CS 6530: Advanced Database Systems Fall 2022

# Lecture 03 In-memory indexing (Trees, Tries, Skip Lists)

Prashant Pandey prashant.pandey@utah.edu



## Some reminders...



- We have a course website:
  - <u>https://www.cs.utah.edu/~pandey/courses/cs6530/fall22/index.html</u>
- Paper report deadlines are posted
- Project #1 logistics should be available the end this week
- Join online discussion through Piazza

https://piazza.com/utah/fall2022/cs6530001fall2022



### Announcement

- The School of Computing would like to send a few student representatives to the 2022 Rocky Mountain Celebration of Women in Computing.
- The conference is September 29-30, 2022 in Boulder, CO. For more information, see
  - <u>https://toilers.mines.edu/RMCWiC/2022/home.html</u>
- Students who attend will present a research poster.
- Travel expenses and conference registration will be paid by the School.
- If you would like to be considered, send a current resume, and a title and abstract for your poster.
- Please send text or PDF documents only. The deadline is 5p Thursday, September 8.
- If you have any questions, don't hesitate to ask Prof. Tucker Hermans.



### In-memory indexing

| Bandwidth   | Latency      | Size        | CPU            |
|-------------|--------------|-------------|----------------|
| 1 TB/sec    | 1-4 n sec    | 256 KB      | on-chip cache  |
| ~400 GB/sec | ~30 n sec    | 8 - 12 MB   | on-board cache |
| ~50 GB/sec  | 80-100 n sec | 4 GB - 1 TB | main memory    |



#### In-memory indexing





## Data movement b/w L3 cache and memory





## Binary tree

- Binary tree: Each node has at most 2 children (branching factor 2)
- Binary tree is
  - A root (with data)
  - A left subtree (may be empty)
  - A right subtree (may be empty)
- Search/Insert/Delete O(log(N))





### What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists
   S<sub>0</sub>, S<sub>1</sub>, ..., S<sub>h</sub> such that
  - Each list  $S_i$  contains the special keys  $+\infty$  and  $-\infty$
  - List **S**<sub>0</sub> contains the keys of **S** in non-decreasing order
  - Each list is a subsequence of the previous one, i.e.,  $S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$
  - List S<sub>h</sub> contains only the two special keys
- Skip lists are one way to implement the dictionary ADT



### Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
  - item
  - link to the node before
  - link to the node after
  - link to the node below
- Also, we define special keys PLUS\_INF and MINUS\_INF, and we modify the key comparator to handle them





### Search

- We search for a key x in a a skip list as follows:
  - We start at the first position of the top list
  - At the current position p, we compare x with  $y \leftarrow key(after(p))$ 
    - *x* = *y*: we return *element*(*after*(*p*))
    - x > y: we "scan forward"
    - x < y: we "drop down"
  - If we try to drop down past the bottom list, we return NO\_SUCH\_KEY
- Example: search for 78





#### Insertion

- To insert an item (x, o) into a skip list, we use a randomized algorithm:
  - We repeatedly toss a coin until we get tails, and we denote with *i* the number of times the coin came up heads
  - If *i* ≥ *h*, we add to the skip list new lists *S<sub>h+1</sub>*, ..., *S<sub>i+1</sub>*, each containing only the two special keys
  - We search for x in the skip list and find the positions  $p_0, p_1, ..., p_i$  of the items with largest key less than x in each list  $S_0, S_1, ..., S_i$
  - For  $j \leftarrow 0, ..., i$ , we insert item (x, o) into list  $S_j$  after position  $p_j$
- Example: insert key 15, with i = 2





### Deletion

- To remove an item with key x from a skip list, we proceed as follows:
  - We search for x in the skip list and find the positions p<sub>0</sub>, p<sub>1</sub>, ..., p<sub>i</sub> of the items with key x, where position p<sub>j</sub> is in list S<sub>j</sub>
  - We remove positions  $p_0, p_1, ..., p_i$  from the lists  $S_0, S_1, ..., S_i$
  - We remove all but one list containing only the two special keys
- Example: remove key 34





# Randomized Algorithms

- A randomized algorithm controls its execution through random selection (e.g., coin tosses)
- It contains statements like:

• Its running time depends on the outcomes of the coin tosses

- Through probabilistic analysis we can derive the expected running time of a randomized algorithm
- We make the following assumptions in the analysis:
  - the coins are unbiased
  - the coin tosses are independent
- The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give "heads")
- We use a randomized algorithm to insert items into a skip list to insert in expected O(log n)-time
- When randomization is used in data structures they are referred to as probabilistic data structures



# Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
  - Fact 1: The probability of getting iconsecutive heads when flipping a coin is  $1/2^i$
  - Fact 2: If each of *n* items is present in a set with probability *p*, the expected size of the set is *np*

- Consider a skip list with *n* items
  - By Fact 1, we insert an item in list  $S_i$  with probability  $1/2^i$
  - By Fact 2, the expected size of list  $S_i$  is  $n/2^i$
- The expected number of nodes used by the skip list is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

Thus, the expected space usage of a skip list with n items is O(n)



# Height

- The running time of the search and insertion algorithms is affected by the height *h* of the skip list
- We show that with high probability, a skip list with *n* items has height *O*(log *n*)
- We use the following additional probabilistic fact:
  - Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np*

- Consider a skip list with *n* items
  - By Fact 1, we insert an item in list  $S_i$  with probability  $1/2^i$
  - By Fact 3, the probability that list  $S_i$  has at least one item is at most  $n/2^i$
- By picking  $i = 3\log n$ , we have that the probability that  $S_{3\log n}$  has at least one item is at most  $n/2^{3\log n} = n/n^3 = 1/n^2$
- Thus, a skip list with *n* items has height at most  $3\log n$  with probability at least  $1 - 1/n^2$



# Height

- The running time of the search and insertion algorithms is affected by the height **h** of the skip list
- We show that with high probability, a skip list with *n* items has height  $O(\log n)$
- We use the following additional probabilistic fact:
  - Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np*

- Consider a skip list with *n* items
  - By Fact 1, we insert an item in list  $S_i$  with probability  $1/2^i$
  - By Fact 3, the probability that list  $S_i$  has at least one item is at most  $n/2^i$
- By picking  $i = 3\log n$ , we have that the probability that  $S_{3\log n}$  has at least one item is at most

 $n/2^{3\log n} = n/n^3 = 1/n^2$ • Thus, a skip list with *n* items has height at most  $3\log n$  with  $\checkmark$ probability at least  $1 - 1/n^2$ 

With High **Probability** (WHP)



# Height

• The running time of the search and insertion algorithms is affected by the height *h* of the skip list

- Consider a skip list with *n* items
  - By Fact 1, we insert an item in list  $S_i$  with probability  $1/2^i$
  - By Fact 3, the probability that list
     S has at least one item is at most

An event that occurs *with high probability* (WHP) is one whose probability depends on a certain number *n* and goes to 1 as *n* goes to infinity. [Wikipedia]

Fact 3: If each of *n* events has probability *p*, the probability that at least one event occurs is at most *np*  at most

 $n/2^{3\log n} = n/n^3 = 1/n^2$ 

 Thus, a skip list with *n* items has height at most 3log *n* with
 probability at least 1 - 1/n<sup>2</sup> With High Probability (WHP)



# Search and Update Times

- The search time in a skip list is proportional to
  - the number of drop-down steps, plus
  - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:

Fact 4: The expected number of coin tosses required in order to get tails is 2

- When we scan forward in a list, the destination key does not belong to a higher list
  - A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scan-forward steps is 2
- Thus, the expected number of scanforward steps is  $O(\log n)$
- We conclude that a search in a skip list takes  $O(\log n)$  expected time
- The analysis of insertion and deletion gives similar results





## Are Binary trees and skip lists optimal for inmemory indexing?



Question?

#### B+ Trees

- A **B+Tree** is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in  $O(log_B(N))$ .
  - The fanout of the tree is **B**
  - Generalization of a binary search tree in that a node can have more than two children.
  - Optimized for systems that read and write large blocks of data.





#### B+ Trees









### B+ Trees

Search begins at root, and key comparisons direct it to a leaf. Search for 5\*, 15\*, all data entries >= 24\* ...



Based on the search for 15\*, we know it is not in the tree!



















29\*































## Observation

- The inner node keys in a B+tree cannot tell you whether a key exists in the index. You always must traverse to the leaf node.
- This means that you could have (at least) one cache miss per level in the tree.





- Use a digital representation of keys to examine prefixes one-by-one instead of comparing entire key.
  - Also known as *Digital Search Tree*, *Prefix Tree*.



### Trie index properties

- Shape only depends on key space and lengths.
  - Does not depend on existing keys or insertion order.
  - Does not require rebalancing operations.
- All operations have O(k) complexity where k is the length of the key.
  - The path to a leaf node represents the key of the leaf
  - Keys are stored implicitly and can be reconstructed from paths.



### Trie index properties

- Shape only depends on key space and lengths.
  - Does not depend on existing keys or insertion order.
  - Does not require rebalancing operations.
- All operations have O(k) complexity where k is the length of the key.
  - The path to a leaf node represents the key of the leaf
  - Keys are stored implicitly and can be reconstructed from paths.



History

independent

# Trie key span

- The <u>span</u> of a trie level is the number of bits that each partial key / digit represents.
  - If the digit exists in the corpus, then store a pointer to the next level in the trie branch. Otherwise, store null.
- This determines the <u>fan-out</u> of each node and the physical <u>height</u> of the tree.
  - *n*-way Trie = Fan-Out of *n*



# Trie key span

#### 1-bit Span Trie



K10→ 0000000 00001010
K25→ 0000000 00011001
K31→ 0000000 00011111



# Radix tree

#### 1-bit Span Radix Tree



- Omit all nodes with only a single child.
  - Also known as *Patricia Tree*.
- Can produce false positives, so the DBMS always checks the original tuple to see whether a key matches.

## Trie variants

- Judy Arrays (HP)
- ART Index (HyPer)
- Masstree (Silo)



# Judy arrays

- Variant of a 256-way radix tree. First known radix tree that supports adaptive node representation.
- Three array types
  - Judy1: Bit array that maps integer keys to true/false.
  - JudyL: Map integer keys to integer values.
  - JudySL: Map variable-length keys to integer values.
- Open-Source Implementation (LGPL). <u>Patented</u> by HP in 2000. Expires in 2022.
  - Not an issue according to <u>authors</u>.
  - http://judy.sourceforge.net/



# Adaptive radix tree (ART)

- Developed for TUM HyPer DBMS in 2013.
- 256-way radix tree that supports different node types based on its population.
  - Stores meta-data about each node in its header.
- Concurrency support was added in 2015.



## ART vs. JUDY

#### • Difference #1: Node Types

- Judy has three node types with different organizations.
- ART has four nodes types that (mostly) vary in the maximum number of children.

#### • Difference #2: Purpose

- Judy is a general-purpose associative array. It "owns" the keys and values.
- ART is a table index and does not need to cover the full keys. Values are pointers to tuples.



# MASSTREE

#### Masstree



- Instead of using different layouts for each trie node based on its size, use an entire B+Tree.
  - Each B+tree represents 8-byte span.
  - Optimized for long keys.
  - Uses a latching protocol that is similar to versioned latches.
- Part of the <u>Harvard Silo</u> project.



## **IN-MEMORY INDEXES**

#### Processor: 1 socket, 10 cores w/ 2×HT Workload: 50m Random Integer Keys (64-bit)



Acknowledgement: Prof. Andy Pavlo, CMU

## **IN-MEMORY INDEXES**

NIVERSITY OF UTAH

#### Processor: 1 socket, 10 cores w/ 2×HT Workload: 50m Keys



56 Acknowledgement: Prof. Andy Pavlo, CMU

## PARTING THOUGHTS

- B+ trees are the go to in-memory indexing data structures.
- Radix trees have interesting properties, but a well-written B+tree is still a solid design choice.
- Skip lists are amazing if you don't want to implement self balancing binary trees



### Next class

• In-memory indexing (hash tables/filters)

# Make sure to read the related papers from the reading list

