CS 6530: Advanced Database Systems Fall 2022

Lecture 03
 In-memory indexing
 (Trees, Tries, Skip Lists)

Prashant Pandey prashant.pandey@utah.edu

Some reminders...

- We have a course website:
- https://www.cs.utah.edu/~pandey/courses/cs6530/fall22/index.html
- Paper report deadlines are posted
- Project \#1 logistics should be available the end this week
- Join online discussion through Piazza https://piazza.com/utah/fall2022/cs6530001fall2022

Announcement

- The School of Computing would like to send a few student representatives to the 2022 Rocky Mountain Celebration of Women in Computing.
- The conference is September 29-30, 2022 in Boulder, CO. For more information, see
- https://toilers.mines.edu/RMCWiC/2022/home.html
- Students who attend will present a research poster.
- Travel expenses and conference registration will be paid by the School.
- If you would like to be considered, send a current resume, and a title and abstract for your poster.
- Please send text or PDF documents only. The deadline is $5 p$ Thursday, September 8.
- If you have any questions, don't hesitate to ask Prof. Tucker Hermans.

In-memory indexing

Bandwidth	Latency	Size
$1 \mathrm{~TB} / \mathrm{sec}$	$1-4 \mathrm{n} \mathrm{sec}$	256 KB
$\sim 400 \mathrm{~GB} / \mathrm{sec}$	$\sim 30 \mathrm{n} \mathrm{sec}$	$8-12 \mathrm{MB}$
$\sim 50 \mathrm{~GB} / \mathrm{sec}$	$80-100 \mathrm{n} \mathrm{sec}$	$4 \mathrm{~GB}-1 \mathrm{~TB}$

In-memory indexing

Bandwidth	Latency	Size
$1 \mathrm{~TB} / \mathrm{sec}$	$1-4 \mathrm{n} \mathrm{sec}$	256 KB
$\sim 400 \mathrm{~GB} / \mathrm{sec}$	$\sim 30 \mathrm{n} \mathrm{sec}$	$8-12 \mathrm{MB}$
$\sim 50 \mathrm{~GB} / \mathrm{sec}$	$80-100 \mathrm{n} \mathrm{sec}$	$4 \mathrm{~GB}-1 \mathrm{~TB}$
on-board cache cache		
Data transfer between L3 and DRAM is the dominating factor.		

Data movement b/w L3 cache and memory

Memory

Binary tree

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
- A root (with data)
- A left subtree (may be empty)
- A right subtree (may be empty)
- Search/Insert/Delete O(log(N))

What is a Skip List

- A skip list for a set \boldsymbol{S} of distinct (key, element) items is a series of lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{h}}$ such that
- Each list $\boldsymbol{S}_{\boldsymbol{i}}$ contains the special keys $+\infty$ and $-\infty$
- List \boldsymbol{S}_{0} contains the keys of \boldsymbol{S} in non-decreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
\boldsymbol{S}_{0} \supseteq \boldsymbol{S}_{1} \supseteq \ldots \supseteq \boldsymbol{S}_{\boldsymbol{h}}
$$

- List $\boldsymbol{S}_{\boldsymbol{h}}$ contains only the two special keys
- Skip lists are one way to implement the dictionary ADT

Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
- item
- link to the node before
- link to the node after
- link to the node below
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator
 to handle them

Search

- We search for a key \boldsymbol{x} in a a skip list as follows:
- We start at the first position of the top list
- At the current position \boldsymbol{p}, we compare \boldsymbol{x} with $\boldsymbol{y} \leftarrow \boldsymbol{k e y}(\boldsymbol{a f t e r}(\boldsymbol{p}))$
$\boldsymbol{x}=\boldsymbol{y}$: we return element $(\operatorname{after}(\boldsymbol{p}))$
$\boldsymbol{x}>\boldsymbol{y}$: we "scan forward"
$\boldsymbol{x}<\boldsymbol{y}$: we "drop down"
- If we try to drop down past the bottom list, we return NO_SUCH_KEY
- Example: search for 78

Insertion

- To insert an item ($\boldsymbol{x}, \boldsymbol{o}$) into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
- If $\boldsymbol{i} \geq \boldsymbol{h}$, we add to the skip list new lists $\boldsymbol{S}_{\boldsymbol{h}+1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}+1}$, each containing only the two special keys
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i}$ of the items with largest key less than \boldsymbol{x} in each list $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}}$
- For $\boldsymbol{j} \leftarrow 0, \ldots, \boldsymbol{i}$, we insert item $(\boldsymbol{x}, \boldsymbol{o})$ into list $\boldsymbol{S}_{\boldsymbol{j}}$ after position $\boldsymbol{p}_{\boldsymbol{j}}$
- Example: insert key 15 , with $\boldsymbol{i}=2$

Deletion

- To remove an item with key \boldsymbol{x} from a skip list, we proceed as follows:
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{i}}$ of the items with key \boldsymbol{x}, where position \boldsymbol{p}_{j} is in list $\boldsymbol{S}_{\boldsymbol{j}}$
- We remove positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i}$ from the lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{i}}$
- We remove all but one list containing only the two special keys
- Example: remove key 34

Randomized Algorithms

- A randomized algorithm controls its execution through random selection (e.g., coin tosses)
- It contains statements like:
$b \leftarrow \operatorname{randomBit}()$
if $\boldsymbol{b}=0$
do A...
else $\{\boldsymbol{b}=1\}$
do B...
- Its running time depends on the outcomes of the coin tosses
- Through probabilistic analysis we can derive the expected running time of a randomized algorithm
- We make the following assumptions in the analysis:
- the coins are unbiased
- the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list to insert in expected $\mathrm{O}(\log \mathrm{n})$-time
- When randomization is used in data structures they are referred to as probabilistic data structures

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:

Fact 1: The probability of getting \boldsymbol{i}
consecutive heads when flipping a coin is $1 / 2^{i}$

Fact 2: If each of \boldsymbol{n} items is present in a set with probability \boldsymbol{p}, the expected size of the set is $\boldsymbol{n p}$

- Consider a skip list with \boldsymbol{n} items
- By Fact 1, we insert an item in list \boldsymbol{S}_{i} with probability $1 / 2^{i}$
- By Fact 2, the expected size of list $\boldsymbol{S}_{\boldsymbol{i}}$ is $\boldsymbol{n} / 2^{i}$
- The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}<2 n
$$

- Thus, the expected space usage of a skip list with \boldsymbol{n} items is $\boldsymbol{O}(\boldsymbol{n})$

Height

- The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list
- We show that with high probability, a skip list with n items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact:

Fact 3: If each of \boldsymbol{n} events has probability \boldsymbol{p}, the probability that at least one event occurs is at most $\boldsymbol{n p}$

- Consider a skip list with \boldsymbol{n} items
- By Fact 1, we insert an item in list S_{i} with probability $1 / 2^{i}$
- By Fact 3, the probability that list S_{i} has at least one item is at most $n / 2^{i}$
- By picking $\boldsymbol{i}=3 \log \boldsymbol{n}$, we have that the probability that $\boldsymbol{S}_{3 \log n}$ has at least one item is
at most

$$
n / 2^{3 \log n}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}
$$

- Thus, a skip list with \boldsymbol{n} items has height at most $3 \log n$ with probability at least $1-1 / \boldsymbol{n}^{2}$

Height

- The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list
- We show that with high probability, a skip list with n items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact:

Fact 3: If each of \boldsymbol{n} events has probability \boldsymbol{p}, the probability that at least one event occurs is at most $\boldsymbol{n p}$

- Consider a skip list with \boldsymbol{n} items
- By Fact 1, we insert an item in list S_{i} with probability $1 / 2^{i}$
- By Fact 3, the probability that list S_{i} has at least one item is at most $n / 2^{i}$
- By picking $i=3 \log n$, we have that the probability that $S_{3 \log n}$ has at least one item is
at most
$\boldsymbol{n} / 2^{3 \log \boldsymbol{n}}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}$
- Thus, a skip list with \boldsymbol{n} items has height at most $3 \log n$ with probability at least $1-1 / \boldsymbol{n}^{2}$

With High

Probability
(WHP)

Height

- The running time of the search and insertion algorithms is affected by the height \boldsymbol{h} of the skip list
- Consider a skip list with \boldsymbol{n} items
- By Fact 1, we insert an item in list S_{i} with probability $1 / 2^{i}$
- By Fact 3, the probability that list C.hac at laدct nno itom ic at most
- An event that occurs with high probaloility (WHP) is one whose probability depends on a certain number n and - goes to 1 as n goes to infinity. [Wikipedia]

Fact 3: If each of \boldsymbol{n} events has probability \boldsymbol{p}, the probability that at least one event occurs is at most $\boldsymbol{n p}$
at most
$\boldsymbol{n} / 2^{3 \log \boldsymbol{n}}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}$

- Thus, a skip list with \boldsymbol{n} items bas height at most $3 \log n$ with probability at least $1-1 / \boldsymbol{n}^{2}$

With High Probability (WHP)

Search and Update Times

- The search time in a skip list is proportional to
- the number of drop-down steps, plus
- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $\boldsymbol{O}(\log \boldsymbol{n})$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
- A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scanforward steps is $\boldsymbol{O}(\log \boldsymbol{n})$
- We conclude that a search in a skip list takes $\boldsymbol{O}(\log \boldsymbol{n})$ expected time
- The analysis of insertion and deletion gives similar results

Question?

?

Are Binary trees and skip lists optimal for inmemory indexing?

B+ Trees

- A B+Tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in $\mathrm{O}\left(\log _{B}(N)\right)$.
- The fanout of the tree is B
- Generalization of a binary search tree in that a node can have more than two children.
- Optimized for systems that read and write large blocks of data.

B+ Trees

B+ Trees

B+ Trees

Search begins at root, and key comparisons direct it to a leaf. Search for $5^{*}, 15^{*}$, all data entries $>=24^{*} .$. .

Based on the search for 15*, we know it is not in the tree!

Example B+ Tree - Inserting 8*

Example B+ Tree - Inserting 8*

\square

2*	3*	5^{*}	7*

Example B+ Tree - Inserting 8*

\square

Example B+ Tree - Inserting 8*

		13	17

Example B+ Tree - Inserting 8*

Example B+ Tree - Inserting 21*

data page split

Example B+ Tree - Inserting 21*

Example B+ Tree - Inserting 21*

Example B+ Tree - Inserting 21*

Read Cost: $\log _{B}(N)$

Update Cost
$\log _{B}(N)$ reads
1 update (worse case $\log _{B}(N)$)

Observation

- The inner node keys in a B+tree cannot tell you whether a key exists in the index. You always must traverse to the leaf node.
- This means that you could have (at least) one cache miss per level in the tree.

Trie index

Keys: HELLO HAT, HAVE

- Use a digital representation of keys to examine prefixes one-by-one instead of comparing entire key.
- Also known as Digital Search Tree, Prefix Tree.

Trie index properties

- Shape only depends on key space and lengths.
- Does not depend on existing keys or insertion order.
- Does not require rebalancing operations.
- All operations have $O(k)$ complexity where k is the length of the key.
- The path to a leaf node represents the key of the leaf
- Keys are stored implicitly and can be reconstructed from paths.

Trie index properties

- Shape only depends on key space and lengths.
- Does not depend on existing keys or insertion order.

History
independent

- Does not require rebalancing operations.
- All operations have $O(k)$ complexity where k is the length of the key.
- The path to a leaf node represents the key of the leaf
- Keys are stored implicitly and can be reconstructed from paths.

Trie key span

- The span of a trie level is the number of bits that each partial key / digit represents.
- If the digit exists in the corpus, then store a pointer to the next level in the trie branch. Otherwise, store null.
- This determines the fan-out of each node and the physical height of the tree.
- \boldsymbol{n}-way Trie $=$ Fan-Out of \boldsymbol{n}

Trie key span

1-bit Span Trie

Radix tree

1-bit Span Radix Tree

- Omit all nodes with only a single child.
- Also known as Patricia Tree.
- Can produce false positives, so the DBMS always checks the original tuple to see whether a key matches.

Trie variants

- Judy Arrays (HP)
- ART Index (HyPer)
- Masstree (Silo)

Judy arrays

- Variant of a 256 -way radix tree. First known radix tree that supports adaptive node representation.
- Three array types
- Judy1: Bit array that maps integer keys to true/false.
- JudyL: Map integer keys to integer values.
- JudySL: Map variable-length keys to integer values.
- Open-Source Implementation (LGPL). Patented by HP in 2000. Expires in 2022.
- Not an issue according to authors.
- http://judy.sourceforge.net/

Adaptive radix tree (ART)

- Developed for TUM HyPer DBMS in 2013.
- 256-way radix tree that supports different node types based on its population.
- Stores meta-data about each node in its header.
- Concurrency support was added in 2015.

ART vs. JUDY

- Difference \#1: Node Types

- Judy has three node types with different organizations.
- ART has four nodes types that (mostly) vary in the maximum number of children.

- Difference \#2: Purpose

- Judy is a general-purpose associative array. It "owns" the keys and values.
- ART is a table index and does not need to cover the full keys. Values are pointers to tuples.

MASSTREE

Masstree

- Instead of using different layouts for each trie node based on its size, use an entire $\mathrm{B}+$ Tree.
- Each B+tree represents 8-byte span.
- Optimized for long keys.
- Uses a latching protocol that is similar to versioned latches.
- Part of the Harvard Silo project.

IN-MEMORY INDEXES

Processor: 1 socket, 10 cores w/ $2 \times H T$
Workload: 50m Random Integer Keys (64-bit)

■ Open Bw-Tree
■
Skip ListB+TreeMasstree

- ART

IN-MEMORY INDEXES

Processor: 1 socket, 10 cores w/ 2×HT Workload: 50m Keys

PARTING THOUGHTS

- B+ trees are the go to in-memory indexing data structures.
- Radix trees have interesting properties, but a well-written $B+$ tree is still a solid design choice.
- Skip lists are amazing if you don't want to implement self balancing binary trees

Next class

- In-memory indexing (hash tables/filters)

Make sure to read the related papers from the reading list

