
The Ubiquitous B-Tree

DOUGLAS COMER

Computer Sctence Department, Purdue Untverstty, West Lafayette, Indiana 47907

B-trees have become, de facto, a standard for file organization. File indexes of users,
dedicated database systems, and general-purpose access methods have all been proposed
and nnplemented using B-trees This paper reviews B-trees and shows why they have
been so successful It discusses the major variations of the B-tree, especially the B+-tree,
contrasting the relatwe merits and costs of each implementatmn. It illustrates a general
purpose access method whmh uses a B-tree.

Keywords and Phrases: B-tree, B*-tree, B+-tree, file organization, index

CR Categorws: 3.73 3.74 4.33 4 34

INTRODUCTION

The secondary storage facilities available
on large computer systems allow users to
store, update, and recall data from large
collections of information called files. A
computer must retrieve an item and place
it in main memory before it can be pro-
cessed. In order to make good use of the
computer resources, one must organize files
intelligently, making the retrieval process
efficient.

The choice of a good file organization
depends on the kinds of retrieval to be
performed. There are two broad classes of
retrieval commands which can be illus-
trated by the following examples:

Sequential: "From our employee file, pre-
pare a list of all employees'
names and addresses," and

Random: "From our employee file, ex-
tract the information about
employee J. Smith".

We can imagine a filing cabinet with three
drawers of folders, one folder for each em-
ployee. The drawers might be labeled "A-
G," "H-R," and "S-Z," while the folders

might be labeled with the employees' last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the'~labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file. If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

Permission to copy without fee all or part of this material is granted provided that the copras are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the pubhcation and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwme, or to republish, requires a fee and/or specific permission.
© 1979 ACM 0010-4892/79/0600-0121 $00 75

Computing Surveys, Vol ll, No 2, June 1979

122 • D. Comer

CONTENTS

INTRODUCTION
OperaUons on a t'de

I THE BASIC B-TREE
Balancing
Insertion
Deletion

2 THE COST OF OPERATIONS
Retrmva| Costs
Insertion and Deletmn Costs
Sequentm| Processing

3 B-TREE VARIANTS
B*-Trees
B*-Trees
Prefix B*-Trees
Virtual B-Trees
Compression
Variable Length Entries
Binary B-Trees
2-3 Trees and Theoreucal Results

4 B-TREES 1N A MULTIUSER ENVIRONMENT
Security

5 A GENERAL PURPOSE ACCESS METHOD USING
B*-TREES
Performance Enhancements
Tree-Structured Fde Directory
Other VSAM Facdltms

SUMMARY
ACKNOWLEDGMENTS
REFERENCES

A T

ance when used in a computer system. Usu-
ally, a unique key is assigned to each item
in the file, and all retrieval is requested by
specifying the key. For example, each em-
ployee might be assigned a unique em-
ployee number which would identify that
employee's record. Instead of labeling the
drawers of the cabinet "A-G," etc., one
would use ranges of employee numbers like
"0001"-"3000".

Many techniques for organizing a file and
its index have been proposed; Knuth
[KNuT73] provides a survey of the basics.
While no single scheme can be optimum for
all applications, the technique of organizing
a file and its index called the B-tree has
become widely used. The B-tree is, de facto,
the standard organization for indexes in a
database system. This paper, intended for
computer professionals who have heard of
B-trees and want some explanation or di-
rection for further reading, compares sev-
eral variations of the B-tree, especially the

B+-tree, showing why it has become popu-
lar. It surveys the literature on B-trees in-
cluding recent papers not mentioned in
textbooks. In addition, it discusses a general
purpose file access method based on the B-
tree.

The starting point of our discussion is an
internal storage structure called the binary
search tree. In particular, we begin with
balanced binary search trees because of
their guaranteed low retrieval cost. For a
survey of binary search trees and other
internal storage mechanisms, the reader is
referred to SEVE74 and NIEV74. NIEV74
also explains the graph theoretic terms
"tree," "node," "edge," "root," "path," and
"leaf," which will be used throughout the
discussion.

The remainder of this Introduction pre-
sents a model of the retrieval process and
outlines the file operations to be considered.
Section 1 presents the basic B-tree as pro-
posed by Bayer and McCreight, giving the
methods for inserting, deleting, and locat-
ing items. Then for each type of operation,
Section 2 examines the cost and concludes
that sequential processing can be expen-
sive. In many cases, changes in implemen-
tation can lower the costs; Section 3 shows
variations of the B-tree which have been
developed to do so. Extending the varia-
tions of B-trees, Section 4 reviews the prob-
lems of maintaining a B-tree in a multiple
user environment and outlines solutions for
concurrency and security problems. Finally,
Section 5 presents IBM's general purpose
file access method which is based on the B-
tree.

Operations on a File

For purposes of this paper, we think of a
file as a set of n records, each of the form
r, = (k,, a,), in which k, is called the key for
the ith record, and a, the associated infor-
mation. For example, the key for a record
in an employee file might be a five-digit
employee number, while the associated in-
formation might consist of the employee's
name, address, salary, and number of de-
pendents.

We assume that key k, uniquely identifies
record r,. Furthermore, we assume that al-
though the key is much shorter than the

C o m p u t i n g Surveys , Vol 11, No 2, June 1979

records 1,2,..

J

FIGURE 1. A file and its index on a secondary store.

associated information, the set of all keys is
too large to fit into main memory. These
assumptions imply that if records are to be
retrieved randomly using the keys, it would
be advantageous to construct an index to
speed retrieval. Since the set of all keys
does not fit in main memory, the index
itself must be external. Finally, we assume
that the keys have a natural order, say
alphabetical, so we can refer to the key-
sequence order of a file.

Users conduct transactions against a file,
inserting, deleting, retrieving, and updating
records. In additions, users frequently pro-
cess the file sequentially, in key-sequence
order, starting at a given point. Most often,
that starting point is the beginning of the
file. A set of basic operations which support
such transactions are:
insert: add a new record, (k, a~), checking

that k, is unique,
delete: remove record (k, a~) given k,,
find: retrieve a~ given k~,
next: retrieve a~+l given that a, was just

retrieved {i.e., process the file se-
quentially).

For a given file organization, there are
costs associated with maintaining the index
and with performing each of these opera-
tions. Since the index is intended to speed
retrieval, processing time is usually taken
as the primary cost measure. With current
hardware technology, the time required to

The Ubiquitous B.Tree • 123

access secondary storage is the main com-
ponent of the total time required to process
the data. Furthermore, most random access
devices transfer a fixed amount of data per
read operation, so that the total time re-
quired is linearly related to the number of
reads. Therefore, the number of secondary
storage accesses serves as a reasonable cost
measure for evaluating index methods.
Other less important costs include the time
to process data once it has been placed in
main memory, the secondary storage space
utilization, and the ratio of the space re-
quired by the index to the space required
by the associated information.

1. THE BASIC B-TREE

The B-tree has a short but important his-
tory. In the late 1960s computer manufac-
turers and independent research groups
competitively developed general purpose
file systems and so-called "access methods"
for their machines. At Sperry Univac Cor-
poration (in conjunction with Case Western
Reserve University) H. Chiat, M. Schwartz,
and others developed and implemented a
system which carried out insert and find
operations in a manner related to the B-
tree method which we will describe shortly.
Independently, B. Cole, S. Radcliffe, M.
Kaufman, and others developed a similar
system at Control Data Corporation (in
conjunction with Stanford University). R.
Bayer and E. McCreight, then at Boeing
Scientific Research Labs, proposed an ex-
ternal index mechanism with relatively low
cost for most of the operations defined in
the previous section; they called it a B-tree ~
[BAYE72] .

This section presents the basic B-tree
data structure and maintenance algorithms
as a generalization of the binary search tree
in which more than two paths leave a given
node; the next section discusses costs for
each operation. Other general introductions
may be found in HORO76, KNuT73, and
WIRT76.

The origin of "B-tree" has never been explained by
the authors. As we shall see, "balanced," "broad," or
"bushy" might apply. Others suggest that the "B"
stands for Boeing. Because of his contributions, how-
ever, it seems appropriate to think of B-trees as
"Bayer"-trees.

Computing Surveys, Vol 11, No 2, June 1979

124 • D. Comer

Recall that in a binary search tree the
branch taken at a node depends on the
outcome of a comparison of the query key
and the key stored at the node. If the query
is less than the stored key, the left branch
is taken; if it is greater, the right branch is
followed. Figure 2 shows part of such a tree
used to store employee numbers, and the
path taken for the query "15."

Now consider Figure 3 which shows a
modified search tree with two keys stored
in each node. Searching proceeds by choos-
ing one of three paths at each node. In the
figure, the query, 15, is less than 42 so the
leftmost would be taken at the root. For
those queries between 42 and 81 the center
path would be selected, while the rightmost
path would be followed for queries greater
than 81. The decision procedure is repeated
at each node until an exact match occurs
(success) or a leaf is encountered (failure).

In general, each node in a B-tree of order
d contains at most 2d keys and 2d + 1
pointers, as shown in Figure 4. Actually,
the number of keys may vary from node to
node, but each must have at least d keys
and d + 1 pointers. As a result, each node
is at least 1/~ full. In the usual implementa-
tion a node forms one record of the index
f'fle, has a fixed length capable of accom-
modating 2d keys and 2d pointers, and con-
tains additional information telling how
many keys correctly reside in the node.

/ \ / \
FIGURE 2. Part of a binary search tree for employee

numbers The path taken for query "15" is darkened.

/
I N\

/
! ~ 2 I,I ~3, I

1 1 / 1 1 1 \
FIGURE 3. A search tree with 2 keys and 3 branches

per node. The path taken for query "15" is darkened.

Ugually, large, multikey nodes cannot be
kept in main memory and require an access
to secondary storage each time they are to
be inspected. Later, we will see how, under
our cost criterion, maintaining more than
one key per node lowers the cost of find,
insert, and delete operations.

Balancing

The beauty of B-trees lies in the methods
for inserting and deleting records that al-
ways leave the tree balanced. As in the case
of binary search trees, random insertions of
records into a file can leave a tree unbal-
anced. While an unbalanced tree, like the
one shown in Figure 5a has some long paths
and some short ones, a balanced tree, like
the one shown in Figure 5b, has all leaves
at the same depth. Intuitively, B-trees have
a shape as shown in Figure 6. The longest
path in a B-tree of n keys contains at most
about logdn nodes, d being the order of the
B-tree. A f ind operation may visit n nodes

FIGURE 4. A node in a B-tree of order d with 2d
keys and 2d + 1 pointers.

1
I , , , -, \ 1

I / t ' , --1

I / i , , \1

I / \ -..I --....

(b)

FIGURE 5. (a) An unbalanced tree with many long
paths, and (b) a balanced tree with all paths to
leaves exactly the same length.

Computing Surveys, Vol 11, No 2, June 1979

in an unbalanced tree indexing a file of n
records, but it never visits more than 1 +
logdn nodes in a B-tree of order d for such
a file. Because each visit requires a second-
ary storage access, balancing the tree has
large potential savings. Many schemes to
balance trees have been proposed (see
NIEV74, FOST65, KARL76 for examples).
Each scheme requires some computation
time to perform the balancing, so the sav-
ings during retrieval operations must be
greater than the cost of balancing itself.
The B-tree balancing scheme restricts
changes in the tree to a single path from a
leaf to the root, so it cannot introduce "run-
away" overhead. Furthermore, the balanc-
ing mechanism uses extra storage to lower

"I~h = lOqd u

• all leaves

FIGURE 6. T h e shape of a B-tree of order d indexing
a file of n records.

The Ubiqui tous B -Tree • 125

the balancing costs (presumably, secondary
storage is inexpensive compared to retrieval
time). Hence, B-trees gain the. ad~vantages. .
of balanced tree schemes while avmdmg
some of the time-consuming maintenance.

Insertion

To see how balance is maintained during
insertion, consider Figure 7a which shows
a B-tree of order 2. Since each node in a B-
tree of order d contains between d and 2d
keys, each node in the example has between
2 and 4 keys. Some indicator which is not
depicted must be present in each node to
mark the current number of keys. Insertion
of a new key requires a two-step process.
First, a find proceeds from the root to locate
the proper leaf for insertion. Then the in-
sertion is performed, and balance is re-
stored by a procedure which moves from
the leaf back toward the root. Referring to
Figure 7a, one can see that when inserting

~ I 5'la~-L[I

111211~1 12~1 I 113~114,1 3l 1541 163 1 I 116al I G~ 17,[17611/7

<o> 17~Ia4~I J

~ 1~1 14-J I I

I1211711 1 ~N11sI1221 1 Ib~l141II l I I~31s

1791841931 1
(b)

FIGURE 7. (a) A B-tree of order 2, and (b) the same tree after insertion of key "57". Note that the number of
keys m the root node may be less than d, the order of the B-tree All other nodes have at least d keys in them.

Computing Surveys, Vol 11, No 2, June 1979

126 • D. Comer

the key "57" the find terminates unsuccess-
fully at the fourth leaf. Since the leaf can
accommodate another key, the new key is
simply inserted, yielding the tree shown in
Figure 7b. If the key "72" were inserted,
however, complications would arise be-
cause the appropriate leaf is already full.
Whenever a key needs to be inserted in a
node that is already full, a split occurs: the
node is divided as shown in Figure 8. Of the
2d + 1 keys, the smallest d are placed in
one node, the largest d are placed in an-
other node, and the remaining value is pro-
moted to the parent node where it serves
as a separator. Usually the parent node will
accommodate an additional key and the
insertion process terminates. If the parent
node happens to be full too, then the same
splitting process is applied again. In the
worst case, splitting propagates all the way
to the root and the tree increases in height
by one level. In fact, a B-tree only increases
in height because of a split at the root.

Deletion

Deletion in a B-tree also requires a find
operation to locate the proper node. There
are then two possibilities: the key to be
deleted resides in a leaf, or the key resides
in a nonleaf node. A nonleaf deletion re-
quires that an adjacent key be found and
swapped into the vacated position so that
it finds work correctly. To locate an adja-
cent key in key-sequence order, one merely
searches for the leftmost leaf in the right
subtree of the now empty slot. As in a
binary search tree, the needed value always
resides in a leaf. Figure 9 demonstrates
these relationships.

Once the empty slot has been "moved"
to a leaf, we must check to see that at least
d keys remain. If less than d keys occupy

h,B6hb~l,l I I x~,16~lTd~hl I

(a) (b)

FIGURE 8. (a) a leaf and its ancestor in a B-tree, and
(b) the same subtree after insertion of key "72".
Each node retains between 2 and 4 keys (d and 2d).

I'"hbTl l " '" I

J I
/

i / . . . I
i

/
FIGUR~ 9. Deletion of key "17" requires tha t the

next sequential key, "21" be found and swapped into
the vacant position. The next sequential key always
resides in the leftmost leaf of the subtree given by
the right pointer of the empty position.

the leaf, then an underflow is said to occur,
and redistribution of the keys becomes nec-
essary. To restore balance (and the B-tree
property that each node has at least d keys}
only one key is needed--it could be ob-
tained by borrowing from a neighboring
leaf. But since the operation requires at
least two accesses to secondary storage, a
better redistribution would evenly divide
the remaining keys between the two neigh-
boring nodes, lowering the cost of succes-
sive deletions from the same node. Redis-
tribution is illustrated by Figure 10.

Of course, the distribution of keys among
two neighbors will suffice only if there are
at least 2d keys to distribute. When less
than 2d values remain, a concatenation
must occur. During a concatenation, the
keys are simply combined into one of the
nodes, and the other is discarded {note that
concatenation is the inverse of splitting).
Since only one node remains, the key sep-
arating the two nodes in the ancestor is no
longer necessary; it too is added to the
single remaining leaf. Figure 11 shows an
example of concatenation and the final lo-
cation of the separator key.

When some node loses a separator key
due to concatenation of two of its children,
it too may underflow and require redistri-
bution from one of its neighbors. The pro-
cess of concatenating may force concate-

Computing Surveys, Vol 11, No 2, June 1979

/
I " ' " I =>

I' 71 °t' I/ 471"9l ll,

T h e U b i q u i t o u s B - T r e e ° 127

/

I " ' " . . . [

(a) (b)

FIGURE 10. (a) Par t of a B-tree before, and (b) after redistribution of keys among two neighbors. Note the
final position of the separator key, "50" . Redistr ibution into equal size nodes helps avoid underflow on
successive deletions.

hl,o['11~1'~7 hi I hl,olA-I,I [I => [~L. .
(a) (b)

FIGURE 11. (a) A deletion causing concatenation,
and (b) the rebalanced tree.

nating at the next higher level, and so on,
to the root level. Finally, if the descendants
of the root are concatenated, they form a
new root, decreasing the height of the B-
t ree by 1.

Algorithms for insertion and deletion
may be found in BAYE72. Simple examples
programmed in PASCAL are provided by
Wir th [WIRT76].

2. THE COST OF OPERATIONS

Since visiting a node in a B-tree requires an
access to secondary storage, the number of
nodes visited during an operat ion provides
a measure of its cost. Bayer and McCreight
[BAYE72] give a precise analysis of the costs
of insertion, deletion, and retrieval. T h e y
also provide comprehensive experimental
results which relate the theoretical bounds
to actual devices. Knu th [KNUT73] alSO de-
rives bounds for the cost of operations in a
B-tree using a slightly different definition.
The next section gives a simple explanation
of the asymptot ic bound on costs.

Retrieval Costs

First, consider the cost of a find operation.
Except for the root, each node in the B-tree
has at least d direct descendants since there

are between d and 2d keys per node; the
root has at least 2 descendants. So the
number of nodes at depths 2 0, 1, 2, . . . ,
must be at least 2, 2d, 2d 2, 2d 3 All
leaves lie at the same dep th h so there are

h d h - 1
~ d ' - - -

,=o~ 2 d - 1

nodes with at least d keys each. Th e height
of a t ree with n total keys is therefore
constrained so tha t

2 d (d ^ - 1)/(d - 1) _< n

with a little work one can show tha t

2d h <_ n + 1,

o r

n + l
h < l O g d -

2

Thus, the cost of processing a find opera-
t ion grows as the logari thm of the file size.

Table I shows how reasonable logarith-
mic cost can be, even for large fries. A B-
tree of order 50 which indexes a file of one
million records can be searched with only
4 disk accesses in the worst case. Later we
will see tha t this est imate is too high; simple
implementa t ion techniques lower the worst
case cost to 3, and the average cost to less.

Aho et al. [AHO74] provide another per-
spective on the cost of finds in a B-tree.
T h e y show tha t for the decision-tree model
of computat ion, one where searching is
based on comparison at each node, no
asymptot ical ly faster retr ieval algori thm
can be devised. Of course, this model does

The root of a tree hes at depth 0, sons of a node at
depth l - 1 lie at dep th I.

Computing Surveys, Vol 11, No 2, June 1979

128 • D. Comer

TABLE I. UPPER BOUND ON THE NUMBER OF
NODES RETRIEVED IN THE WORST CASE FOR

VARIOUS NODE SIZES AND FILE SIZES.

Node
s i ze

F~ le s i ze
(records) I03 10 4 105 106 107

Io 3 4 5 6 7

;

50 2 3 3 4 4

i00i 2 2 3 3 4

150 2 2 3 3 4

rule out some methods, such as hashing
[MAUE75]. Nevertheless, B-trees exhibit
low retrieval costs in both a practical and
theoretical sense.

Insertion and Deletion Costs

An insert or delete operation may require
'additional secondary storage accesses be-
yond the cost of a find operation as it
progresses back up the tree. Overall, the
costs are at most doubled, so the height of
the tree still dominates the expressions for
these costs. Therefore, in a B-tree of order
d for a file of n records, insertion and dele-
tion take time proportional to logdn in the
worst case.

The advantage of nodes containing a
large number of keys should now be clear.
As the branch factor, d, increases, the log-
arithmic base increases, and the costs of
find, insert, and delete operations decrease.
There are, however, practical limits on the
size of a node: most hardware systems
bound the amount of data that can be trans-
ferred with one access to secondary storage.
Besides, our cost hides the constant factor
which grows as the size of data transferred
increases. Finally, each device has some
fixed track size which must be accommo-
dated to avoid wasting large amounts of
space. So, in practice, optimum node size
depends critically on the characteristics of
the system and the devices on which the
file is allocated.

Bayer and McCreight [BAYE72] give
some loose guidelines for choosing node
sizes based on rotational delay time, trans-
fer rate, and key size. Their experiments

verify that the model's optimal values per-
form well in practice.

Sequential Processing

So far we have considered random trans-
actions conducted by specifying a key. Of-
ten, users wish to view the file as a sequen-
tial one, using the next operation to process
all records in key-sequence order. In fact,
one alternative to B-trees, the so called
Indexed Sequential Access Method (ISAM)
[GHOS69], assumes that sequential accesses
occur very frequently.

Unfortunately, a B-tree may not do well
in a sequential processing environment.
While a simple preorder tree walk
[KNUT68] extracts all the keys in order, it
requires space for at least h = logd(n + 1)
nodes in main memory since it stacks the
nodes along a path from the root to avoid
reading them twice. Additionally, process-
ing a next operation may require tracing a
path through several nodes before reaching
the desired key. For example, the smallest
key is located in the leftmost leaf; finding it
requires accessing all nodes along a path
from the root to that leaf as shown in Figure
12.

What can be done to improve the cost of
the next operation? This question and oth-
ers will be answered in the next section,
under the topic "B+-trees. ''

3. B-TREES VARIANTS

As with most file organizations, variations
of B-trees abound. Bayer and McCreight
[BAYE72] suggest several implementation
alternatives in their original paper. For ex-

I
. . . \ ~

I ° q d]

FIGURE 12. The locahon of the smallest key m the
leftmost leaf of a B-tree. Reaching it requires logdn
accesses.

Computing Surveys, Vol 11, No 2, June 1979

ample, the underflow condition, resulting
from a deletion, is handled without con-
catenation by redistributing keys from
neighboring nodes (unless the requisite
number of keys cannot be obtained). Ap-
plying the same strategy to the overflow
condition can delay splitting and eliminate
the associated overhead. Thus, instead of
splitting a node as soon as it fills up, keys
could merely be distributed into a neigh-
boring node, splitting only when two neigh-
bors fill.

Other variations of B-trees have concen-
trated on improvements in the secondary
costs. Clampet [CLAM64] considers the cost
of processing a node once it has been re-
trieved from secondary storage. He sug-
gests using a binary search instead of a
linear lookup to locate the proper descen-
dent pointer. Knuth [KNUT73] points out
that a binary search might be useful if the
node is large, while a sequential search
might be best for small nodes. There is no
reason to limit internal searching to se-
quential or binary search; any number of
techniques from KNUT73 might be used.
In particular, Maruyama and Smith
[MARc77] mention an extrapolation tech-
nique they call the square root search.

In their general treatment of index crea-
tion for a file, Ghosh and Senko [GHos69]
consider the use of an interpolation search
to eliminate a secondary storage access.
The analysis presented generalizes to B-
trees and indicates that it might be cost
effective to eliminate some of the index
levels just above the leaves. Since a search
would terminate with several possible can-
didate leaves, the correct one would be
found by an "estimate" based on the key
value and the key distribution within the
file. When the estimate produced the wrong
leaf, a sequential search could be carried
out. Although some estimates might miss,
the method would pay off on the average.

Knuth [KNUT73] suggests a B-tree vari-
ation which has varying "order" at each
depth. Part of the motivation comes from
his observation that pointers in leaf nodes
waste space and should be eliminated. It
also makes sense to have a different shape
for the root (which is seldom very full com-
pared to the other nodes). Maintenance

The Ubiqui tous B -Tree • 129

costs for this implementation seem rather
high compared to the benefits, especially
since secondary storage is both inexpensive
and well suited to fixed length nodes.

B*-Trees

Perhaps the most misused term in B-tree
literature is B*-tree. 3 Actually, Knuth
[KNuT73] defines a B*-tree to be a B-tree
in which each node is at least 2/3 full (in-
stead of just 1/2 full). B*-tree insertion
employs a local redistribution scheme to
delay splitting until 2 sibling nodes are full.
Then the 2 nodes are divided into 3, each
2/3 full. This scheme guarantees that stor-
age utilization is at least 66%, while requir-
ing only moderate adjustment of the main-
tenance algorithms. It should be pointed
out that increasing storage utilization has
the side effect of speeding up the search
since the height of the resulting tree is
smaller.

The term B*-tree has frequently been
applied to another, very popular variation
of B-trees also suggested by Knuth (cf.
[KNuT73, WEDE74, BAYE77]). To avoid
confusion, we will use the term B+-tree for
Knuth's unnamed implementation.

B÷-Trees

In a B+-tree, all keys reside in the leaves.
The upper levels, which are organized as a
B-tree, consist only of an index, a roadmap
to enable rapid location of the index and
key parts. Figure 13 shows the logical sep-
aration of the index and key parts. Natu-
rally, index nodes and leaf nodes may have
different formats or even different sizes. In
particular, leaf nodes are usually linked to-
gether left-to-right, as shown. The linked
list of leaves is referred to as the sequence
set. Sequence set links allow easy sequential
processing.

To fully appreciate a B+-tree, one must
understand the implications of having an
independent index and sequence set. Con-
sider for a moment the find operation.

3 An amus ing case is t he "B* t ree search a lgor i thm,"
which is abou t a t ree-search a lgor i thm n a m e d B*
[BERL78].

Computing Surveys,¥ol 11, No 2, June 1979

130 • D. Comer

Searching proceeds from the root of a B ÷-
tree through the index to a leaf. Since all
keys reside in the leaves, it does not matter
what values are encountered as the search
progresses as long as the path leads to the
correct leaf.

During deletion in a B+-tree, the ability
to leave non-key values in the index part as
separators simplifies processing. The key to
be deleted must always reside in a leaf so
its removal is simple. As long as the leaf
remains at least half full, the index need
not be changed, even if a copy of the key
had been propagated up into it. Figure 14
shows how the copy of a deleted key can
still direct searches to the correct leaf. Of
course, if an underflow condition arises, the
redistribution or concatenation procedures
may require adjusting values in the index
as well as in the leaves.

Insertion and find operations in a B÷-tree
are processed almost identically to insertion
and find operations in a B-tree. When a leaf
splits in two, instead of promoting the mid-
dle key, the algorithm promotes a copy of
the key, retaining the actual key in the right
leaf. Find operations differ from those in a
B-tree in that searching does not stop if a

key in the index equals the query value.
Instead, the nearest right pointer is fol-
lowed, and the search proceeds all the way
to a leaf.

We have seen that B-trees, which support
low-cost find, insert, and delete operations,
may require logdn accesses to secondary
storage to process a next operation. The
B÷-tree implementation retains the loga-
rithmic cost properties for operations by
key, but gains the advantage of requiring at
most 1 access to satisfy a next operation.
Moreover, during the sequential processing
of a file, no node will be accessed more than
once, so space for only 1 node need be
available in main memory. Thus, B÷-trees
are well suited to applications which entail
both random and sequential processing.

random

sea rch

Prefix B+-Trees

The separation of the index and sequence
set in a B÷-tree is intuitively appealing.
Recall that the index part serves merely as
a roadmap to guide the search to the correct
leaf; it need not contain actual keys at all.
When keys consist of a string of characters
there is good reason not to use actual keys

ndex : a i
B-tree

keys : the
sequence se t

FIGURE 13. A B+-tree with separate index and key parts. Operations "by key" begin at the root as in a B-tree,
sequential processing begins at the leftmost leaf.

\
ld'°i'l °l'b° hi I }

-- ' t" 1,7 I "1 H" 1
(a)

index lll,ol, l ol o 111 1

-'1,1,7{81 I H I H--"
(b)

FIGURE 14. (a) A B+-tree and (b) the B+-tree after deletion of the key "20". Even after its removal, key "20"
still serves as a separator value in the index part.

Computing Surveys, VoL 11, No. 2, June 1979

as separators: actual keys require too much
space. Bayer and Unterauer [BAYE77] con-
sider an alternative, the Prefix B+-tree.

Suppose that the sequence of alphabetic
keys "binary," "compiler," "computer,"
"electronic," "program," and "system"
were allocated in a B-tree as shown in Fig-
ure 15. The separator value in the index
between the keys "computer," "electronic"
need not be either of them; any string be-
tween suffices. For example, any of the
strings "elec," "e," or "d" would do nicely.
Since it makes no difference during re-
trieval, the shortest such separator should
be used to save space. As space require-
ments become smaller, more keys can be
placed in each node, the branching factor
increases, and the height of the tree de-
creases. Since shorter trees cost less to
search, using shorter separators will de-
crease access time as well as save space.

The simple technique of choosing the
shortest unique prefix of the key to serve
as a separator works well. In the example,
the shortest prefix of "electronic" which
distinguishes it from "computer" is "e."
Sometimes, however, the prefix technique
does not perform well: choosing the short-
est prefix of "programmers" which distin-
guishes it from "programmer" results in no
savings at all. In such cases, Bayer and
Unterauer,suggest scanning a small neigh-
borhood of keys to obtain a good pair for
the separation algorithm. While this may
leave the nodes unevenly loaded, having a
few extra keys in one of the nodes will not
affect the overall costs.

Virtual B-Trees

Many modern computer systems employ a
memory management scheme which pro-
vides each user with a large virtual memory.
The address space of a user's virtual mem-
ory is divided into pages which are saved
on secondary storage and loaded into main
memory automatically when they are ref-
erenced. This technique, called demand
paging, multiplexes real memory among
users and, at the same time, affords protec-
tion to insure that one user will not interfere
with the data of another. Furthermore, spe-
cial purpose hardware handles the paging
so that transfers to and from secondary

The Ubiquitous B-Tree • 131

storage are performed at high speed.
The availability of demand paging hard-

ware suggests an interesting implementa-
tion of B-trees. Through careful allocation,
each node of the B-tree can be mapped into
one page of the virtual address space. Then
the user treats the B-tree as if it were in
memory. Accesses to nodes (pages) which
are not in memory cause the system to
"page-in" the node from secondary storage.

Most paging algorithms choose to re-
move the least recently used (LRU) page
when making room for a new one. In terms
of a B-tree, the most active nodes are those
close to the root; these tend to stay in
memory. In fact, Bayer and McCreight
[BAYE72] and Knuth [KNUT73] both sug-
gest a LRU mechanism for B-trees even
when not using paging hardware. At least,
the root should remain in main memory
since it is accessed for each search.

Thus, virtual B-trees have the following
advantages:
1) The special hardware performs transfers

at high speed,
2) The memory protection mechanism iso-

lates other users, and
3) Frequently accessed parts of the tree

will remain in memory.

Compression

Several other implementation techniques
have been suggested to improve the per-
formance of B-trees. Wagner [WAGN73]
summarizes several of them, including the
notions of compressed keys and compressed
pointers. 4

Pointers can be compressed using a base/
displacement form of node address rather
than an absolute address value. A node
with compressed pointers has the form
shown in Figure 16, where the base address
is stored once in the node, and an offset
value, or displacement beyond the base,
replaces each pointer. To reconstruct an
actual pointer value, the base is added to
the displacement for that pointer. Com-
pressed pointer techniques are particularly
appropriate for virtual B-trees where
pointers take on large address values.

Keys, or separator values, can be corn-

4 See also AUER76.

Computing Surveys, Vol. 11, No. 2, June 1979

132 •

FIGURE 15.

D. Comer

• " " h i ' h i " •

- ' f ' i b ~,, I - o ~ , , o ~ , , I ,,oo~ "1 H - ~ " ° ' e ~ " I"~o.~0~"l "-- " I I P "

Part of a PrefLx B*-tree. The index entry "e" is sufficient to separate "computer" from "electronic."

FIGURE 16.
offset.

I ba~o I°'set0 i '°y, I ° ' s ° t , I k°y2 I • ' I°'set2d ' lkey2dl° 'Seh~

A node with compressed pointers. To obtain the ~th pointer, the base value is added to the ith

pressed using any one of several standard
techniques for removing redundancy
[Rum76]. Both key compression and
pointer compression increase the capacity
of each node and, therefore, decrease the
retrieval costs. The tradeoff for decreased
secondary storage accesses is an increase in
the CPU time necessary to search a node
after it has been read. Thus, complicated
compression algorithms may not always be
cost effective.

It should be noted that both front and
rear compression can be applied to keys.
For example Bayer and Unterauer
[BAYE77] consider compression of keys for
prefix B+-trees.

Variable Length Entries

Many applications require the storage of
data with variable length keys. Addition-
ally, variable length entries result from
compression techniques mentioned above.
McCreight [McCR77] considers the storage
of trees with variable length entries and
shows how promoting shorter keys during
an insertion produces a tree with better
storage utilization and faster access times.

Binary B-Trees

Another variation proposed by Bayer
[BAYE72a], the Binary B-tree, makes B-
trees suitable for a one-level store. Essen-
tially, a Binary B-tree is a B-tree of order
1; each node has 1 or 2 keys and 2 or 3
pointers. To avoid wasting space for nodes
that are only half full, a linked representa-
tion is used as shown in Figure 17. Nodes
with 1 key are represented exactly as in
Figure 17a, while nodes with 2 keys are
linked as in Figure 17b. Since the right
pointer in a node may point to either a

B-tree B,nary B-tree

FIGURE 17. Nodes in a B-tree and the corresponding
nodes m a Binary B-tree. Each right pointer in the
Binary B-tree representation can point to a sibling
or a descendent.

sibling or a descendant, one extra bit must
be used to indicate its meaning.

Analysis shows that insertion, deletion,
and find still take only log n steps as in a
B-tree, although searching the rightmost
path requires twice as many nodes to be
accessed as the leftmost. Using the right
pointer for two purposes does complicate
the insertion and deletion algorithms, how-
ever. To maintain logarithmic cost, care
must be taken to insure that there are never
two right links pointing to sibling nodes in
a row. Detailed algorithms for a rotation
process, one that prevents three or more
successive sibling links, are given in
BAYE72a and WIRT76.

An extension of the Binary B-tree, which
allows for both left and right links to point
to sibling nodes, exhibits symmetry lack-
ing in the Binary B-tree. Hence, the
name Symmetric Binary B-tree has been
applied to such a data structure by Bayer
[BAYE73], who also reports that Symmetric
Binary B-trees contain the well-known
class of AVL trees as a subclass [FosT65].

2-3 Trees and Theoretical Results

Hopcroft developed the notion of a 2-3 tree,
and explored its usefulness in a one-level

Computing Surveys, VoL 11, No 2, June 1979

store. Each node in a 2-3 tree has 2 or 3
sons (because it contains 1 or 2 keys). Thus,
a 2-3 tree is a B-tree of order 1, and vice
versa. The small node size makes 2-3 trees
impractical for external storage, but quite
appropriate for an internal data structure.
Rosenbaum and Snyder [RosE78], and
Miller et al. [MILL77] consider the problem
of constructing optimal 2-3 trees for a given
set of keys. They use the number-of com-
parisons and the number of node accesses,
respectively, as the cost criterion. In each
case, a linear time algorithm is presented
for constructing optimal trees from the
sorted list of keys. The results in MILL77
extend to B-trees of arbitrary order.

Yao [YAO78] reports the results of ana-
lyzing 2-3 trees built from a uniformly dis-
tributed set of n keys. The paper gives both
an upper and lower bound on the expected
storage utilization. Extending the analysis
to B-trees of higher order, Yao has shown
that the expected storage utilization is In 2

69%.
Guibas et al. [GUIB77] consider a B-tree

variant for maintaining a list of keys which
have highly skewed probability of access.
By maintaining a set of fingers which point
to localities of interest, one can update
items within p locations from a finger in
logdp time. For example, one might allocate
a finger at the beginning and end of the list.
As locality of activity changes, one of the
fingers can be moved to the new locality.

Guibas and Sedgewick [GuIB78] present
another B-tree scheme and compare the
performance of several balanced tree tech-
niques. Their important contribution shows
that no upward splitting is ever required.
The trick is to split nodes that are nearly
full when traveling down the tree. The next
section shows that eliminating bottom-up
updating can be crucial to performance.

Also see BROW78 and BRow78a for re-
lated theoretical results.

4. BoTREES IN A MULTIUSER
ENVIRONMENT

If B-trees are to be used in a general pur-
pose database system, they must permit
several user requests to be processed si-
multaneously. Unless some constraints are
applied to synchronize the processes, they
may interfere with each other. One process

The Ubiquitous B-Tree • 133

may read a node and follow one of the links
while another process is changing it. To
further complicate the interaction, find op-
erations begin processing top-down in the
B-tree while insertion and deletion require
bottom-up access. Samadi [SAMA76] pre-
sents one solution to the concurrency prob-
lem. Held and Stonebraker [HELD78] argue
that concurrency conflicts, which are re-
solved by giving only one process access to
the tree, diminish the advantages of B-trees
in a multiuser environment.

Bayer and Schkolnick [BAYE77a] show
that a set of locking protocols, enforced by
a supervisor process, can insure the integ-
rity of B-tree accesses while allowing con-
current activity. In essence, a find locks, or
holds, a node once it has been read so that
other processes cannot interfere with it. As
the search progresses to the next depth, the
find processor releases its lock on the ances-
tor, allowing others to read it. Thus, readers
lock at most two nodes at any time; other
reader processes are free to explore (and
lock) other parts of the tree simultaneously.

Updating in a concurrent environment
presents a more complex problem, one that
requires more complex protocols. Since up-
dates may affect higher levels in the tree,
an update process leaves a reservation on
each node it accesses, reserving the right to
lock the node. Later, the reservation may
be converted to a lock if the update process
determines that its change will propagate
to the reserved node. Alternatively, the re-
servation may be cancelled if the update
will not affect the reserved node. Reserved
nodes may be read, since readers will al-
ways continue to a leaf, but they may not
be reserved a second time until the first
reservation is cancelled.

Once an update process establishes res-
ervations on a path leading to some leaf, it
may convert the reservations to absolute
locks, top-down. The absolute lock guar-
antees that no other process will access the
node. Then the update proceeds, changing
only nodes on which it holds absolute locks.
After all changes have been made, absolute
locks are cancelled and the updated path
becomes available for other processes.

Reserving an entire path from the root to
a leaf prevents other updates from access-
ing the B-tree. Furthermore, most updates
affect only a few levels--those near a leaf--

Computing Surveys, Vol. 11, No 2, June 1979

134 • D. Comer

so reserving an entire path is not desirable.
Yet reserving too few nodes might make it
necessary to begin again at the root. Bayer
and Schkolnick, therefore, propose a gen-
eralized locking protocol which represents
a tradeoff between the two extremes. They
provide a parameterized model and show
how reservations can permit enough con-
currency to utilize present technology while
wasting very little time on restarting res-
ervations.

In contrast, using the top-down splitting
suggested in GUIB78 eliminates the need
for all but the most simple protocols, since
updaters never need to travel back up the
tree at all. Thus, only one pair of nodes will
ever be locked at a given time. Of course,
the price for splitting nodes before they fill
completely is a slight decrease in storage
utilization and a corresponding increase in
access time.

Security

The protection of information in a multi-
user environment poses another problem
for database designers.-Earlier, under the
topic Virtual B-Tree, it was indicated that
isolation of users could be obtained from
the memory protection mechanism of pag-
ing. When the contents of a file must be
protected outside of the system, some en-
cryption technique must be used. Bayer
and Metzger [BAYE76] consider encipher-
ment schemes and possible security threats.
They show that encipherment has a rela-
tively high cost unless implemented via
hardware. On the other hand, changes to
the B-tree maintenance algorithms to ac-
commodate encoded files are minor, espe-
cially if the encipherment can be done "on
the fly" during data transmission.

5. A GENERAL PURPOSE ACCESS METHOD
USING B+-TREES

This section presents an example of the use
of B+-trees--IBM's general purpose B-tree
based access method, VSAM [IBM1, IBM2,
KEEH72, WAGN73]. Intended to serve in a
wide variety of applications, VSAM is de-
signed to support sequential searching as
well as logarithmic cost insertion, deletion,
and find operations. Compared to the con-
ventional indexed-sequential organization,

the B+-trees offer the following advantages:
dynamic allocation and release of storage,
guaranteed storage utilization of 50%, and
no need for periodic "reorganization" of the
entire file.

Since VSAM must handle the storage of
both keys and associated information, a
VSAM file is represented as in Figure 18.
The top two sections of the VSAM tree
form a B÷-tree index and sequence set as
described earlier; the leaves contain actual
data records. In VSAM terminology, a leaf
is called a control interval, and forms the
basic unit of data transferred in one I/O
operation. Each control interval contains
one or more data records as well as control
information describing the format of the
interval. Figure 19 illustrates the fields of a
control interval.

Performance Enhancements

Although VSAM presents a logical, or ma-
chine-independent, view of data to the user,
the file organization must accommodate the
underlying devices if transactions are to be
conducted efficiently. Therefore, the maxi-
mum size of a control interval is limited by
the largest unit of data that the hardware
can transfer in one operation. In addition,
the set of all control intervals associated
with one sequence set node (called a control
area) must fit on one cylinder of the partic-
ular disk storage unit used to store the file.
These restrictions improve performance
and permit even further enhancements de-
scribed below.

Since all the descendants of a sequence
set node are allocated on one cylinder, per-
formance can be improved by allocating the
sequence set node on the same cylinder.
Then, once the sequence set node has been
retrieved, items in the control area can be
retrieved without disk arm movement. An
extension to the contiguous sequence set
node allocation is demonstrated in Figure
20 which shows how the sequence set node
can be replicated on one track of the cyl-
inder. Replication reduces disk seek time.
VSAM attempts to improve performance
in several other ways. Pointers are com-
pressed using the base/displacement
method described above, keys are com-
pressed in both the forward (prefix) and

Computing Surveys, Vol 11, No. 2, June 1979

The Ubiquitous B.Tree •

index 1

sequence set

control intervals
(actual data)

B +- t ree

FIGURE 18. A VSAM file with actual data (associated information) stored in the leaves.

135

Oata Oata I Oata I contro, Icontro,
record record record i n f o r m a t i o n i n f o r m a t i o n about
l 2 r about data control interval

FIGURE 19. The format of a control interval. The control fields describe the control interval itself, and the
format of the data fields.

T r a c k I

FIGURE 20. The format of a control area with the
sequence set node, S, replicated on the first track to
minimize latency time.

backward (suffix) directions, index records
can be replicated, and the index can be
allocated on a separate device to allow con-
current access of index and data. Finally,
VSAM allows the index part to be a virtual
B-tree, using the virtual memory hardware
to retrieve it.

Tree-Structured File Directory

Perhaps the most novel idea in the VSAM
implementation is that one data format
should be used throughout the system. For
example, those routines which maintain a
directory of all VSAM files in the system
keep the information in a VSAM file, the
master catalog. Figure 21 shows the master
catalog which contains an entry for each
VSAM file (or VSAM data set). Since all
VSAM files must be entered into the cata-
log, the system can locate any file automat-
ically given its name. Of course, the catalog
is a VSAM data set so it contains an entry
describing itself.

If several processes access the master

catalog simultaneously, contention occurs,
and all but one will have to wait. To avoid
lengthy delays caused by such contention,
each user can define a local catalog with
entries for his VSAM files. The user cata-
logs, which are VSAM files, must be en-
tered into the master catalog. Once a user
catalog has been located by searching the
master catalog, further references to files
indexed by that catalog do not entail
searching the master catalog. The resulting
multilevel, tree-structured catalog scheme
has a flavor similar to the MULTICS file
system [ORG~,72].

Other VSAM Facilities

Many facets of VSAM have not surfaced in
our brief discussion--the reader is warned
that we have only given a quick overview.
For example, the VSAM files we discussed
are called key-sequenced. Another form,
the entry-sequenced VSAM files allow ef-
ficient sequential processing when no key
accompanies a record (i.e., no operations
are to be performed using the key). Entry-
sequenced VSAM files require no index so
they are less expensive to maintain.

In addition to the VSAM file mainte-
nance and retrieval procedures, the system
provides a mechanism for defining and
loading a VSAM file. One must decide how
to distribute free space within the file: if
the user anticipates many insertions, then

Computing Surveys, Vol 11, No 2, June 1979

136 • D. Comer

/(/(
VSAM file I VSAM file 2

FIGURE 21.

VSAM fi I e m

Master cataloq: A VSAM
file with information
for all VSAM files

The VSAM Master catalog, which serves as a directory for all VSAM files, is itself a VSAM file.

the file should probably not be loaded with
each node 100% full or the initial insertions
will be expensive. On the other hand, if the
file will remain relatively stable, loading the
nodes to only 50% capacity wastes storage.
The VSAM file definition facility provides
assistance by loading the file according to
the parameters chosen.

Finally, VSAM supplies facilities for ef-
ficient insertion of a large contiguous set of
records, protection of data, file backup, and
error recovery, all of which are necessary in
a production environment.

SUMMARY

A balanced, multiway, external file organi-
zation, the B-tree, is efficient, versatile, sim-
ple, and easily maintained. One variation,
the B÷-tree, allows efficient sequential
processing of the file while retaining the
desirable logarithmic cost for find, insert,
and delete operations. B-tree schemes guar-
antee 50% storage utilization while allocat-
ing and releasing space as the file grows or
shrinks. Moreover, B-trees grow and shrink
in exactly the opposite manner; massive file
"reorganization" is never necessary even
after heavy transaction traffic.

Different B-tree implementation tech-
niques provide enhanced performance, gen-
erality, and the ability to use B-trees in a
multiuser environment. Compression of
keys and pointers, careful allocation (and
replication) of nodes on secondary storage,
and local redistribution of keys during in-
sertion or deletion all improve performance
and make B-trees viable in a production
environment, while locking protocols, vir-

tual memory protection, and data encryp-
tion provide security and mutual exclusion
necessary when a B-tree must be shared by
several users.

IBM's VSAM demonstrates that it is rea-
sonable to construct a general purpose file
access method based on B-trees. In addition
to user's B-tree files, the system itself uses
a B-tree file to catalog the name and loca-
tion of all available VSAM files. Using a
B÷-tree implementation to permit efficient
sequential processing, VSAM incorporates
many of the techniques available for per-
formance enhancement and protection of
data.

ACKNOWLEDGMENTS

The author thanks the referees, especially for provid-
ing contacts regarding the history of B-trees, and IBM
Corporation for cheerfully making available detailed
information on its B-tree based access method when
none of its competitors would reveal theirs.

AHO74

AUER76

BAYE72

BAYE72a

BAYE73

REFERENCES

AHO, A., HOPCROFT, J., AND ULLMAN,
J. The design and analysts of computer
algorithms, Addmon Wesley, Publ. Co.,
Reading, Mass., 1974.
AUER, R. Schlusselkornpress~onen ~n
B*-baurnen, Diplomarbeit, Tech. Um-
versitat, Munich, 1976.
BAYER, R , AND MCCREIGHT, C "Or-
ganization and maintenance of large or-
dered indexes," Acta Inf. 1, 3 (1972), 173-
189.
BAYER, R. "Binary B-trees for virtual
memory," in Proc 1971 ACM SIGFIDET
Workshop, ACM, New York, 219-235.
BAYER, R. "Symmetric binary B-trees.
data structure and maintenance algo-
rithms," Acta Inf. 1, 4 (1972), 290-306

Computing Surveys, Vol 11, No 2, June 1979

The

BAYE76

BAYE77

BAYE77a

BERL78

BROW78

BROW78a

CLAM64

FOST65

GHOS69

GUIB77

GUIB78

HELD78

HORO76

IBM1

IBM2

KARL76

KEEH74

BAYER, R., AND METZGER, J. "On enci-
pherment of search trees and random ac-
cess files," A CM Trans. Database Syst. 1, KNUT68
1 (March 1976), 37-52.
BAYER, R , AND UNTERAUER, K. "PrefLx
B-trees," A C M Trans. Database Syst. 2,
1 (March 1977), 11-26. KNUT73
BAYER, R., AND SCHKOLNICK, M. "Con-
currency of operations on B-trees," Acta
Inf. 9, 1 (1977), 1-21.
BERLINER, H. The B*-tree search al- MARU77
gortthm: a best-first proof procedure,
Tech. Rep. CMU-CA-78-112, Computer
Scmnce Dept, Carnegie-Mellon Univ.,
Pittsburgh, 1978. MAUE75
BROWN, M "A storage scheme for
height-balanced trees," Inf. Process. Lett.
7, 5 (Aug. 1978), 231-232. MCCR77
BROWN, M. "A partial analysis of
height-balanced trees," SIAM J. Comput.,
to appear. MILL77
CLAMPETT, H. "Randomized binary
searching with tree structures," Commun.
A C M 7, 3 (March 1964), 163-165.
FOSTER, C. "Informatmn storage and re-
trieval using AVL trees," m Proc. A C M NIEV74
20th Nattonal Conf., ACM, New York,
1965, 192-205.
GHOSH, S, AND SENKO, M. "File orga- ORGA72
nization: on the selection of random ac-
cess index points for sequential files," J
A C M 16, 4 (Oct. 1969), 569-579. ROSE78
GUIBUS, L., MCCREIGHT, E., PLASS, M.,
AND ROBERTS, J. "A new representation
for linear lists," m Proc. 9th A C M Syrup. RUBI76
Theory of Computing, ACM, New York,
1977, 49-60.
GUIBAS, L., AND SEDGEWICK, R. "A dI- SAMA76
chromatic framework for balanced trees,"
m Proc 19th Syrup. Foundatmns of Com-
puter Science, 1978, 8-21. SEVE74
HELD, G., AND STONEBRAKER, M. "B-
trees reexamined," Commun. A C M 21, 2
(Feb. 1978), 139-143.
HOROWITZ, E., AND SAHNI, S. Fundamen- WAGN73
tals of data structures, Computer Science
Press, Inc., Woodland Hdls, Calif., 1976. WEDE74
OS/VS Virtual Storage Access Method
(VSAM) planning gutde, Order No.
GC26-3799, IBM, Armonk, N.Y.
OS/VS Vwtual Storage Access Method
(VSAM) logw, Order No. SY26-3841,
IBM, Armonk, N.Y.
KARLTON, P., FULLER, S., SCROGGS, R., WIRT76
AND KACHLER, E. "Performance of
height balanced trees," Commun. A C M
19, 1 (Jan. 1976), 23-28. YAO78
KEEHN, D., AND LACY, J. "VSAM data

RECEIVED AUGUST 1978; FINAL REVISION ACCEPTED DECEMBER 1978

Ubiquitous B - T r e e • 137

set design parameters," I B M Syst. J. 3,
(1974), 186-212.
KNUTH, D. The art of computer pro-
grarnmmg, Vol. 1. fundamental algo.
r~thrns, Addison-Wesley Publ. Co., Read-
mg, Mass, 1968.
KNUTH, D. The art of computer pro-
grammmg, Vol. 3: sorting and searching,
Addison-Wesley Publ. Co, Reading,
Mass., 1973.
MARUYAMA, K , AND SMITH, S. "Anal-
ysis of design alternatives for virtual
memory indexes," Commun. A C M 20, 4
(April 1977), 245-254.
MAUER, W., AND LEWIS, T. "Hash table
methods," Comput. Surv. 7, 1 (March
1975), 5-19.
McCREIGHT, E. "Pagination of B*-trees
with variable-length records," Commun.
A C M 20, 9 (Sept. 1977), 670-674
MILLER, R., PIPPENGER, N., ROSENBERG,
A., AND SNYDER, L. Opttmal 2-3 trees,
IBM Research Rep. RC 6505, IBM Re-
search Lab, Yorktown Heights, N.Y.,
1977.
NIEVERGELT, J. "Binary search trees
and file organization," Comput. Surv. 6, 3
(Sept. 1973), 195-207.
ORGANICK, E. The Multics system: an
exammatmn of ~ts structure, MIT Press,
Cambridge, Mass., 1972.
ROSENBERG, A, AND SNYDER, L.
"Minimal comparison 2-3 trees," SIAM J.
Comput 7, 4 (Nov. 1978), 465-480.
RUBIN, F "Experiments in text file
compression," Commun. A C M 19, 11
(Nov 1976), 617-623.
SAMADI, B. "B-trees m a system w~th
multiple views," Inf. Process. Lett. 5, 4
(Oct. 1976), 107-112
SEVERENCE, D. "Identifier search
mechnisms, a survey and generalized
model," Comput. Surv 6, 3 (Sept. 1974),
175-194.
WAGNER, R. "Indexing design consider-
ations," I B M Syst. J. 4, (1973), 351-367.
WEDEKIND, H. "On the selection of ac-
cess paths in a database system," in Data
base management (Proc. IFIP Working
Conf. Data Base Management) J Klim-
bie and K. Koffeman (Eds.), Elsevier/
North-Holland Publishing Co., New York,
1974, 385-397.
WIRTH, N. Algorithms + data struc-
tures ffi programs, Prentice-Hall Inc., En-
glewood Cliffs, N J., 1976.
YAO, A. "On random 2-3 trees," Acta
Inf. 9, 2 (1978), 159-170.

Computing Surveys, VoL ll, No 2, June '"~"

