
Lecture 03
In-memory indexing

(Trees, Tries, Skip Lists)

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

http://prashant.pandey@utah.edu

• We have a course website:
• https://www.cs.utah.edu/~pandey/courses/cs6530/fall22/index.html

• Paper report deadlines are posted
• Project #1 logistics should be available the end this week
• Join online discussion through Piazza

https://piazza.com/utah/fall2022/cs6530001fall2022

Some reminders…

https://www.cs.utah.edu/~pandey/courses/cs6530/fall22/index.html
https://piazza.com/utah/fall2022/cs6530001fall2022

Announcement
• The School of Computing would like to send a few student representatives

to the 2022 Rocky Mountain Celebration of Women in Computing.
• The conference is September 29-30, 2022 in Boulder, CO. For more

information, see
• https://toilers.mines.edu/RMCWiC/2022/home.html

• Students who attend will present a research poster.
• Travel expenses and conference registration will be paid by the School.
• If you would like to be considered, send a current resume, and a title and

abstract for your poster.
• Please send text or PDF documents only. The deadline is 5p Thursday,

September 8.
• If you have any questions, don't hesitate to ask Prof. Tucker Hermans.

https://toilers.mines.edu/RMCWiC/2022/home.html

In-memory indexing

CPU

on-chip cache

on-board cache

main memory

256 KB

8 - 12 MB

4 GB - 1 TB

1-4 n sec

~30 n sec

80-100 n sec

1 TB/sec

~400 GB/sec

~50 GB/sec

SizeLatencyBandwidth

Acknowledgement: Prof. Manos Athanassoulis, BU

In-memory indexing

CPU

on-chip cache

on-board cache

main memory

256 KB

8 - 12 MB

4 GB - 1 TB

1-4 n sec

~30 n sec

80-100 n sec

1 TB/sec

~400 GB/sec

~50 GB/sec

SizeLatencyBandwidth

Data transfer between
L3 and DRAM is the
dominating factor.

Acknowledgement: Prof. Manos Athanassoulis, BU

Data movement b/w L3 cache and memory

L3 cache

64 Bytes

Memory
64 B

Cache lines

Binary tree

• Binary tree: Each node has at most 2 children
(branching factor 2)

• Binary tree is
• A root (with data)
• A left subtree (may be empty)
• A right subtree (may be empty)

• Search/Insert/Delete O(log(𝑁))

A

B

D E

C

F

G

What is a Skip List
• A skip list for a set S of distinct (key, element) items is a series of lists
S0, S1 , … , Sh such that
• Each list Si contains the special keys +¥ and -¥
• List S0 contains the keys of S in non-decreasing order
• Each list is a subsequence of the previous one, i.e.,

S0 Ê S1 Ê … Ê Sh

• List Sh contains only the two special keys

• Skip lists are one way to implement the dictionary ADT

56 64 78 +¥31 34 44-¥ 12 23 26

+¥-¥

+¥31-¥

64 +¥31 34-¥ 23

S0

S1

S2

S3

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Implementation
• We can implement a skip list

with quad-nodes
• A quad-node stores:

• item
• link to the node before
• link to the node after
• link to the node below

• Also, we define special keys
PLUS_INF and MINUS_INF, and
we modify the key comparator
to handle them

x

quad-node

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Search
• We search for a key x in a a skip list as follows:

• We start at the first position of the top list
• At the current position p, we compare x with y ¬ key(after(p))

x = y: we return element(after(p))
x > y: we “scan forward”
x < y: we “drop down”

• If we try to drop down past the bottom list, we return NO_SUCH_KEY

• Example: search for 78

+¥-¥

S0

S1

S2

S3

+¥31-¥

64 +¥31 34-¥ 23

56 64 78 +¥31 34 44-¥ 12 23 26

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

• To insert an item (x, o) into a skip list, we use a randomized algorithm:
• We repeatedly toss a coin until we get tails, and we denote with i the

number of times the coin came up heads
• If i ³ h, we add to the skip list new lists Sh+1, … , Si +1, each containing

only the two special keys
• We search for x in the skip list and find the positions p0, p1 , …, pi of the

items with largest key less than x in each list S0, S1, … , Si

• For j ¬ 0, …, i, we insert item (x, o) into list Sj after position pj

• Example: insert key 15, with i = 2

Insertion

+¥-¥ 10 36

+¥-¥

23

23 +¥-¥

S0

S1

S2

+¥-¥

S0

S1

S2

S3

+¥-¥ 10 362315

+¥-¥ 15

+¥-¥ 2315
p0

p1

p2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Deletion
• To remove an item with key x from a skip list, we proceed as follows:

• We search for x in the skip list and find the positions p0, p1 , …, pi of the
items with key x, where position pj is in list Sj

• We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

• We remove all but one list containing only the two special keys

• Example: remove key 34

-¥ +¥4512

-¥ +¥

23

23-¥ +¥

S0

S1

S2

-¥ +¥

S0

S1

S2

S3

-¥ +¥4512 23 34

-¥ +¥34

-¥ +¥23 34
p0

p1

p2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Randomized Algorithms
• A randomized algorithm controls

its execution through random
selection (e.g., coin tosses)

• It contains statements like:
b ¬ randomBit()
if b = 0

do A …
else { b = 1}

do B …

• Its running time depends on the
outcomes of the coin tosses

• Through probabilistic analysis we can
derive the expected running time of
a randomized algorithm

• We make the following assumptions
in the analysis:
• the coins are unbiased
• the coin tosses are independent

• The worst-case running time of a
randomized algorithm is often large
but has very low probability (e.g., it
occurs when all the coin tosses give
“heads”)

• We use a randomized algorithm to
insert items into a skip list to insert
in expected O(log n)-time

• When randomization is used in data
structures they are referred to as
probabilistic data structures

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Space Usage
• The space used by a skip list

depends on the random bits used
by each invocation of the insertion
algorithm

• We use the following two basic
probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when flipping a
coin is 1/2i

Fact 2: If each of n items is present in
a set with probability p, the
expected size of the set is np

• Consider a skip list with n items
• By Fact 1, we insert an item in

list Si with probability 1/2i

• By Fact 2, the expected size of
list Si is n/2i

• The expected number of nodes
used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= åå

==

Thus, the expected space usage
of a skip list with n items is O(n)

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height
• The running time of the search

and insertion algorithms is
affected by the height h of the
skip list

• We show that with high
probability, a skip list with n
items has height O(log n)

• We use the following additional
probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event occurs is
at most np

• Consider a skip list with n items
• By Fact 1, we insert an item in list

Si with probability 1/2i

• By Fact 3, the probability that list
Si has at least one item is at most
n/2i

• By picking i = 3log n, we have that
the probability that S3log n has at
least one item is
at most

n/23log n = n/n3 = 1/n2

• Thus, a skip list with n items has
height at most 3log n with
probability at least 1 - 1/n2

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height
• Consider a skip list with n items

• By Fact 1, we insert an item in list
Si with probability 1/2i

• By Fact 3, the probability that list
Si has at least one item is at most
n/2i

• By picking i = 3log n, we have that
the probability that S3log n has at
least one item is
at most

n/23log n = n/n3 = 1/n2

• Thus, a skip list with n items has
height at most 3log n with
probability at least 1 - 1/n2

With High
Probability

(WHP)

• The running time of the search
and insertion algorithms is
affected by the height h of the
skip list

• We show that with high
probability, a skip list with n
items has height O(log n)

• We use the following additional
probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event occurs is
at most np

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Height
• Consider a skip list with n items

• By Fact 1, we insert an item in list
Si with probability 1/2i

• By Fact 3, the probability that list
Si has at least one item is at most
n/2i

• By picking i = 3log n, we have that
the probability that S3log n has at
least one item is
at most

n/23log n = n/n3 = 1/n2

• Thus, a skip list with n items has
height at most 3log n with
probability at least 1 - 1/n2

With High
Probability

(WHP)

• The running time of the search
and insertion algorithms is
affected by the height h of the
skip list

• We show that with high
probability, a skip list with n
items has height O(log n)

• We use the following additional
probabilistic fact:

Fact 3: If each of n events has
probability p, the probability
that at least one event occurs is
at most np

An event that occurs with high probability (WHP) is one
whose probability depends on a certain number n and
goes to 1 as n goes to infinity. [Wikipedia]

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Search and Update Times
• The search time in a skip list is

proportional to
• the number of drop-down steps,

plus
• the number of scan-forward

steps

• The drop-down steps are
bounded by the height of the skip
list and thus are O(log n) with
high probability

• To analyze the scan-forward steps,
we use yet another probabilistic
fact:

Fact 4: The expected number of
coin tosses required in order to
get tails is 2

• When we scan forward in a list, the
destination key does not belong to a
higher list
• A scan-forward step is associated

with a former coin toss that gave
tails

• By Fact 4, in each list the expected
number of scan-forward steps is 2

• Thus, the expected number of scan-
forward steps is O(log n)

• We conclude that a search in a skip
list takes O(log n) expected time

• The analysis of insertion and
deletion gives similar results

Acknowledgement: https://people.engr.tamu.edu/schaefer/teaching/221_Fall2018/Lectures/SkipLists.ppt

Question?

Are Binary trees and skip lists optimal for in-
memory indexing?

• A B+Tree is a self-balancing tree data structure that
keeps data sorted and allows searches, sequential
access, insertions, and deletions in O(𝒍𝒐𝒈𝑩(𝑵)).
• The fanout of the tree is B
• Generalization of a binary search tree in that a node can

have more than two children.
• Optimized for systems that read and write large blocks of

data.

21

B+ Trees

B Pivots

B B

B

….. …..

O (logB N)

... ≈ N / B leaves ...

... ≈ B children ...

B+ Trees

Internal nodes

Leaf nodes

B Pivots

B B

B

….. …..

O (logB N)

... ≈ N / B leaves ...

... ≈ B children ...

B+ Trees

Internal nodes

Leaf nodes

How to size the B+-tree nodes?

B+ Trees

Search begins at root, and key comparisons direct it to a leaf.
Search for 5*, 15*, all data entries >= 24* ...

24

Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 8*

25

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 8*

26

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*23*

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 8*

27

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 8*

28

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 2413

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 8*

29

Root

17 24

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29*

13

23*

2* 3* 14* 16* 19* 20* 22* 24* 27* 29*23*5* 7* 8*

17 24135

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 21*

30

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 22* 23* 24* 27* 29*7*5* 8*

5 13 17 24

data page split

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 21*

31

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3* 14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17 24

index page split

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 21*

32

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

17

Acknowledgement: Prof. Manos Athanassoulis, BU

Example B+ Tree - Inserting 21*

33

2* 3*

Root
5

14* 16* 19* 20* 22* 24* 27* 29*7*5* 8*

13 17 24

23*

2* 3*

Root
17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Read Cost: 𝑙𝑜𝑔!(𝑁)

Update Cost
𝑙𝑜𝑔!(𝑁) reads
1 update (worse case 𝑙𝑜𝑔!(𝑁))

what about growing dataset size?

Acknowledgement: Prof. Manos Athanassoulis, BU

Observation

• The inner node keys in a B+tree cannot tell you whether a key exists
in the index. You always must traverse to the leaf node.

• This means that you could have (at least) one cache miss per level in
the tree.

34
Acknowledgement: Prof. Manos Athanassoulis, BU

Trie index

• Use a digital representation of keys
to examine prefixes one-by-one
instead of comparing entire key.
• Also known as Digital Search Tree,

Prefix Tree.

35

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

Acknowledgement: Prof. Andy Pavlo, CMU

Trie index properties

• Shape only depends on key space and lengths.
• Does not depend on existing keys or insertion order.
• Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the key.
• The path to a leaf node represents the key of the leaf
• Keys are stored implicitly and can be reconstructed from paths.

36
Acknowledgement: Prof. Andy Pavlo, CMU

Trie index properties

• Shape only depends on key space and lengths.
• Does not depend on existing keys or insertion order.
• Does not require rebalancing operations.

• All operations have O(k) complexity where k is the length of the key.
• The path to a leaf node represents the key of the leaf
• Keys are stored implicitly and can be reconstructed from paths.

37

History
independent

Acknowledgement: Prof. Andy Pavlo, CMU

Trie key span

• The span of a trie level is the number of bits that each partial key /
digit represents.
• If the digit exists in the corpus, then store a pointer to the next level in the

trie branch. Otherwise, store null.

• This determines the fan-out of each node and the physical height of
the tree.
• n-way Trie = Fan-Out of n

38
Acknowledgement: Prof. Andy Pavlo, CMU

Trie key span

• Keys: K10,K25,K31

39

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie
0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤

0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤

0 ¤ 1 ¤

0 Ø 1 ¤

0 Ø 1 ¤

←Repeat 10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤

¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤

¤ ¤

Ø ¤

Ø ¤

Tuple
Pointer

Node
Pointer

Acknowledgement: Prof. Andy Pavlo, CMU

Radix tree

• Omit all nodes with only a single child.
• Also known as Patricia Tree.

• Can produce false positives, so the
DBMS always checks the original tuple to
see whether a key matches.

40

1-bit Span Radix Tree
¤ Ø

¤ Ø

¤ ¤

Ø ¤

¤ ¤

Repeat
10x

Tuple
Pointer

Node
Pointer

Acknowledgement: Prof. Andy Pavlo, CMU

Trie variants

• Judy Arrays (HP)
• ART Index (HyPer)
• Masstree (Silo)

41
Acknowledgement: Prof. Andy Pavlo, CMU

Judy arrays

• Variant of a 256-way radix tree. First known radix tree that supports
adaptive node representation.
• Three array types
• Judy1: Bit array that maps integer keys to true/false.
• JudyL: Map integer keys to integer values.
• JudySL: Map variable-length keys to integer values.

• Open-Source Implementation (LGPL).
Patented by HP in 2000. Expires in 2022.
• Not an issue according to authors.
• http://judy.sourceforge.net/

42
Acknowledgement: Prof. Andy Pavlo, CMU

https://patents.google.com/patent/US6735595B2/en
http://comments.gmane.org/gmane.comp.lib.judy.devel/244
http://judy.sourceforge.net/

Adaptive radix tree (ART)

• Developed for TUM HyPer DBMS in 2013.

• 256-way radix tree that supports different node types based on its
population.
• Stores meta-data about each node in its header.

• Concurrency support was added in 2015.

47

THE ADAPTIVE RADIX TREE: ARTFUL INDEXING FOR MAIN-
MEMORY DATABASES
ICDE 2013

Acknowledgement: Prof. Andy Pavlo, CMU

ART vs. JUDY

• Difference #1: Node Types
• Judy has three node types with different organizations.
• ART has four nodes types that (mostly) vary in the maximum number of

children.

• Difference #2: Purpose
• Judy is a general-purpose associative array. It "owns" the keys and values.
• ART is a table index and does not need to cover the full keys. Values are

pointers to tuples.

48
Acknowledgement: Prof. Andy Pavlo, CMU

MASSTREE

• Instead of using different layouts for
each trie node based on its size, use
an entire B+Tree.
• Each B+tree represents 8-byte span.
• Optimized for long keys.
• Uses a latching protocol that is similar

to versioned latches.

• Part of the Harvard Silo project.

54

CACHE CRAFTINESS FOR FAST MULTICORE KEY-
VALUE STORAGE
EUROSYS 2012

Masstree
Bytes [0-7]

Bytes [8-15]Bytes [8-15]

¤ ¤

¤ ¤¤ ¤ ¤ ¤¤ ¤

Acknowledgement: Prof. Andy Pavlo, CMU

https://dbdb.io/db/silo

IN-MEMORY INDEXES

55

9.94
15.5 13.3

5.43
2.51 2.78 1.51 2.43

8.09

29
25.1

18.917.9

30.5

22

3.68

44.9

51.5

42.9

3.43

0

10

20

30

40

50

60

Insert-Only Read-Only Read/Update Scan/Insert

O
pe

ra
tio

ns
/s

ec
 (M

)

Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Random Integer Keys (64-bit)

Source: Ziqi Wang

Acknowledgement: Prof. Andy Pavlo, CMU

https://github.com/wangziqi2016/index-microbench

IN-MEMORY INDEXES

56

2.34

1.79 1.912.07 2.18
2.49

1.59

1.15 1.3

3.37

2.86

4.22

0.42

1.44

0.722

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Mono Int Rand Int Emails

M
em

or
y

(G
B)

Open Bw-Tree Skip List B+Tree Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Keys

Source: Ziqi Wang

Acknowledgement: Prof. Andy Pavlo, CMU

https://github.com/wangziqi2016/index-microbench

PARTING THOUGHTS

• B+ trees are the go to in-memory indexing data structures.

• Radix trees have interesting properties, but a well-written B+tree is
still a solid design choice.

• Skip lists are amazing if you don’t want to implement self balancing
binary trees

57
Acknowledgement: Prof. Andy Pavlo, CMU

Next class

• In-memory indexing (hash tables/filters)

58

Make sure to read the related papers from the
reading list

