
Lecture 02
History of databases &

Data system architecture

Prashant Pandey
prashant.pandey@utah.edu

CS 6530: Advanced Database Systems Fall 2022

http://prashant.pandey@utah.edu

no
smartphones no

laptop

• Reading list for first two lectures is posted in Canvas
• Pop quiz #0 is posted
• Join online discussion through Piazza

https://piazza.com/utah/fall2022/cs6530001fall2022

Some reminders…

https://piazza.com/utah/fall2022/cs6530001fall2022

A brief history of databases

Acknowledgement: Slides taken from Prof. Andy Pavlo, CMU

History repeats itself

• Old database issues are still relevant today.

• The SQL vs. NoSQL debate is reminiscent of Relational vs. CODASYL
debate from the 1970s.
• Spoiler: The relational model almost always wins.

• Many of the ideas in today’s database systems are not new.

4
Acknowledgement: Prof. Andy Pavlo, CMU

1960s – IDS

• Integrated Data Store
• Developed internally at GE in the early 1960s.
• GE sold their computing division to

Honeywell in 1969.
• One of the first DBMSs:
• Network data model.
• Tuple-at-a-time queries.

5
Acknowledgement: Prof. Andy Pavlo, CMU

1960s – CODASYL

• COBOL people got together and proposed
a standard for how programs will access
a database. Lead by Charles Bachman.
• Network data model.
• Tuple-at-a-time queries.

• Bachman also worked at Culliane Database Systems in the 1970s to
help build IDMS.

Bachman

6

Turing award 1973

Acknowledgement: Prof. Andy Pavlo, CMU

Network data model

SUPPLY
(qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

7

Schema

SUPPLIES SUPPLIED_BY

Acknowledgement: Prof. Andy Pavlo, CMU

qty price

10 $100

14 $99

parent child

Network data model
Instance

8

sno sname scity sstate

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize

999 Batteries Large

SUPPLIER

parent child

SUPPLIES SUPPLIED_BY

PART

SUPPLY

Complex Queries

Easily Corrupted

Acknowledgement: Prof. Andy Pavlo, CMU

1960S – IBM IMS

• Information Management System
• Early database system developed to keep track of purchase orders for

Apollo moon mission.
• Hierarchical data model.
• Programmer-defined physical storage format.
• Tuple-at-a-time queries.

9
Acknowledgement: Prof. Andy Pavlo, CMU

hierarchical data model

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize, qty, price)

Schema Instance

10

sno sname scity sstate parts

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize qty price

999 Batteries Large 10 $100

pno pname psize qty price

999 Batteries Large 14 $99

Duplicate Data

No Independence

Acknowledgement: Prof. Andy Pavlo, CMU

1970s – RELATIONAL MODEL

• Ted Codd was a mathematician working
at IBM Research. He saw developers
spending their time rewriting IMS and
Codasyl programs every time the
database’s schema or layout changed.
• Database abstraction to avoid this maintenance:
• Store database in simple data structures.
• Access data through high-level language.
• Physical storage left up to implementation.

Codd

11

Turing award 1981

Acknowledgement: Prof. Andy Pavlo, CMU

Relational data model

SUPPLY
(sno, pno, qty, price)

SUPPLIER
(sno, sname, scity, sstate)

PART
(pno, pname, psize)

12

Schema

Acknowledgement: Prof. Andy Pavlo, CMU

sno pno qty price

1001 999 10 $100

1002 999 14 $99

Relational data model
Instance

13

sno sname scity sstate

1001 Dirty Rick New York NY

1002 Squirrels Boston MA

pno pname psize

999 Batteries Large

SUPPLIER

SUPPLY

PART

Acknowledgement: Prof. Andy Pavlo, CMU

1970s – Relational model

• Early implementations of relational DBMS:
• System R – IBM Research
• INGRES – U.C. Berkeley
• Oracle – Larry Ellison

EllisonGray Stonebraker
14

Turing award 2015Turing award 1998

Acknowledgement: Prof. Andy Pavlo, CMU

1980s – Relational model

• The relational model wins.
• IBM comes out with DB2 in 1983.
• “SEQUEL” becomes the standard (SQL).

• Many new “enterprise” DBMSs
but Oracle wins marketplace.

• Stonebraker creates Postgres.

15
Acknowledgement: Prof. Andy Pavlo, CMU

1980s – Object-oriented databases

• Avoid “relational-object impedance mismatch” by tightly coupling
objects and database.

• Few of these original DBMSs from the 1980s still exist today but many
of the technologies exist in other forms (JSON, XML)

16
Acknowledgement: Prof. Andy Pavlo, CMU

Object-oriented model
Application Code

class Student {
int id;
String name;
String email;
String phone[];

}

Relational Schema

STUDENT
(id, name, email)

STUDENT_PHONE
(sid, phone)

id name email

1001 M.O.P. ante@up.com

sid phone

1001 444-444-4444

1001 555-555-5555

Student

{
“id”: 1001,
“name”: “M.O.P.”,
“email”: “ante@up.com”,
“phone”: [

“444-444-4444”,
“555-555-5555”

]
}

17

Complex Queries

No Standard API

Acknowledgement: Prof. Andy Pavlo, CMU

1990s – Boring days

• No major advancements in database systems or application
workloads.
• Microsoft forks Sybase and creates SQL Server.
• MySQL is written as a replacement for mSQL.
• Postgres gets SQL support.
• SQLite started in early 2000.

18
Acknowledgement: Prof. Andy Pavlo, CMU

2000s – Internet boom

• All the big players were heavyweight and expensive. Open-source
databases were missing important features.

• Many companies wrote their own custom middleware to scale out
database across single-node DBMS instances.

19
Acknowledgement: Prof. Andy Pavlo, CMU

2000s – Data warehouses

• Rise of the special purpose OLAP DBMSs.
• Distributed / Shared-Nothing
• Relational / SQL
• Usually closed-source.

• Significant performance benefits from using columnar data storage
model.

20
Acknowledgement: Prof. Andy Pavlo, CMU

2000s – NoSQL Systems

• Focus on high-availability & high-scalability:
• Schemaless (i.e., “Schema Last”)
• Non-relational data models (document, key/value, etc)
• No ACID transactions
• Custom APIs instead of SQL
• Usually open-source

21
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – NewSQL

• Provide same performance for OLTP workloads as NoSQL DBMSs
without giving up ACID:
• Relational / SQL
• Distributed
• Usually closed-source

22
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – Hybrid systems

• Hybrid Transactional-Analytical Processing.

• Execute fast OLTP like a NewSQL system while also executing complex
OLAP queries like a data warehouse system.
• Distributed / Shared-Nothing
• Relational / SQL
• Mixed open/closed-source.

23
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – Cloud systems

• First database-as-a-service (DBaaS) offerings were "containerized"
versions of existing DBMSs.

• There are new DBMSs that are designed from scratch explicitly for
running in a cloud environment.

24
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – Shared-disk engines

• Instead of writing a custom storage manager, the DBMS leverages
distributed storage.
• Scale execution layer independently of storage.
• Favors log-structured approaches.

• This is what most people think of when they talk about a data lake.

25
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – Stream processing

• Execute continuous queries on streams of tuples.
• Extend processing semantics to include notion of windows.

• Often used in combination of batch-oriented systems in a lambda
architecture deployment.

26
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – Graph systems

• Systems for storing and querying graph data.
• Their main advantage over other data models is to provide a graph-

centric query API
• Recent research demonstrated that is unclear whether there is any benefit to

using a graph-centric execution engine and storage manager.

28
Acknowledgement: Prof. Andy Pavlo, CMU

http://cidrdb.org/cidr2015/Papers/CIDR15_Paper20.pdf

2010s – Timeseries systems

• Specialized systems that are designed to store timeseries / event
data.

• The design of these systems make deep assumptions about the
distribution of data and workload query patterns.

29
Acknowledgement: Prof. Andy Pavlo, CMU

2010s – SPECIALIZED SYSTEMS

• Embedded DBMSs
• Multi-Model DBMSs
• Blockchain DBMSs
• Hardware Acceleration

30

Parting thoughts

• The demarcation lines of DBMS categories will continue to blur over
time as specialized systems expand the scope of their domains.

• I believe that the relational model and declarative query languages
promote better data engineering.

31
Acknowledgement: Prof. Andy Pavlo, CMU

Data system architecture
essentials

Acknowledgement: Slides taken from Prof. Manos Athanassoulis, BU

A data system is a large software system that stores data,
and provides the interface to
update and access them efficiently

data system analysis
knowledge

insights
decisions

data

Acknowledgement: Prof. Manos Athanassoulis, BU

Growing need for tailored systems

new applications new hardware more data

Acknowledgement: Prof. Manos Athanassoulis, BU

Data system, what’s inside?

Acknowledgement: Prof. Manos Athanassoulis, BU

application/SQL
access patterns
complex queries

Indexing Data

op

op
op

op

op
algorithms

and
operators

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management Disk

Memory

Caches

Hierarchy

CPU
modules

Acknowledgement: Prof. Manos Athanassoulis, BU

Data system, what’s underneath?

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory hierarchy

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

smaller
faster

more expensive (GB/$)

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

109x

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

Acknowledgement: Prof. Manos Athanassoulis, BU

Memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
pe

r/
la

rg
er

Acknowledgement: Prof. Manos Athanassoulis, BU

CPU

on-chip cache

on-board cache

main memory

flash storage

fa
st

er
ch

ea
pe

r/
la

rg
er

disks flash

Memory wall

Acknowledgement: Prof. Manos Athanassoulis, BU

Cache/memory misses

CPU

on-chip cache

on-board cache

main memory

flash storage

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that
is not in memory

what happens if I miss?

disks flash

Acknowledgement: Prof. Manos Athanassoulis, BU

Data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data go through
all necessary levels

also read
unnecessary data X page

Photo by Gary Dineen/NBAE via Getty Images

need to read only X
read the whole page

disks flash

Acknowledgement: Prof. Manos Athanassoulis, BU

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through
all necessary levels

also read
unnecessary data X page

remember!
disk is millions (mem, hundreds) times slower than CPU

need to read only X
read the whole page

Photo by Gary Dineen/NBAE via Getty Images

Data movement

Acknowledgement: Prof. Manos Athanassoulis, BU

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Page-based access & random access
query x<7

scan

Acknowledgement: Prof. Manos Athanassoulis, BU

Page-based access & random access
query x<7

scan

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

1, 5, 12, 24, 23

output

1, 5

40 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5

40 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

40 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

80 bytes
Page-based access & random access

query x<7
scan

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

scan

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

120 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

What if we had an oracle (perfect index)?

Acknowledgement: Prof. Manos Athanassoulis, BU

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

Page-based access & random access
query x<7

scan

Acknowledgement: Prof. Manos Athanassoulis, BU

Page-based access & random access
query x<7

oracle

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

1, 5, 12, 24, 23

output

1, 5

40 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

40 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

40 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

1, 5, 12, 24, 23 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2

Page-based access & random access
query x<7

oracle

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

output

1, 5, 2, 6

Page-based access & random access
query x<7

oracle

10, 11, 6, 14, 15 2, 7, 13, 9, 8
size=120 bytes
memory (memory level N)

80 bytes

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

Page-based access & random access

size=120 bytes
memory (memory level N)
disk (memory level N+1)

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

query x<7

10, 11, 6, 14, 15

120 bytes

oracle
was the oracle helpful?

output

2, 7, 13, 9, 8 1, 5, 2, 6

page size = 5*8 = 40 bytes

Acknowledgement: Prof. Manos Athanassoulis, BU

When is the oracle helpful?

2, 7, 13, 9, 81, 5, 12, 24, 23 10, 11, 6, 14, 15

for which query would an oracle help us?

how to decide whether to use the oracle?

Acknowledgement: Prof. Manos Athanassoulis, BU

how we store data
layouts, indexes

every byte counts
overheads and tradeoffs

know the query
access path selection

index
design space

Acknowledgement: Prof. Manos Athanassoulis, BU

Rules of thumb
sequential access
read one block; consume it completely; discard it; read next;

hardware can predict and start prefetching

random access prefetching can exploit full memory/disk bandwidth

read one block; consume it partially; discard it; (may re-use);
read random next;

ideal random access?

the one that helps us avoid a large number
of accesses (random or sequential)

Acknowledgement: Prof. Manos Athanassoulis, BU

The language of efficient systems: C/C++
why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptions

Acknowledgement: Prof. Manos Athanassoulis, BU

The language of efficient systems: C/C++
why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptionswe want you in the project to make low-level decisions

Acknowledgement: Prof. Manos Athanassoulis, BU

Next class

• In-memory indexing

80

Make sure to read the related papers from the
reading list

Acknowledgement: Prof. Manos Athanassoulis, BU

