CS 6530: Advanced Database Systems Fall 2022

Lecture 02
History of databases &
Data system architecture

Prashant Pandey
prashant.pandey@utah.edu

OOOOOOOOOOOOOOOOO

http://prashant.pandey@utah.edu

Some reminders...

no
smartpho

no
laptop

* Reading list for first two lectures is posted in Canvas

* Pop quiz #0 is posted

* Join online discussion through Piazza
https://piazza.com/utah/fall2022/cs6530001fall2022

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

https://piazza.com/utah/fall2022/cs6530001fall2022

A brief history of databases

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO

History repeats itself

* Old database issues are still relevant today.

e The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.

* Spoiler: The relational model almost always wins.

* Many of the ideas in today’s database systems are not new.

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Andy Pavlo, CMU

1960s — IDS

* Integrated Data Store
* Developed internally at GE in the early 1960s.

* GE sold their computing division to
Honeywell in 1969.

 One of the first DBMSs:
« Network data model. Honeywe“

* Tuple-at-a-time queries.

OOOOOOOOOOOOOOOOO 5
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

1960s — CODASYL

* COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.
* Network data model.
* Tuple-at-a-time queries.

\/A 4

Bachman

* Bachman also worked at Culliane Database Systems in the 1970s to
help build IDMS. @

N

Turing award 1973

OOOOOOOOOOOOOOOOO 6
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

Network data model

Schema

SUPPLIER PART
(sno, sname, scity, sstate) (pno, pname, psize)
SUPPLIES SUPPLIED BY

SUPPLY
(qty, price)

OOOOOOOOOOOOOOOOO 7
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

Network data model

1001 |Dirty R1c New Yor NY

1002 [Squirrels Boston MA

OOOOOOOOOOOOOOOOO

4 A Complex Queries :

|

999 Batterilies |Large

A Easily Corrupted

:S e
pq

qty

price

10

$100

14

$99

8

Acknowledgement: Prof. Andy Pavlo, CMU

19605 — IBM IMS

* Information Management System

 Early database system developed to keep track of purchase orders for
Apollo moon mission.

 Hierarchical data model.

* Programmer-defined physical storage format.
* Tuple-at-a-time queries.

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Acknowledgement: Prof. Andy Pavlo, CMU

hierarchical data model

' A Duplicate Data

JY U C »]0 O d V=

T —
A No Independence

p100

(pno, pname, psize, qty, price) pno |pname psize qty price

999 Batteries Large 14 $99

OOOOOOOOOOOOOOOOO 10
UNIVERSTIY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

1Ty,

Haan STORED IN L
E. F. (od.d_

Research Division

. The large,
ABSTRACT: e

ntain many Ie 5 -
:Zt o £ SOngzéz ;ie definedfan
f redunda e def
Twolgzﬁzstg improve accessibility o
emp
which happen to be
exists, those respo it
about it and.havg szﬁi -
inconsistenc;isblnhelpfu1 in tracking
. b -
checking mig

possibly fraudulent) chan

69
RJ 599(# 12343) August 19, 19

nsible for con

IBUTION NOTIC
where and -2
ontents. i
F ributed unti

has been issued

ED DISTR
bl As a cour

ication elsewh
publication g7
jssemination of :
gtl\;flld not be widely dist
publication.

18M Thomas
jes may be requested 'Io;n:gx
E’ZZk{uwn Heights, New Yor 5

SCHOOL OF COMPUT]
UNIVERSITY OF UTAL

NC
Y AND CONSISTE
g ARGE DATA BANKS

San Jose, California

ed relations
i d discuy?ed.
certain k\ndi :
hen either 1yl
e demam:.rolwof the data bank sho

s of detecting any

of stored re
i down unaut

ges in the data bank

i t has
E - This repor gl
tesy to the 1

1 after t

ost OFfil
). Watson Research Center, Pos

Y OF RELATIONS

the future will y
itored form. It will
ns to be redundant. ;
One type may D€
f information
e of redundancy
uld know

“logical”

lations.
horized (and

contents.

Consistency

submitted for
g arch Report for'early
ntended publisher,

he date of outside

ce Box 218,

it

MOL

natician

deve
riting |
time t
out ck

avoid |
ata stru
avel lan
mplem

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal rep, ion). A p pting service which supplies
such information is not a satisf Y solution, Activities of users
at terminals and most application programs should remain

affected when the int | rep of data is changed
and even when some of the external r P i
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadeq of these model
are discussed. A model based on n-ary relations, @ normal
form for data base relati , and the pt of a universal
data sublang ge are introduced. In Secti 2, certain opera-
tions on relations (other than logical inference) are discussed
and opplied to the probl of redundancy and i y
in the user's model.

KEY WORDS AND PHRASES: data bank, dota base, dota structure, data
hi hies of data, ks of data, relations, derivability,
d Y Y '+ foin, retrieval language, predicate
calculus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

L1. INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-nnswering systems,
Levein and Maron [2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
independ the indep of application programs
and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems,

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will vield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relati I view is that it
forms a sound basis for treating derivability, redundancy,
and i 'y of relati these are di ed in Secti
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “ec trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. Data DEPENDENCIES IN PRESENT SysTems

The provision of data description tables in recently de-
veloped information systems represents a major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank, However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: orderip Zonendence, indexing depend-
ence, and access path & In some systems these
dependencies are not ole from one another.

12.1. Ordering De, °ments of data in a
data bank may be store." .y of ways, some involy-
ing no concern for orde itting each element
to participate in ane o thers permitting each
element to participate in se erings. Let us consider
those existing a HAr or permit data
elements to bemmﬁga i&s%@;elt?ﬁ?rdeﬁng which is
closely associated with the bardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of Ppresentation of records
from such a file is identical to (or is a subordering of) the

_AckfrowledgementicRrofsAn

-Y Pavlo, CMU

Relational data model

Schema

PART

(pno, pname, psize)

SUPPLIER

(sno, sname, scity, sstate)

SUPPLY

(sno, pno, gty, price)

OOOOOOOOOOOOOOOOO 12
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

Relational data model

Instance

SUPPLIER PART
sho shame scity sstate pno pname psize
1001 |Dirty Rick New York [NY 999 Batteries |Large
1002 [Squirrels Boston MA

SUPPLY

sho pno qty price

1001 | 999 10 $100

1002 |999 $99

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

13
Acknowledgement: Prof. Andy Pavlo, CMU

1970s — Relational model

* Early implementations of relational DBMS:

e System R — IBM Research
* INGRES — U.C. Berkeley
* Oracle — Larry Ellison

ring award 1998 ward 2015

Gray Stonebraker Ellison

U SCHOOL OF COMPUTING 14
UNIVERSTIY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

1980s — Relational model

 The relational model wins.
 |BM comes out with DB2 in 1983.
e “SEQUEL” becomes the standard (SQL).

* Many new “enterprise” DBMSs
but Oracle wins marketplace.

e Stonebraker creates Postgres.

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

Informi
S SYBASE
INGIR=S

ORACLE
/{iTANDEM

TERADATA

InterBase

15
Acknowledgement: Prof. Andy Pavlo, CMU

1980s — Object-oriented databases

* Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

* Few of these original DBMSs from the 1980s still exist today but many
of the technologies exist in other forms (JSON, XML)

VERSAN T 0 b] e CtStO e '.MarkLogiC””

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Andy Pavlo, CMU

Object-oriented model

OOOOOOOOOOOOOOOOO

E a

1001

444-444-4444

1001

555-555-5555

(sid, phone)

Acknowledgement: Prof. Andy Pavlo, CMU

1990s — Boring days

* No major advancements in database systems or application
workloads.

* Microsoft forks Sybase and creates SQL Server.
 MySQL is written as a replacement for mSQL.

* Postgres gets SQL support.

e SQLite started in early 2000.

PostgreSQL

%QLite

OOOOOOOOOOOOOOOOO 18
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

2000s — Internet boom

* All the big players were heavyweight and expensive. Open-source
databases were missing important features.

* Many companies wrote their own custom middleware to scale out
database across single-node DBMS instances.

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Andy Pavlo, CMU

2000s — Data warehouses

* Rise of the special purpose OLAP DBMSs.
* Distributed / Shared-Nothing
e Relational / SQL
* Usually closed-source.

e Significant performance benefits from using columnar data storage

model.
N)NETEZZA PARACCEL monetdb

OOOOOOOOOOOOOOOOO l 20
UNIVERSTIY OF UTAT ledgement: Prof. Andy Pavlo, CMU

2000s — NoSQL Systems

* Focus on high-availability & high-scalability:
* Schemaless (i.e., “Schema Last”)
Non-relational data models (document, key/value, etc)
No ACID transactions
Custom APIs instead of SQL
Usually open-source

2
HERSE « jmaon O mongons O &
&P redis 4@’ RethinkDB - | ‘ol

—~ Q Couchbase &QHGOA CouchDB
cassandra wrla k) NDB

OOOOOOOOOOOOOOOOO 21
UNIVERSTTY OF UTAT Acknowledgement: Prof. Andy Pavlo, CMU

2010s — NewSQL

* Provide same performance for OLTP workloads as NoSQL DBMSs
without giving up ACID:
e Relational / SQL
 Distributed
* Usually closed-source

_6, Cockroach LaBs

@ AbSh arols I}]'Store Clustrix N

\
O ScaleAc X s VOLTDB A0 Q@ TiDB
& VA MEMSQL _sud _—
Spanner /4 HyPer (&
sc00Lorcoupuric YugaByte 22

l 1|
Acknowledgement: Prof. Andy Pavlo, CMU

2010s — Hybrid systems

* Hybrid Transactional-Analytical Processing.

* Execute fast OLTP like a NewSQL system while also executing complex
OLAP queries like a data warehouse system.
* Distributed / Shared-Nothing

e Relational / SQL
* Mixed open/closed-source.

A MEMSQL A HyPer gz SNAPPY w

JusEO e e SFM)"CG 55 Peloton

ACHINE 73
Acknowledgement: Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO

2010s — Cloud systems

* First database-as-a-service (DBaaS) offerings were "containerized"
versions of existing DBMSs.

* There are new DBMSs that are designed from scratch explicitly for
running in a cloud environment.

xeround Googe
i"o:gsnowfloke |1 armazon The Cloud Database - SHQNNEY
. Amazon ®

- WFAUNA omsks V0 A

B® Microsoft

OOOOOOOOOOOOOOOOO 24

UNIVERSITY OF UTAH Acknowledgement: Prof. Andy Pavlo, CMU

2010s — Shared-disk engines

* Instead of writing a custom storage manager, the DBMS leverages
distributed storage.

* Scale execution layer independently of storage.
* Favors log-structured approaches.

* This is what most people think of when they talk about a data lake.

splice ¥ Clougera
APACHE
oAcHE BACHINE X snowflake r‘l,(\z

e +as Spa
OOOOOOOOOOOOOOOOO presto .« -S'E'B?H’.‘%'T‘ & P

UNIVERSITY OF UTAH = Microsoft Acknowledgement: Prof. Andy Pavlo, CMU

2010s — Stream processing

* Execute continuous queries on streams of tuples.
* Extend processing semantics to include notion of windows.

» Often used in combination of batch-oriented systems in a lambda
architecture deployment.

APACHE
storm- () HERON

Acknowledgement: Prof. Andy Pavlo, CMU

OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH

2010s — Graph systems

» Systems for storing and querying graph data.

* Their main advantage over other data models is to provide a graph-

centric query API
e Recent research demonstrated that is unclear whether there is any benefit to
using a graph-centric execution engine and storage manager.

o : MEM @ TigerGraph R
@neOAJ ‘ %GRAPH 0 Dgraph G JanusGraph ",::::;'\'." : %:.;‘;::g
< Soalcoab iise

griiphbaseal ferminusDB indraDB &%

OOOOOOOOOOOOOOOOO
Acknowledgement: Prof. Andy Pavlo, CMU

UNIVERSITY OF UTAH

>0
.
®
L

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf

OOOOOOOOOOOOOOOOO

2010s — Timeseries systems

* Specialized systems that are designed to store timeseries / event
data.

* The design of these systems make deep assumptions about the

distribution of data and workload query patterns.

@MS TIMESCALE () influxdb

EI%I;?RIA ClickHouse

«
<<

UNIVERSITY OF UTAH Acknowledgement: Prof. Andy Pavlo, CMU

SQRERM Microsoft*®

‘,'?1 8 & | Mickoi P
FrERvh 8¢ *"\ .HVﬂ“‘»‘)

VO
.u ’
=D summimpe =" 9P i)' _
SV I@@)gress [o= N
, > “"1- IR AL ’
SHNFOBRIGHTH§)

PomtBase ellel® omni-sc |I

Blockcham DBMSs EeTEngal | i : .‘.ygp
! c:@e

(TEFRAPH

F) NA
: | w& o
CORNE > RO '
, Ri} arorware Acceleration - =) ’Rmon'?;\ il Mr. Y
v " APACHE & e T F/rsfSOI S % - .. ‘ ' ‘

C!LOT

«e

‘ + - . ’. ‘;_ = Cabinet g

| . -—— —~—y’

Pd"’"‘\ MEMSQ .ﬂ y i Sa “ 5at % 8 kD

evator T

OR ACT &xdbE

Parting thoughts

 The demarcation lines of DBMS categories will continue to blur over
time as specialized systems expand the scope of their domains.

* | believe that the relational model and declarative query languages
promote better data engineering.

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Andy Pavlo, CMU

Data system architecture
essentials

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

OOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOO

A data system is a large software system that stores data,
and provides the interface to

update and access them efficiently

knowledge
insights
decisions

— ENRENSHE

Acknowledgement: Prof. Manos Athanassou

is, BU

Growing need for tailored systems

STIAIHE ST STTIAIEE

new applications new hardware more data
”‘/g, i
g B <

OOOOOOOOOOOOOOOOO

UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis,

Data system, what’s inside?

u SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

algorithms

and
operators

OOOOOOOOOOOOOOOOO

s

-

Indexing

_/

application/SQL
access patterns

NV V V V VNV N/ complex queries

Acknowledgement: Prof. Manos Athanassoulis, BU

modules

OOOOOOOOOOOOOOOOO

-

.

N
Query

Parser
Y,

application/SQL
access patterns

NV V V V VNV N/ complex queries

Memory

-

N\ (

Query
Compiler

Optimizer

A Hierarchy

J

\

J

~

~

Evaluation

Engine

-

_

N
Memory/Storage

Management

y,

-
Indexing

\

\

J

-

\

\
Transaction

Management

J

Acknowledgement: Prof. Manos Athanassou

is, BU

Data system, what's underneath?

OOOOOOOOOOOOOOOOO

Acknowledgement: Prof. Manos Athanassoulis, BU

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Memory hierarchy

- cru |

[on-chip cache]

on-board cache

main memory

flash storage

disks] [flash

smaller
faster
more expensive (GB/S)

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory hierarchy (by Jim Gray)

- my head
registers/CPU ~0

2x| on chip cache this room
1min

this building

10x| on board cache 10min

Washington, DC

_ _ 5 hours
Jim Gray, IBM, Tandem, Microsoft, DEC
The Fourth Paradigm” is based on his vision 106x disk 25|el;tr2

ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

109x tape

[
[
[
toox(" memory
[
[

Andromeda
2000 years

U OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

U

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

faster

cheaper/larger

P
]

Memory wall

- cru |

[on-chip cache]

[on-board cache

& J

main memory

flash storage

 disks] [flash

Performance

Time

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory wall

[CPU J
- - t
Q on-chip cache
ke
[on-board cache 8
-
. J]
—
s main memory 5
ool | / ks
ks 8
E (flash storage
o _ /
©
21 0) g s >
o] | disks] [flash Old times! * Time

U SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

Cache/memory misses

SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

| cru |

[on-chip cache] cache miss: looking

r

.
on-board cache

J

for something that
is not in the cache

main memory

~

J

flash storage

disks] [flash

memory miss: looking
for something that
IS not in memory

what happens if | miss?

Acknowledgement: Prof. Manos Athanassoulis, BU

Data movement

| cru |

[on-chip cache] data go through
all necessary levels

Photo by Gary Dineen/NBAE via Getty Images

4 N\

on-board cache need to read only X
N y read the whole page
(main memor) also read
\ Y unnecessary data X page
4 N\

flash storage

disks] [flash o U

u SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

Data movement

| cru |

[on-chip cache] data go through
all necessary levels

{/
Photo by Gary Dineen/NBAE via Getty Images

on-board cache need to read only X
N y read the whole page

(:) also read
main memory
L) unnecessary data

& page

flash st
| flash storage ﬂ\‘

remember!
disk is millions (mem, hundreds) times slower than CPU

Acknowledgement: Prof. Manos Athanassoulis, BU

Page-based access & random access

query x</
scan

size=120 bytes
memory (memory level N)

disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes
Page-based access & random access
query x</

scan output

size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes
Page-based access & random access
query x</

>Can ~ output

1,5,12, 24, 23 2,7,13,9,8
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes
Page-based access & random access
query x</

>Can ~ output

1,5,12, 24, 23 2,7,13,9,8
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

>Can ~ output

1,5,12, 24, 23 2,7,13,9,8
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

Scan ‘ output

10, 11, 6, 14, 15 2,7,13,9,8
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

Scan ‘ output

10, 11, 6, 14, 15 2,7,13,9,8 1,5,2,6
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$120 bytes
Page-based access & random access
query x</

Scan ‘ output

10, 11, 6, 14, 15 2,7,13,9,8 1,5,2,6
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

What if we had an oracle (perfect index)?

OOOOOOOOOOOOOOOOO
ERS : Acknowledgement: Prof. Manos Athanassoulis, BU

Page-based access & random access

query x</
scan

size=120 bytes
memory (memory level N)

disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes

oracle output

52208
size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Page-based access & random access

query x</

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes
Page-based access & random access
query x</

oracle output

size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 40 bytes
Page-based access & random access
query x</

oracle output

size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

oracle output

size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

oracle output

10,11,6,14,15] 2,7,13,9,8
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$ 80 bytes
Page-based access & random access
query x</

oracle output

10, 11, 6, 14, 15 2,7,13,9,8 1,5,2,6
size=120 bytes |

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

$120 bytes
Page-based access & random access f

N
query x<7 was the oracle helpful ?7
oracle output

10, 11, 6, 14, 15 2,7,13,9,8 1,5, 2,6
size=120 bytes

memory (memory level N)
disk (memory level N+1)

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

When is the oracle helpful?

1
7\

for which query would an oracle help us?

how to decide whether to use the oracle?

1,5,12, 24, 23 2,7,13,9,8 10, 11, 6, 14, 15

OOOOOOOOOOOOOOOOO
ERSITY Acknowledgement: Prof. Manos Athanassoulis, BU

how we store data
layouts, indexes

every byte counts
overheads and tradeoffs

index
know the query design space

access path selection

u SCHOOL OF COMPUTING
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

Rules of thumb

sequential access

read one block; consume it completely; discard it; read next;

hardware can predict and start prefetching

refetching can exploit full memory/disk bandwidth
random access prefetching can exploitf v/

read one block; consume it partially; discard it; (may re-use);
read random next;

7‘ . ideal random access?

the one that helps us avoid a large number
- of accesses (random or sequential)

UNIVERSITY

Acknowledgement: Prof. Manos Athanassoulis, BU

The language of efficient systems: C/C++

why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptions

OOOOOOOOOOOOOOOOO
ERSITY Acknowledgement: Prof. Manos Athanassoulis, BU

The language of efficient systems: C/C++

why?

low-level control over hardware

U OOOOOOOOOOOOOOOOO
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

Next class

* In-memory indexing

Make sure to read the related papers from the

reading list

OOOOOOOOOOOOOOOOO 80
UNIVERSITY OF UTAH Acknowledgement: Prof. Manos Athanassoulis, BU

