Simulator
• Single-socket, tile-based CPU.
• Shared L2 cache for groups of cores.
• Tiles communicate over 2D-mesh network.
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TARGET WORKLOAD

• Yahoo! Cloud Serving Benchmark (YCSB)
• 20 million tuples
• Each tuple is 1KB (total database is ~20GB)

• Each transactions reads/modifies 16 tuples.
• Varying skew in transaction access patterns.
• Serializable isolation level.
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CONCURRENCY CONTROL SCHEMES
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DL_DETECT
NO_WAIT
WAIT_DIE

2PL w/ Deadlock Detection
2PL w/ Non-waiting Prevention
2PL w/ Wait-and-Die Prevention

TIMESTAMP
MVCC
OCC

Basic T/O Algorithm
Multi-Version T/O
Optimistic Concurrency Control
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READ-ONLY WORKLOAD
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WRITE-INTENSIVE / MEDIUM-CONTENTION
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WRITE-INTENSIVE / HIGH-CONTENTION
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BOTTLENECKS

• Lock Thrashing
• DL_DETECT, WAIT_DIE

• Timestamp Allocation
• All T/O algorithms + WAIT_DIE

• Memory Allocations
• OCC + MVCC
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LOCK THRASHING

• Each txn waits longer to acquire locks, causing other txn to wait 
longer to acquire locks.

• Can measure this phenomenon by removing deadlock 
detection/prevention overhead.
• Force txns to acquire locks in primary key order.
• Deadlocks are not possible.
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LOCK THRASHING
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TIMESTAMP ALLOCATION

• Mutex
• Worst option.
• Atomic Addition
• Requires cache invalidation on write.
• Batched Atomic Addition
• Needs a back-off mechanism to prevent fast burn.
• Hardware Clock
• Not sure if it will exist in future CPUs.
• Hardware Counter
• Not implemented in existing CPUs.
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TIMESTAMP ALLOCATION
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MEMORY ALLOCATIONS

• Copying data on every read/write access slows down the DBMS 
because of contention on the memory controller.
• In-place updates and non-copying reads are not affected as much.

• Default libc malloc is slow. Never use it.
• We will discuss this further later in the semester.
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NEXT CLASS

• Multi-Version Concurrency Control
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