
A Study of Index Structures for 
Main Memory Database Management Systems 

Tobin J. Lehman 
Michael J. Carey 

Computer Sciences Department 
University of Wisconsin 

Madison, WI 53706 

ABSTRACT 
One approach to achieving high performance in a database 

management system is to store the database in main memorv rather 
than on disk. -One can then design new data structures aid algo- 
rithms oriented towards making eflicient use of CPU cycles and 
memory space rather than minimizing disk accesses and &ing disk 
space efliciently. In this paper we present some results on index 
structures from an ongoing study of main memory database manage- 
ment systems. We propose a new index structure, the T Tree, and 
we compare it to existing index structures in a main memory data- 
base environment. Our results indicate that the T Tree provides good 
overall performance in main memory. 

1. Introduction 
It is projected that memory chip densities will continue their 

current trend of doubling every year for the foreseeable future, and, 
as a result, it is expected that main memory sizes of a gigabyte or 
more will be feasible and perhaps even common within the next 
decade [Fish86]. This large increase in the amount of main memory 
will have a profound impact on database management systems as it 
will be possible, in some cases, to store the entire. database in main 
memory, removing disks from the path of normal query processing 
operations. (Disks will still be needed to store stable backup ver- 
sions of the database, of course.) In addition to traditional database 
applications, there are a number of emerging applications for which 
main memory sizes will almost certainly be suffcient, applications 
that wish to be able to store and access relational data mostly 
because the relational model and its associated operations provide an 
attractive abstraction for their needs. Horwitz and Teitelbaum have 
proposed using relational storage for program information in 
language-based editors, as adding relations and relational operations 
to attribute grammars provides a nice mechanism for specifying and 
building such systems [Horw85]. Linton has also proposed the use 
of a database system as the basis for constructing program develop- 
ment environments [Lint84]. Snodgrass has shown that the rela- 
tional model provides a good basis for the development of perfor- 
mance monitoring tools and their interfaces [Snod84]. Finally, 
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Warren (and others) have addressed the relationship between Prolog 
and relational database systems [WarrSl], and having efficient algo- 
rithms for relational operations in main memory could be useful for 
processing queries in future logic programming language implemen- 
tations. 

So far. there have been two approaches proposed for using 
large amounts of main memory in’aatabase Hysiems. The first 
approach is to make the buffer pool very large, making it possible for 
most or oerhaos all of the data needed for each transaction to be 
retained in & buffer pool. Dewitt et al [DeWi84], Shapin, 
[Shap86], and Elhardt et al [Elha84] have taken this approach in their 
work. Minimizing disk accesses still tends to be the primary perfor- 
mance goal for algorithm design when this approach is taken. The 
other m;jor approach, the memory-resident database approach, is to 
use the large amount of memory as the main store for the database. 
This approach requires a redesign of the database management sys- 
tem - the algorithms and data structures for query processing, con- 
currency control, and recovery must all be restructured to stress the 
efficient use of CPU cycles and memory rather than disk accesses 
and disk storage. The designs proposed by Krishnamurthy et al 
[Amma85] and Leland et al [Lela85] have been based on this latter 
approach. In this approach, disk accesses are only an issue for crash 
recovery purposes, as recovery information must still reside on disk. 

There are several arguments in favor of using existing systems 
and simply enlarging the buffer pool: no work is needed, since 
changing the buffer pool size simply involves changing a constant in 
the DBMS, and the speed of the overall system will increase since 
fewer disk accesses will be required. However, a buffer oriented sys- 
tem has a number of inherent handicaps. Every reference to the data- 
base must go through the buffer manager, causing the buffer 
manager to check its page list to see if the page is in memory, then 
perform the address calculation, and finally, if necessary, pin the 
page to guarantee that it is not swapped out prematurely. Thus, it 
seems that there is much to be gained by redesigning a database sys- 
tem to avoid contact with the disks and the buffer manager to the 
maximum extent possible. 

Motivated by increasing memory sizes and these buffer-related 
arguments, we are studying the memory-resident database approach 
to main memory database management systems. We are evaluating 
both old and new database algorithms to determine which ones make 
the best use of CPU cycles and memory in a main memory database 
environment. Although we assume that there is a large amount of 
memory available, we are not willing to assume that it is infinite. 
Therefire, we judge data stmctures and algorithms according to both 
speed and storage efliciency criteria. The first phase of our study has 
addressed query processing issues. Although relations are memory 
resident, indices are still needed for fast access to the data. The ini- 
tial part of our query processing study addressed index structures for 
main memory databases, and this is the focus of the rest of the paper. 

The remainder of this paper is organized as follows: Section 2 
describes the differences between main memory index structures and 
disk index structures. Section 3 enumerates a number of existing 
index stmctures and then introduces a new index structure, the T 
Tree, which was designed for use in main memory. Section 4 
describes the index tests and gives the results of those tests. Section 
5 suggests some improvements to the T Tree index structure, and, 
finally, Section 6 gives our conclusions. 

Proceedings of the Twelfth International 
Conference on Very Large Data Bases 

Kyoto, August, 1986 

-294- 



2. Disk Versus Main Memory 
Index structures designed for main memory are different from 

those designed for disk-based systems. The primary goals for a 
disk-oriented index structure are to minimize the number of disk 
accesses and to minimize disk space. A main memory oriented 
index structure is contained in main memory, hence there are no disk 
accesses to minimize. Thus, the primary goals of a main memory 
index are to reduce overall computation time while using as little 
memory as possible. Since relations are memory resident, it is not 
necessary for a main memory index to store actual attribute values. 
Instead, pointers to tuples can be stored in their place, and these 
pointers can be used to extract the attribute values when needed. 
This has several advantages. First, a single tuple pointer provides 
the index with access to both the attribute value of a tuple and the 
tuple itself, reducing the size of the index. Second, this eliminates 
the complexity of dealing with long fields, variable length fields, and 
compression techniques in the index. Third, moving pointers will 
tend to be cheaper than moving the (usually longer) attribute values 
when updates necessitate index operations. Finally, since a single 
tuple pointer provides access to any field in the tuple, multi-attribute 
indices will need less in the way of special mechanisms. 
3. Main Memory Index Structures 

There are many data structures available for consideration as 
index structures. There are two main types: those that preserve some 
natural ordering in the data and those that randomize the data. The 
index structures being studied here are: arrays, AVL Trees, and B 
Tree’s, for the order-preserving class’; and Chained Bucket Hashing, 
Linear Hashing and Extendible Hashing, for the randomizing class2. 
We describe briefly each algorithm in turn. Then, having considered 
these algorithms, we will introduce a new algorithm called the T 
Tree. The T Tree is an order-preserving tree structure designed 
specilically for use in main memory. 
3.1. Existing Index Structures 

Arrays are used as index structures in IBM’s OBE project 
[Amma85]. They use minimal space, providing that the size is 
known in advance or that growth is not a problem (e.g., that one can 
somehow use the underlying mapping hardware of virtual memory to 
make the array grow gracefully). The biggest drawback of the array 
is that data movement is O(N) for each update, so it appears imprac- 
tical for anything bui a read-only environment. 

AVL Trees [Aho74] are used as indices in the AT&T Bell 
Laboratories Silicon Database Machine [Lela85]. The AVL Tree 
was designed as an internal memory data structure (Figure I). It uses 
a binary tree search, which is very fast since the binary search is 
intrinsic to the tree structure (no arithmetic calculations are needed). 
Updates always affect a leaf node and may result in an unbalanced 
tree, so the tree is kept balanced by rotation operations. The AVL 
Tree has one major disadvantage - its poor storage utilization. 
Each tree node holds only one data item, so there are two pointers 
and some control information for every data item. 

B Trees [Come791 are well suited for disk use since they are 
broad shallow trees and require few node accesses to retrieve a value 
(Figure 1). Most database systems use a variant of the B Tree, the 
B+ Tree, which keeps all of the actual data in the leaves of the tree. 
For main memory use, however, the B Tree is preferable to the B+ 
Tree because, in main memory, there is no advantage to keeping all 
of the data in the leaves -it only wastes space. B Trees are good for 
memory use since their storage utilization is good (the pointer to data 
ratio is small, as leaf nodes hold only data items and they comprise a 
large percentage of the tree); searching is reasonably quick (a small 
number of nodes are searched with a binary search); and updating is 
fast (data movement usually involves only one node). 

‘Radix structures provide an excellent method for maintaining ordered 
d&for ~om~ special types of data [Knut73, Wi11841, but since they we not 
general enough to be used for all data they are not considered here. 

2There were several dynamic hashing algorithms to choose from. Ex- 
tendib]e Hashing and Linear Hashing were chosen because Of their Popular- 
ity and the fact that most other methods are based on variants of these 
methods. Methods using spiral storage [Kje184] or Partial expansions 
[Lars80] require more data reorganization [Mul1841, SO, they would not do 
as well in a dynamic main memory environment. 

AVL Tree Node AVL Tree 

1 Data 1 

B Tree Node 

control 

B Tree 

Figure l-Tree Structured Indices 
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Chained Bucket Hashing [Knut73] is a static structure used 
both in memory and on disk (Figure 2). It is very fast because it is a 
static structure - it never has to reorganize its data. But, this advan- 
tage is also its disadvantage; because it is static, it may have very 
poor behavior in a dynamic environment because the size of the hash 
table must be known or guessed at before. the table is filled. If the 
estimated size is too small, then performance can be poor, and if the 
estimated size is too large, then much space is wasted. At best, there 
is some space wasted, since each data item has a pointer associated 
with it3 

Extendible Hashing [Fagi79] employs a dynamic hash table 
that grows with the data, so the table size does not need to be known 
in advance (Figure 2). A hash node contains several items and splits 
into two nodes when an overflow occurs. The directory grows in 
powers of two, doubling whenever a node overllows and has reached 
the maximum depth for a particular directory size. One problem 
with Extendible Hashing is that any node can cause the directory to 
split, so the directory can grow to be very large if the hash function 
is not sufficiently random. 

Linear Hashing [LitwSO] also uses a dynamic hash table, but 
it is quite different from Extendible Hashing (Figure 2). A Linear 
Hash table grows linearly as it splits nodes in predelined linear order 
- as opposed to Extendible Hashing, which splits the nodes that 
overflow. The decision to split a node and extend the directory in a 
controlled fashion can be based on criteria other than overflowing 
nodes, providing several advantages over the uncontrolled splitting 
of Extendible Hashing. First, the buckets can be ordered sequen- 
tially, allowing the the bucket address to be calculated from a base 
address - no directory is needed. Second, the event that triggers a 
node split can be based on storage utilization, keeping the storage 
cost constant for a given number of elements. 

Modilied Linear Hashing is oriented more towards main 
memory than the regular version mentioned above (Figure 2). 
(Litwin’s description of Linear Hashing does not exclude this style 
of Linear Hashing: but his description is generally targeted more 
towards disk apphcations Litw801.) By using larger contiguous 
nodes rather than a directory, normal Linear Hashing can waste 
space with empty nodes (when a node corresponding to a hash entry 
has no data items). Also, unless a clever scheme can be worked out 
with the underlying virtual memory mapping mechanism, the con- 
tiguous nodes have to be copied into a larger memory block when 
the directory grows. Modilied Linear Hashing uses a directory much 
like Extendible Hashing, except that it grows linearly, and chained 
single-item nodes, allocated from a general memory pool. (Unlike 
Chained Bucket Hashing, there are. typically many items per hash 
value, so multiple item nodes could indeed be used here to increase 
storage utilization.) The splitting criteria is based on performance, 
i.e. the average length of the hash chains, rather than storage utiliza- 
tion. Monitoring average hash chain length provides more direct 
control over the average search and update times than monitoring 
storage utilization. 

3.2. The T Tree 
The T Tree, a new data structure, evolved from AVL Trees and 

B Trees. The T Tree is a binary tree with many elements in a node. 
Figure 3 shows a T Tree and a node of a T Tree, called a T Node. 
Since the T Tree is a binary tree, it retains the intrinsic binary search 
nature of the AVL Tree. Also, because a T node contains many ele- 
ments, the T Tree has the good update and storage characteristics of 
the B Tree. Data movement is requited for insertion and deletion, 
but it is usually needed only within a single node. Rebalancing is 
done using rotations similar to those of the AVL Tree, but it is done 
much less often than in an AVL Tree due to the possibility of intra- 
node data movement. 

3 By grouping several items in a node, the data to pointer ratio could 
be reduced, but the extra data space might be wasted. Our tests showed that 
the optimal table size for a given number of elements has an average of 
only two items per hash value. 

Left Child Ptr 

T Node 

T Tree 

Figure 3 -The T Tree 

To aid in our discussion of T Trees, we begin by introducing 
some helpful terminology. There are three different types of T- 
nodes. A T-node that has two subtrees is called an internal node. A 
T-node that has one NIL child pointer and one non-NIL child pointer 
is called a half-leaf node. A T-node that has two NIL child pointers 
is called a leaf nude. For each internal node A, there is a correspond- 
ing leaf (or half-leaf) that holds the data value that is the predecessor 
to the minimum value in A, and there is also a leaf (or half-leaf) that 
holds the successor to the maximum value in A. The predecessor 
value is called the greatest lower bound of the internal node A, and 
the successor value is called the feust upper bound of A, as shown in 
Figure 4. For a node N and a value X, if X lies between the 
minimum element of N and the maximum element of N (inclusive), 
then we say that node N bounds the value X. Since. the data in a T- 
node is kept in sorted order, its leftmost element is the smallest ele- 
ment in the node and its rightmost element is the largest. 

Associated with a T Tree is a minimum count and a maximum 
count. Internal-nodes keep their occupancy (i.e. the number of data 
items in the node) in this range. The minimum and maximum counts 
will usually differ by just a small amount, on the order of one or two 
items, which turns out to be enough to signifcantly reduce the need 
for tree rotations. With a mix of inserts and deletes, this little bit of 
extra room reduces the amount of data passed down to leaves due to 
insert overllows, and it also reduces the amount of data borrowed 
from leaves due to delete underflows. Thus, having flexibility in the 
occupancy of internal nodes allows storage utilization and 
insert/delete time to be traded off to some extent. Leaf nodes and 
half-leaf nodes have an occupancy ranging from zero to the max- 
imum count. 

Minimum element of A Maximum element of A 

Greatest Lower Bound of A’ ’ Least Upper Bound of A 

Figure 4 -The Bounds of a T-node 
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3.2.1. Search and Update Operations for T Trees 

Search Algorithm 
Searching in a T Tree is similar to searching in a binary tree. 

The main difference is that comparisons are made with the minimum 
and maximum values of the node rather than a single value as in a 
binary tree node. The algorithm works as follows: 
(1) The search always starts at the root of the tree. 
(2) If the search value is less than the minimum value of the node, 

then search down the subtree pointed to by the left-child 
pointer. Else, if the search value is greater than the maximum 
value of the node, then search down the subtree pointed to by 
the right-child pointer. Else, search the current node. 
The search fails when a node is searched and the item is not 

found or when a node that bounds the search value cannot be found. 

Insert Algorithm 
The insert operation begins with a search to locate the bound- 

ing node. The new value is inserted into the bounding node and then 
the tree is checked for balance. If the T Tree is unbalanced as a 
result of the insertion (or deletion, for that matter), the appropriate 
rebalancing operation checks the nodes in the path between the root 
and the leaf where the insertion or deletion took place. Insertion 
works as follows, although we postpone our discussion of the 
rebalancing rotations until Section 3.2.2: 
(1) Search for the bounding node. 
(2) If a node is found, then check for room for another entry. If the 

insert value will tit, then insert it into this node and stow. Else. 
remove the minimum element from the node, insert the’originai 
insert value, and make the minimum element the new insert 
value. Proceed from here directly to the leaf containing the 
greatest lower bound for the node holdina the oriainal insert 
ialue. The minimum element (the new i’lsert valie) will be 
inserted into this leaf, becoming the new greatest lower bound 
value for the node holding the insert value. 

(3) If the search exhausts the tree and no node bounds the insert 
value, then insert the value into the last node on the search path 
(which is a leaf or a half-leaf). If the insert value fits. then it 
becomes the new minimum or maximum value for the node. 
Otherwise, create a new leaf (so the insert value becomes the 
lirst element in the new leaf). 

(4) If a new leaf was added, then check the tree for balance by fol- 
lowing the path from the leaf to the root. For each node in the 
search path (going from leaf to root), if the two subtrees of a 
node differ in depth by more than one level, then a rotation 
must be performed (see Section 3.2.2). Once one rotation has 
been done, the tree is rebalanced and processing stops. 
A design note is in order here: When an internal node 

overflows, and thus its minimum value is removed and passed down 
to a leaf, the insert into the leaf requires no data movement because 
the value becomes the leafs rightmost entry. If instead the max- 
imum value had been removed from the internal node, it would have 
to be inserted as the leftmost entry in the leaf, requiring intra-node 
data movement. Hence, removing the minimum value instead of the 
maximum value avoids this data movement. 

Delete Algorithm 
The deletion algorithm is similar to the insertion algorithm in 

the sense that the element to be deleted is searched for, the operation 
is performed, and then rebalancing is done if necessary. The algo- 
tithm works as follows: 
(1) Search for the node that bounds the delete value. Search for 

the delete value within this node, reporting an error and stop- 
ping if it is not found. 

(2) If the delete will not cause an underflow (i.e. if the node has 
more than the minimum allowable number of entries prior to 
the delete), then simply delete the value and stop. Else, if this 
is an internal node, then delete the value and borrow the 
greatest lower bound of this node from a leaf or half-leaf to 
bring this node’s element count back up to the minimum. Else, 

this is a leaf or a half-leaf, so just delete the element. (Leaves 
are oermitted to underflow, and half-leaves are handled in steu w.j 

(3) If the node is a half-leaf and can be merged with a leaf, 
coalesce the two nodes into one node (a leaf) and discard the 
other node. Proceed to step (5). 

(4) If the current node (a leaf) is not empty, then stop. Else, free 
the node and proceed to step (5) to rebalance the tree. 

(5) For every node along the path from the leaf up to the root, if 
the two subtrees of the node differ in height by more than one, 
perform a rotation operation (see Section 3.2.2). Since a rota- 
tion at one node may create an imbalance for a node higher up 
in the tree, balance-checking for deletion must examine all of 
the nodes on the search path until a node of even balance is 
discovered. 

3.2.2. Rebalancing a T Tree 
The rebalancing operations for a T Tree are similar to those for 

an AVL tree IAho741. A T Tree’s balance is checked whenever a 
leaf is added or deleted: as indicated in the descriptions of the inser- 
tion and deletion algonthms. The search path is checked from the 
leaf to the root - for each node in the path, if the node’s two sub- 
trees differ in height by more than one level, a rotation operation is 
needed. In the case of an insertion, at most one rotation is needed to 
rebalance the tree, so processing stops after one rotation. Jn the case 
of a deletion, a rotation on one node may trigger an imbalance for a 
node higher up in the tree, so processing continues after a rotation 
until an evenly balanced node is found. Figure 5 shows the simple 
LL rotation and the more complex LR rotation for the case of an 
insert. These are two of the four types of rotations used to rebalance 
an AVL tree or a T Tree. The algorithms for the RR and RL rota- 
tions are symmetrical to the LL and LR rotations, respectively, so 
they are not shown.4 The rebalancing rotations for deletion are 

Denotes a single node Denotes a subtree 
of depth three 

r---1 

i x i Denotes a level of a subtree 
I.---, 

about to be added 

A 

B 4r 

a BI C 

Cl c, 

0 LL 

o+ LR 

Xj ___A 

Figure 5 -T Tree Rebalancing Operations 

4 The names of the rotations (LL, RL, LR, and RR) are derived from 
the child of the node that causes the imbalance. In the LL rotation in Figure 
5, the Left Left child of A is longer; in the LR rotation, the Left Right child 
is longer. 

-297- 



identical to rebalancing after insertion, except that the cause of the 
imbalance in the tree is that a subtree has grown shorter rather than 
longer. 

The T Tree requires one special case rotation that the AVL tree 
does not have. When an LR or RL rotation is done and the node C is 
a leaf (and both nodes A and B are half-leaves), a regular rotation 
would move C into an internal node position, as shown in Figure 6. 
If C has only one item, which is always the case during an insert, 
then C would never get to hold more than a single item as an internal 
node (unless it is later rotated back into a leaf position), because 
items are always inserted between the low and upper bound of an 
internal node. Since this would be detrimental to storage utilization, 
a special rotation operation first moves values from B to C so that, 
after the rotation, C is a full internal node. This special case rotation 
is shown in Figure 6. 

Regular LR Rotation 

A /“- 

Special LR Rotation 

(slide elemenls C 
fromnloc) 

Figure 6 - Special T Tree Rebalancing Operations 

3.2.3. Other Properties of the T Tree 
T-nodes are equipped with child and parent pointers so that 

they can be traversed in either direction. From any node in a T Tree, 
all of the other nodes can be retrieved - in order. This property is 
useful when using the T Tree to perform a merge join [Lehm86b]. 
This property also allows the T Tree to store and retrieve duplicates 
with no extra work. Duplicate values (if allowed) are placed next to 
items with equal values - node boundaries are ignored. The update 
and rotation operations work as before. To retrieve a set of tuple 
pointers corresponding to a single value, one simply searches for the 
value, marks the spot where the first such item is found, then scans 
left, and then right from that spot. 

4. Index Performance Tests 
Each of the index structures described in Section 3 took part in 

the index performance study. The index tests simulated the opera- 
tions of a normal database management system so that the index 
structures would be compared in a realistic environment. Each algo- 
rithm implementation was done in “main memory” style, that is, the 
indices held pointers to records (memory addresses) instead of keys 

or actual records. To supply the indices with data, a random number 
generator filled the test relation with unique 4 byte integers that were 
used as key values for the indices and, since the values could be read 
out of the relation, the search and delete operations were always 
done on existing elements, hence they were always successful. The 
chosen index size was 30,000 elements, because this was the largest 
number of elements that most of the implementations could support 
for the amount of memory available.’ 
4.1. Index Test Description 

The tests were run in the following order: the data structures 
were built, then searched, then subjected to three query mixes, then 
searched with range queries, then scanned, and then half of the 
values were deleted. We describe each test in more detail below. 

Insert 30,000 elements - To measure the insert cost of, 
30,000 elements were inserted into each index structure. The inserts 
were each separate, as opposed to a special block insert. The index 
structures allowed unique values only, thus, each insert operation 
involved a search to ensure that the item was not already there. 

Search for 30,000 random elements - To measure the 
retrieval speed of the indices, each index was searched for 30,000 
different elements, with each element requiring a new search. 

Query mix - Each index structure was tested in a “normal” 
update environment by performing a mix of inserts, searches, and 
deletes. Three query mixes were used: the first query mix was com- 
posed of 80 percent searches, 10 percent inserts and 10 percent 
deletes; the second was composed of 60 percent searches, 20 percent 
inserts and 20 percent deletes; and the third was composed of 40 per- 
cent searches, 30 percent inserts and 30 percent deletes. To keep the 
index structures at a constant size, the three operations were inter- 
spersed and the percentages of inserts and deletes were kept equal, 
thereby making the results easier to evaluate. 

Query mix(l) - 24,000 searches, 3000 inserts, 3000 deletes 
Query mix(2) - 18,000 searches, 6000 inserts, 6000 deletes 
Query mix(3) - 12,000 searches, 9000 inserts, 9000 deletes 

Range queries - Order-preserving data structures often need 
to supply a list of values corresponding to a given range. Three 
range queries were tested - each one testing different amounts of 
searching and scanning. The lower and upper bounds of a range 
known to be 10, 100, or 1000 elements apart were given to each 
index. The index would search for the lower bound value, then scan 
the elements in order until it found or passed the upper bound value. 
Note that these tests are inappropriate for the hashing algorithms, 
because they do not store values in logical order. 

Range query 10: 30,000 queries, retrieving 10 elements per query 
Range query 100: 3,000 queries, retrieving 100 elements per query 
Range query 1000: 300 queries, retrieving 1000 elements per query 

Sequential scan - To test the scanning speed of each data 
structure, each item in the index was read. For the array and tree 
data structures, the values were read in logical order. For the hash- 
ing structures, the values were read in physical order. 

Delete 15,000 elements - To get a more realistic delete cost, 
only half of the index structure was deleted. By deleting only half of 
the index, the cost of a single delete can be calculated as roughly 
1/15,OOOth of the total time, because the data structures were not 
greatly affected by having half of their elements removed. A T Tree, 
for example, would become only one level smaller, and a B Tree 
would probably not even change height. Removing all of the ele- 
ments would have given a false impression of the delete cost since 
the cost per item deleted would be much less for the second half of 
the elements than the first half. 

Storage costs -The storage cost of each of the data structures 
after building the index with thirty thousand elements is sometimes 
different from the storage cost after the query mixes, even though the 
number of elements is the same, so each storage cost value was col- 
lected. The storage cost represents the total number of bytes needed 

5 Extendible Hashing still ran out of memory when run with the smal- 
lest node sizes (e.g., 2, 4 and 6 items per node). This is due, in part, to an 
inefficient storage allocator and, in part, to the algorithm itself (as will be 
explained more fully in Section 4.4). 
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to store the given number of elements. The storage cost computa- 
tions assume that byte (as opposed to word) alignment is permissi- 
ble, and that the smallest unit of allocation is a byte. (The pointer 
size for both data and nodes is four bytes.) 

4.2. Reducing the Number of Test Parameters 
Many of the index structures have several variable parameters 

and, in order to keep the number of tests reasonable, some of these 
parameters had to be held constant. Preliminary tests on the index 
structures gave us some indications of reasonable values for the 
parameters. For each structure, the number of variable parameters 
was reduced to one, node size (except for Modified Linear Hashing, 
where the average hash chain length was varied). The restriction to 
one similar variable allowed the execution times of the index struc- 
tures to be compared side by side in the same graphs. A discussion 
of the parameter reduction process follows. 

The B Tree has a variable node size, a variable leaf size, and 
two possible node/leaf search methods: linear and binary search. 
Prelir&ary tests showed that varying the leaf and node sizes 
separately did not signihcantly affect the results, so they were varied 
together at the same-size. Linear search on small nodes (4 and 6 ele- 
ments) was 5 percent faster than the best binary search (on any size 
node), but small nodes cause the tree to use much more space. Since 
storage and performance are both important, the binary search was 
used. The T Tree has a variable node size and two possible node- 
searching methods: linear search and binary search. For the same 
reasons as for the B Tree, binary search was used for the tests. 

Extendible Hashing has a variable node size and three different 
possible node search techniques: linear search, binary search, and 
hash search. A hash search in the node would speed up the search 
time, but it would introduce problems in collision resolution. 
Separate chaining would waste at least half of the node’s space on 
pointers, and open addressing would cause diflicuhies with delete by 
wasting either time or space to fill in holes left by deleted items 
[Knut73]. A binary search would have required keeping the node 
sorted, and therefore would have added data movement cost for 
insertion and deletion. Linear search seemed to be the simplest and 
quickest method, so this was used for the tests. 

Linear Hashing has a variable node size, a variable overflow 
bucket size, a variable storage utilization, and three possible 
node/bucket search techniques: linear search, binary search and hash 
search. The overflow bucket size could range from a fraction of the 
node size to several times the node size. The storage, insert and 
delete costs were found to be better for larger buckets, while the 
search and query mix costs were better for small buckets. An 
overflow bucket that was half the size of the node gave reasonable 
overall performance. The storage utilization (the number of data 
bytes used divided by the total number of data bytes currently avail- 
able) could range anywhere from a few percent to close to 100 per- 
cent. It is used to trigger a change in directory size - when the 
storage utilization goes up above a threshold value (usually because 
of an excess of overflow buckets), then the directory expands. Simi- 
larly. when the storage utilization falls below the threshold value 
(d&to too many empty data slots), the directory shrinks. A lower 
storage utilization threshold parameter value implies that less time 
needs to be spent on data reorganization, since more space can be 
wasted; less reorganization cost means higher performance. A value 
of 70 percent seemed to give the best overall performance / storage 
cost ratio. Lastly, for the same reasons stated for extendible hashing, 
linear search was used to search the nodes and the overflow buckets. 

Chained Bucket Hashing has only one parameter - table size. 
The ureliminarv tests showed that a table size equal to half the 
number of elements gives the best storage cost I performance ratio. 
Modified Linear Hashing is very similar to Chain-bucket Hashing, 
except that its hash table is dynamic. It uses its only parameter, the 
average length of the hash chains, to determine when to split the next 
hash chain. When the number of elements increases to the point that 
the average chain length value (size of table I number of data ele- 
ments) is greater than the threshold value, the directory expands, and 
when the value is less then the threshold value, the directory shrinks. 
The final set of the values chosen for the tests appear in Table 1. 

Data Structure 
Array 
AVL Tree 
B Tree 
T Tree 

Chained Bucket Hash 

Extendible Hashing 
Linear Hashing 

Mod. Linear Hashing 

I I Parameters 
no parameters 
no parameters 
binary search, variable node size 
binary search, minimum node size set 
at two less than the maximum node 
size, variable (maximum) node size 
table size fixed at 50% of element 
count (at 15,000) 
linear search, variable node size 
linear search, overflow bucket size of 
half the node size, 70% storage 
utilization factor, variable node size 
linear search, variable average 
hash chain length 

Table 1 - Parameters Chosen for the Tests 

4.3. Implementation Details 
Each algorithm was implemented in the C programming 

language and run in single-user mode on a VAX 11/750 with 2 
megabytes of real memory (with no virtual memory involved). The 
timing measurements were taken using “getrusage”, a timing facility 
available in BSD UNIX 4.2. The execution times reflect that of a 
main memory computer with a processing power of about 0.5 MIPS. 
Some details about the implementation of the algorithms that might 
help the reader to understand the results more fully follow: 
. A standard hash function was used in all of the hashing imple- 

mentations. 
(key * P) mod table size (where P is a large prime) 

In the cases where the table size was a power of two, the mod 
operation was done by stripping off bits with a bit mask opera- 
tion. 

. Since there was no virtual memory mechanism available, the 
Linear and Modified Linear Hashing directories had to be real- 
located from memory when the table size grew or shrunk. To 
amortize the cost of this reallocation over several increases in 
directory size, new directories were allocated with an addi- 
tional 1000 bytes for future growth. The memory for the array, 
however, was constant, being allocated once for the duration of 
the tests. 

. Linear Hashing used an extra array of pointers to point to the 
last overllow bucket in each chain. This helped the insertion 
and deletion performance while sacrificing only a small amount 
in storage. This array is figured into the the storage costs in 
Graph 7 in the test results. 

4.4. The Test Results 
Graphs 1 through 6 show the execution times of the index 

structures for a representative subset of the tests, while Graph 7 
shows the storage costs. The graphs use solid lines to represent the 
order-preserving structures and dashed lines to represent the hashing 
structures. Note that the different node sizes on the X-axis represent 
the average chain length for Modified Linear Hashing rather than 
node size - Modified Linear Hashing always used single element 
nodes. Also note that the array index structure had large execution 
times in all of the tests involving updates because of its O(N) data 
movement. The array is therefore omitted from further discussion 
involving updates.6 The reader should keep in mind that the lowest 
point (time or storage) in each graph line is more important than the 
overall shape of the line. We are interested in the one node size that 
can support the fastest execution times while requiring the least 
amount of storage. 

6 We wish to point out, however, that if the array were used as an in- 
dex, a practical way of Ouilding it would be to do a bulk insert into the array 
as a heap and then quicksort it afterwards. Tests from a main memory 
query processing paper &ehm86b] show that an array index can be filled 
and sorted in approximately half the time it takes to build a T Tree (with 
node size 30). 
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INSERT 30,000 ELEMENTS - The results of this test are 
shown in Graph 1. The cost of a series of inserts depends on the 
search time and various operations particular to the individual data 
structure, such as the amount of data moved, the number of hash 
function calls, the number of tree rebalance operations, and the 
number of memory allocation operations. Looking at the AVL Tree 
search time versus the B Tree search time (Graph 2). it would seem 
that the AVL Tree should have the better insert time, but it has about 
the same insert time for B Tree Node sizes of 20 to 40 because it 
makes more memory allocation calls (one per data item) and uses a 
costly rotation operation to rebalance the tree after insertions. Insert- 
ing a value into the B Tree, on the other hand, requires fewer 
memory allocation calls, some intra-node data movement and, much 
less frequently, some inter-node data movement (when a node splits 
into two nodes).’ The T Tree has a search time close to that of the 
AVL Tree, but it also has update characteristics similar to that of the 
B Tree; the T Tree makes fewer memory allocation calls than the 
AVL Tree and usually relies on intra-node data movement rather 
than tree rotations to keep the tree balanced. Hence, the T Tree has 
the best insertion times of the order-preserving index structures. 

In each hashing structure, the search cost is independent of the 
number of elements in the table, as there is a fixed cost to jump to 
the right node and then search the set of elements at that node. Also, 
hashing structures require little data movement because the new item 
is added to the end of the heap of elements in the node. All four 
hashing methods have approximately the same search cost for small 
nodes (see Graph 2), and they all insert a data item in about the same 
way (by appending to the end of the list), yet their insert costs are 
very different. The difference between the hashing schemes is in the 
amount of work needed to resize the directory. Linear Hashing splits 
nodes in order, possibly splitting nodes that are not full. The node 
splitting criteria is based on both the number and the distribution of 
elements in the hash table.’ This means that table growth (node 
splitting) is allowed only when the main nodes are close to full, SO a 
nonuniform distribution causes some of the main nodes to remain 
underlilled while some of the other nodes acquire long overflow 
chains (and, correspondingly, long search times) due to the lack of 
reorganization. As shown in Graph 1, different node sizes yield dif- 
ferent distributions, which have a direct affect on the search portion 
of the insert cost. Modified Linear Hashing, on the other hand, uses 
a node splitting criteria that is based solely on the total number of 

’ Memory allocation and tree rotation costs exceeds this data move- 
ment cost for the node sizes used here due to the existence of the MOVC3 
block move instruction on the VAX 111750. This move instruction executes 
much faster than a hand optimized assembler routine of similar function. 

a This is referred to as loud confrol in lLitw80], and it is based on the 
ratio of data elements to space allocated. 

elements in the table, so the average length of the overflow chains is 
better controlled. It still uses the extra data reorganization of the 
Linear Hashing algorithm, but its more closely monitored overflow 
chain lengths result in a significantly decreased insert cost. Finally, 
Extendible Hashing requires that a node splits only when it 
overflows, so it does the least amount of reorganizing of data and 
thus has the fastest index insertion time of the dynamic hashing 
methods. 

SEARCH - Graph 2 shows the search costs. The array uses a 
pure binary search. The overhead of the arithmetic calculation and 
movement of pointers is noticeable when compared to the 
“hardwired” binary search of a binary tree. In contrast, the AVL 
Tree needs no arithmetic calculations, as it just does one compare 
and then follows a pointer. The T Tree does the majority of its 
search in a manner similar to that of the AVL Tree, then, when it 
locates the correct node, it switches to a binary search of that node. 
Thus, the search cost of the T Tree search is slightly more than the 
AVL Tree search cost, as some time is lost in binary searching the 
linal node. The B Tree search time is the worst of the four order- 
preserving structures, because it requires several binary searches, one 
for each node in the search path. 

The hashing schemes have a fixed cost for the hash function 
computation plus the cost of a linear search of the node and any asso- 
ciated overflow buckets. For the smallest node sizes, all four hash- 
ing methods are basically equivalent. The differences lie in the 
search times as the nodes get larger. Linear Hashing and Extendible 
Hashing are just about the same, as they both search multiple-item 
nodes. Modified Linear Hashing searches a single-item node linked 
list, so each data reference requires traversing a pointer. This over- 
head is noticeable when the chain becomes long. (Recall that “Node 
Size” is really average chain length for Modilied Linear Hashing.) 

QUERY MIXES - Graph 3 shows the “main event” of the 
query tests. This test is most important, as it shows the index struc- 
tures in a normal working environment. The query mix of 60 per- 
cent searches, 20 percent inserts and 20 percent deletes was represen- 
tative of the three query mix graphs, so it is the only one shown; 
index structures with faster search times did somewhat better in the 
80 percent search query mix and those structures with better update 
characteristics did somewhat better in the 40 percent search query 
mix. The T Tree performs better than the AVL Tree and the B Tree 
here because of its better combined search I update capability. The 
AVL, tree is faster than the B Tree because it is able to search faster 
than the B Tree, but the execution times are fairly close because of 
the B Tree’s better update capability. For the smallest node sizes, 
Modified Linear Hashing, Extendible Hashing, and Chained Bucket 
Hashing are all basically equivalent. They have similar search cost, 
and when the need to resize the directory is not present, they all have 
the same update cost. Linear Hashing, on the other hand, still reor- 
ganized its data in an attempt to maintain a particular storage 
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utilization factor, and it had a slower query mix execution time as a 
result. 

RANGE QUERIES -The results of the range query tests are 
shown in Graph 4. The range query returning 100 elements for each 
of 3,000 queries was representative of the range query tests, so it is 
the only one shown here. A range query is composed of two parts: 
the search for the lower bound value, and then the scan through the 
data stmcture until the upper bound value of the range is found or 
surpassed. When few elements per query are returned, the range 
query times are similar to the search times. As the number of ele- 
ments returned per query increases, the index structure with the best 
scanning speed becomes dominant. The array has the best scanning 
speed, as its elements are contiguous, while the T Tree is close 
because it has many logically contiguous elements in each node. 
(This is only true for leaf nodes in the case of the B Tree.) The 
slower search speed of the B Tree causes it to be third, and the slow 
scanning speed of the AVL Tree (since each data reference requires 
traversing a pointer) makes it the slowest of the four. Note that the 
hash tables do not preserve a logical ordering of the values, so they 
are not used for range queries. 

SEQUENTIAL SCAN - The results of the sequential scan 
tests are given in Graph 5. For most of the structures a scan is fast, 
because there are segments of contiguous elements that can be 
traversed quickly. The main exception is the AVL tree, because the 
cost of walking a binary tree in order is exacerbated by the fact that 
every data item is in a different node. In general, those index struc- 
tures using linked lists had a slower scan time than those structures 
that had segments of contiguous elements. (There is one anomaly 
here in that Linear Hashing seems to have beaten the array. The 
difference in times is only a tenth of a second however, and we attri- 
bute it to the error margin in the timing facility.) 

DELETE - Graph 6 shows the execution times of the index 
structures for deleting half of each data structure. Chained Bucket 
Hashing needs to do little work to remove an item from the hash 
table, so it has the fasted execution time once again. Extendible 
Hashing rarely decreases its hash table, so delete is fast, but space 
may be wasted by its large directory and many partially filled nodes. 
At the shortest possible average chain length, Modified Linear Hash- 
ing is almost as fast as Chained Bucket Hashing; the difference in the 
two times is the amount of time devoted to reducing the size of the 
Modilied Linear Hashing directory. The T Tree is faster than the 
AVL Tree and B Tree, as before, while the B Tree is a little faster 
than the AVL Tree because less work is required to keep it balanced. 

STORAGE COST - The storage costs for Linear Hashing, 
Extendible Hashing, B Trees and T Trees were 5 percent less just 
after they were created than their storage cost after the query mixes. 
(The storage costs for the index structures after the query mixes are 
shown in Graph 7). The array uses the minimum amount of storage, 
so we discuss the storage costs of the other algorithms as a ratio of 
their storage cost to the array storage cost. First, we consider the 
fixed values: the AVL Tree storage factor is 3 because of the two 
node pointers it needs for each data item, and Chained Bucket Hash- 
ing has a storage factor of 2.3 because it has one pointer for each 
data item and part of the table remains unused (the hash function is 
not perfecrly uniform). Modified Linear Hashing is similar to 
Chained Bucket Hashing for average an hash chain length of 2, but, 
as its hash chains grow longer, the number of empty slots in the table 
decreases and eventually the table becomes completely full. Finally, 
Linear Hashing, B Trees, Extendible Hashing and T Trees all had 
about equal storage factors of 1.5 for medium to large size nodes. 
Extendible Hashing tends to use the largest amount of storage for 
small nodes (2,4 and 6). This is because a small node size increases 
the probability that some nodes will get more values than others, 
causing the directory to double repeatedly and thus use large 
amounts of storage. As its nodes get larger, the probability of this 
happening becomes lower. 
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4.5. Test Observations 
An important thing to notice about the hash-based indices is 

that, while the Extendible Hashing and Modilied Linear Hashing had 
very good performance for small nodes, they also had high storage 
costs for small nodes. (However, the storage utilization for Modilied 
Linear Hashing can probably be improved by using multiple-item 
nodes, thereby reducing the pointer to data item ratio). Extendible 
Hashing has another problem - storing duplicate values. If a oage 
were to overflow wiih duplicate valu&, tile directory could irow 
infinitely large and still not be able to resolve the problem. There is 
no nor&al &erflow method in Extendible Hashing as there is in 
Linear Hashing. If duplicates were allowed, then nodes would need 
a special overflow pointer for duplicates, while processing regular 
values in the normal fashion. As for the other two hash-based 
methods: Chained Bucket Hashing has fast execution times, but it 
has fairly high storage costs, and it is only a static structure; and 
finally, Linear Hashing is just too slow to use in main memory. 

5. Future Improvements 
Some improvements and variations on the T Tree algorithms 

have been discovered since the index experiments were conducted. 
We briefly mention them here, and the reader is referred to 
[Lehm86a] for more derail. 
(1) The search algorithm can be changed so that it always performs 

one compare per node rather than two (the existing worst case). 
This would reduce the number of compares from (Log2 N + l/2 
Log, N/K) to a true Log, N. (N is the number of elements in 
the tree and K is the number of elements in a node.) Although 
this difference is not significant when the number of compares 
are simple, it results in significant gains when the compares are 
expensive. 

The modilied search algorithm compares the search key with 
only the minimum element in a node and uses that result to 
decide which subtree to search. If the right subtree is chosen, 
the current node is marked for future consideration because the 
elements in that node are still in the active search space. When 
the search reaches a leaf, the last marked node is searched with 
a binary search. 

(2) A new hoe of T Tree. the T+ Tree. has been suggested. It 

Looking at the order-preserving index structures, AVL Trees 
have good search execution times and fair update execution times, 
but they have high storage costs. Arrays have good search and scan 
execution times and low storage costs, but any update activity at all 
causes it to have execution times orders of magnitude higher than the 
other index structures. AVL Trees and arravs do not have 
sufficiently good performance I storage characterisfics for considera- 
tion as main memory indices. T Trees and B Trees do not have the 
storage problems df dynamic hashing methods; they have low 
storage costs for those node sizes that lead to good performance. 
The T Tree seems to be the best of choice for an order-preserving 
index structure, as it performs well in all of the tests. 

4.6. Comparing Apples and Oranges 
A major problem with this type of comparison is the issue of 

fairness. Though we did our best to code each index algorithm 
equally well, the results are close in some cases, and it is possible 
that constant factors could come into play and alter the results. Also, 
some algorithms may have had small advantages because of the test 
environment. For example, the data used for the tests was generated 
by a random number generator, so the hashing schemes may have 
been aided by having a uniform distribution of key values. Also, 
because unique key values were used and searches and deletes were 
always successful, those index structures using linear searches (i.e., 
the hashing structures) needed to search only half of the list, on the 
average, to find the desired element. 

To ensure that the tests were coded as fairly as possible, the 
code was instrumented with counters to record the number of 
occurrences of various operations, such as the number of data com- 
oares. the amount of data movement, the number of hash calls, the 
hum&r of tree rotations, the amount bf memory allocated and freed, 
and the number of node searches. (These countem did not affect the 
execution times because they we& compiled out of the code when 
the timing tests were run.) Using these counters, it was possible to 
observe the algorithms in action, making sure that the expected 
amount of work was being done. We plan to use this technology- 
independent information in the future to analyze the algorithms and 
determine their merits without the interference of machine-related 
dependencies. 

. , 
keeps aliof its data in ieaf nodes, using the intemainodes (an 
AVL Tree) for guidance into chained multi-item leaves. The 
similaritie$ to By Trees are obvious. The T+ Tree would have 
search and update performance similar to the T Tree, but the 
chained leaves would be easier to scan (using a simple linked 
list rather than a tree traversal) and possibly easier to maintain. 

6. Conclusions 
In this uaoer we introduced a new main memory index stmc- 

ture, the T Trek. We compared the T Tree structure- against AVL 
Trees. simule arrays. B Trees. Chained Bucket Hashinrr. Extendible 
Hashing, linear gashing and ‘Modified Linear Hashing.’ Our results 
indicate that a mix of two different index structures provides the best 
overall storage and performance. For unordered data, Modified 
Linear Hashing should give excellent performance for exact match 
queries. When used as a temporary structure where the size of the 
index is known in advance. the table size can be chosen initially to fit 
the application, thereby removing the reorganization overhead and 
allowinrr Modified Linear Hashing to behave like Chained Bucket 
Hashing: For ordered data, the T l%ee provides excellent overall per- 
formance for a mix of searches, inserts, and deletes, and it does so at 
a relatively low cost in storage space. We plan to use the T Tree as 
the primary ordered access method for our prototype implementation 
of a main memory database management system, and we plan to use 
Modified Linear Hashing as the primary unordered access method. 
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