
A Study of Index Structures for
Main Memory Database Management Systems

Tobin J. Lehman
Michael J. Carey

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT
One approach to achieving high performance in a database

management system is to store the database in main memorv rather
than on disk. -One can then design new data structures aid algo-
rithms oriented towards making eflicient use of CPU cycles and
memory space rather than minimizing disk accesses and &ing disk
space efliciently. In this paper we present some results on index
structures from an ongoing study of main memory database manage-
ment systems. We propose a new index structure, the T Tree, and
we compare it to existing index structures in a main memory data-
base environment. Our results indicate that the T Tree provides good
overall performance in main memory.

1. Introduction
It is projected that memory chip densities will continue their

current trend of doubling every year for the foreseeable future, and,
as a result, it is expected that main memory sizes of a gigabyte or
more will be feasible and perhaps even common within the next
decade [Fish86]. This large increase in the amount of main memory
will have a profound impact on database management systems as it
will be possible, in some cases, to store the entire. database in main
memory, removing disks from the path of normal query processing
operations. (Disks will still be needed to store stable backup ver-
sions of the database, of course.) In addition to traditional database
applications, there are a number of emerging applications for which
main memory sizes will almost certainly be suffcient, applications
that wish to be able to store and access relational data mostly
because the relational model and its associated operations provide an
attractive abstraction for their needs. Horwitz and Teitelbaum have
proposed using relational storage for program information in
language-based editors, as adding relations and relational operations
to attribute grammars provides a nice mechanism for specifying and
building such systems [Horw85]. Linton has also proposed the use
of a database system as the basis for constructing program develop-
ment environments [Lint84]. Snodgrass has shown that the rela-
tional model provides a good basis for the development of perfor-
mance monitoring tools and their interfaces [Snod84]. Finally,

This I-esenrch was p:utially supp’orletl by a11 113bl Fellowship, an IBM
Facl~lty Development Aw:ucl, and Nationnl Science Foundation Grant
l\!urnhcr DCR-81028lS.

Tobin Lchmn’s new address is IllhI Almclen Rcscm-ch Ccntcr, San
Jose, CMik)rnia 95120

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distrrbuted for
direct commercial advantage: the VLDB copyright notice and the
title of the publication and rts date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
andJor special permission from the Endowment.

Warren (and others) have addressed the relationship between Prolog
and relational database systems [WarrSl], and having efficient algo-
rithms for relational operations in main memory could be useful for
processing queries in future logic programming language implemen-
tations.

So far. there have been two approaches proposed for using
large amounts of main memory in’aatabase Hysiems. The first
approach is to make the buffer pool very large, making it possible for
most or oerhaos all of the data needed for each transaction to be
retained in & buffer pool. Dewitt et al [DeWi84], Shapin,
[Shap86], and Elhardt et al [Elha84] have taken this approach in their
work. Minimizing disk accesses still tends to be the primary perfor-
mance goal for algorithm design when this approach is taken. The
other m;jor approach, the memory-resident database approach, is to
use the large amount of memory as the main store for the database.
This approach requires a redesign of the database management sys-
tem - the algorithms and data structures for query processing, con-
currency control, and recovery must all be restructured to stress the
efficient use of CPU cycles and memory rather than disk accesses
and disk storage. The designs proposed by Krishnamurthy et al
[Amma85] and Leland et al [Lela85] have been based on this latter
approach. In this approach, disk accesses are only an issue for crash
recovery purposes, as recovery information must still reside on disk.

There are several arguments in favor of using existing systems
and simply enlarging the buffer pool: no work is needed, since
changing the buffer pool size simply involves changing a constant in
the DBMS, and the speed of the overall system will increase since
fewer disk accesses will be required. However, a buffer oriented sys-
tem has a number of inherent handicaps. Every reference to the data-
base must go through the buffer manager, causing the buffer
manager to check its page list to see if the page is in memory, then
perform the address calculation, and finally, if necessary, pin the
page to guarantee that it is not swapped out prematurely. Thus, it
seems that there is much to be gained by redesigning a database sys-
tem to avoid contact with the disks and the buffer manager to the
maximum extent possible.

Motivated by increasing memory sizes and these buffer-related
arguments, we are studying the memory-resident database approach
to main memory database management systems. We are evaluating
both old and new database algorithms to determine which ones make
the best use of CPU cycles and memory in a main memory database
environment. Although we assume that there is a large amount of
memory available, we are not willing to assume that it is infinite.
Therefire, we judge data stmctures and algorithms according to both
speed and storage efliciency criteria. The first phase of our study has
addressed query processing issues. Although relations are memory
resident, indices are still needed for fast access to the data. The ini-
tial part of our query processing study addressed index structures for
main memory databases, and this is the focus of the rest of the paper.

The remainder of this paper is organized as follows: Section 2
describes the differences between main memory index structures and
disk index structures. Section 3 enumerates a number of existing
index stmctures and then introduces a new index structure, the T
Tree, which was designed for use in main memory. Section 4
describes the index tests and gives the results of those tests. Section
5 suggests some improvements to the T Tree index structure, and,
finally, Section 6 gives our conclusions.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

Kyoto, August, 1986

-294-

2. Disk Versus Main Memory
Index structures designed for main memory are different from

those designed for disk-based systems. The primary goals for a
disk-oriented index structure are to minimize the number of disk
accesses and to minimize disk space. A main memory oriented
index structure is contained in main memory, hence there are no disk
accesses to minimize. Thus, the primary goals of a main memory
index are to reduce overall computation time while using as little
memory as possible. Since relations are memory resident, it is not
necessary for a main memory index to store actual attribute values.
Instead, pointers to tuples can be stored in their place, and these
pointers can be used to extract the attribute values when needed.
This has several advantages. First, a single tuple pointer provides
the index with access to both the attribute value of a tuple and the
tuple itself, reducing the size of the index. Second, this eliminates
the complexity of dealing with long fields, variable length fields, and
compression techniques in the index. Third, moving pointers will
tend to be cheaper than moving the (usually longer) attribute values
when updates necessitate index operations. Finally, since a single
tuple pointer provides access to any field in the tuple, multi-attribute
indices will need less in the way of special mechanisms.
3. Main Memory Index Structures

There are many data structures available for consideration as
index structures. There are two main types: those that preserve some
natural ordering in the data and those that randomize the data. The
index structures being studied here are: arrays, AVL Trees, and B
Tree’s, for the order-preserving class’; and Chained Bucket Hashing,
Linear Hashing and Extendible Hashing, for the randomizing class2.
We describe briefly each algorithm in turn. Then, having considered
these algorithms, we will introduce a new algorithm called the T
Tree. The T Tree is an order-preserving tree structure designed
specilically for use in main memory.
3.1. Existing Index Structures

Arrays are used as index structures in IBM’s OBE project
[Amma85]. They use minimal space, providing that the size is
known in advance or that growth is not a problem (e.g., that one can
somehow use the underlying mapping hardware of virtual memory to
make the array grow gracefully). The biggest drawback of the array
is that data movement is O(N) for each update, so it appears imprac-
tical for anything bui a read-only environment.

AVL Trees [Aho74] are used as indices in the AT&T Bell
Laboratories Silicon Database Machine [Lela85]. The AVL Tree
was designed as an internal memory data structure (Figure I). It uses
a binary tree search, which is very fast since the binary search is
intrinsic to the tree structure (no arithmetic calculations are needed).
Updates always affect a leaf node and may result in an unbalanced
tree, so the tree is kept balanced by rotation operations. The AVL
Tree has one major disadvantage - its poor storage utilization.
Each tree node holds only one data item, so there are two pointers
and some control information for every data item.

B Trees [Come791 are well suited for disk use since they are
broad shallow trees and require few node accesses to retrieve a value
(Figure 1). Most database systems use a variant of the B Tree, the
B+ Tree, which keeps all of the actual data in the leaves of the tree.
For main memory use, however, the B Tree is preferable to the B+
Tree because, in main memory, there is no advantage to keeping all
of the data in the leaves -it only wastes space. B Trees are good for
memory use since their storage utilization is good (the pointer to data
ratio is small, as leaf nodes hold only data items and they comprise a
large percentage of the tree); searching is reasonably quick (a small
number of nodes are searched with a binary search); and updating is
fast (data movement usually involves only one node).

‘Radix structures provide an excellent method for maintaining ordered
d&for ~om~ special types of data [Knut73, Wi11841, but since they we not
general enough to be used for all data they are not considered here.

2There were several dynamic hashing algorithms to choose from. Ex-
tendib]e Hashing and Linear Hashing were chosen because Of their Popular-
ity and the fact that most other methods are based on variants of these
methods. Methods using spiral storage [Kje184] or Partial expansions
[Lars80] require more data reorganization [Mul1841, SO, they would not do
as well in a dynamic main memory environment.

AVL Tree Node AVL Tree

1 Data 1

B Tree Node

control

B Tree

Figure l-Tree Structured Indices

Chained Bucket Hashing Linear Hashing
r-----l h2

$1 I$ L!j (overflow buckets

Extendible Hashing

r-i-l
Directory Depth (prefix keys used)

000 001 010 011 loo 101 110 111

.od::p&’ &h ‘& ‘&

Modified Linear Hashing

Figure 2 -Hashing-based Indices

-295-

Chained Bucket Hashing [Knut73] is a static structure used
both in memory and on disk (Figure 2). It is very fast because it is a
static structure - it never has to reorganize its data. But, this advan-
tage is also its disadvantage; because it is static, it may have very
poor behavior in a dynamic environment because the size of the hash
table must be known or guessed at before. the table is filled. If the
estimated size is too small, then performance can be poor, and if the
estimated size is too large, then much space is wasted. At best, there
is some space wasted, since each data item has a pointer associated
with it3

Extendible Hashing [Fagi79] employs a dynamic hash table
that grows with the data, so the table size does not need to be known
in advance (Figure 2). A hash node contains several items and splits
into two nodes when an overflow occurs. The directory grows in
powers of two, doubling whenever a node overllows and has reached
the maximum depth for a particular directory size. One problem
with Extendible Hashing is that any node can cause the directory to
split, so the directory can grow to be very large if the hash function
is not sufficiently random.

Linear Hashing [LitwSO] also uses a dynamic hash table, but
it is quite different from Extendible Hashing (Figure 2). A Linear
Hash table grows linearly as it splits nodes in predelined linear order
- as opposed to Extendible Hashing, which splits the nodes that
overflow. The decision to split a node and extend the directory in a
controlled fashion can be based on criteria other than overflowing
nodes, providing several advantages over the uncontrolled splitting
of Extendible Hashing. First, the buckets can be ordered sequen-
tially, allowing the the bucket address to be calculated from a base
address - no directory is needed. Second, the event that triggers a
node split can be based on storage utilization, keeping the storage
cost constant for a given number of elements.

Modilied Linear Hashing is oriented more towards main
memory than the regular version mentioned above (Figure 2).
(Litwin’s description of Linear Hashing does not exclude this style
of Linear Hashing: but his description is generally targeted more
towards disk apphcations Litw801.) By using larger contiguous
nodes rather than a directory, normal Linear Hashing can waste
space with empty nodes (when a node corresponding to a hash entry
has no data items). Also, unless a clever scheme can be worked out
with the underlying virtual memory mapping mechanism, the con-
tiguous nodes have to be copied into a larger memory block when
the directory grows. Modilied Linear Hashing uses a directory much
like Extendible Hashing, except that it grows linearly, and chained
single-item nodes, allocated from a general memory pool. (Unlike
Chained Bucket Hashing, there are. typically many items per hash
value, so multiple item nodes could indeed be used here to increase
storage utilization.) The splitting criteria is based on performance,
i.e. the average length of the hash chains, rather than storage utiliza-
tion. Monitoring average hash chain length provides more direct
control over the average search and update times than monitoring
storage utilization.

3.2. The T Tree
The T Tree, a new data structure, evolved from AVL Trees and

B Trees. The T Tree is a binary tree with many elements in a node.
Figure 3 shows a T Tree and a node of a T Tree, called a T Node.
Since the T Tree is a binary tree, it retains the intrinsic binary search
nature of the AVL Tree. Also, because a T node contains many ele-
ments, the T Tree has the good update and storage characteristics of
the B Tree. Data movement is requited for insertion and deletion,
but it is usually needed only within a single node. Rebalancing is
done using rotations similar to those of the AVL Tree, but it is done
much less often than in an AVL Tree due to the possibility of intra-
node data movement.

3 By grouping several items in a node, the data to pointer ratio could
be reduced, but the extra data space might be wasted. Our tests showed that
the optimal table size for a given number of elements has an average of
only two items per hash value.

Left Child Ptr

T Node

T Tree

Figure 3 -The T Tree

To aid in our discussion of T Trees, we begin by introducing
some helpful terminology. There are three different types of T-
nodes. A T-node that has two subtrees is called an internal node. A
T-node that has one NIL child pointer and one non-NIL child pointer
is called a half-leaf node. A T-node that has two NIL child pointers
is called a leaf nude. For each internal node A, there is a correspond-
ing leaf (or half-leaf) that holds the data value that is the predecessor
to the minimum value in A, and there is also a leaf (or half-leaf) that
holds the successor to the maximum value in A. The predecessor
value is called the greatest lower bound of the internal node A, and
the successor value is called the feust upper bound of A, as shown in
Figure 4. For a node N and a value X, if X lies between the
minimum element of N and the maximum element of N (inclusive),
then we say that node N bounds the value X. Since. the data in a T-
node is kept in sorted order, its leftmost element is the smallest ele-
ment in the node and its rightmost element is the largest.

Associated with a T Tree is a minimum count and a maximum
count. Internal-nodes keep their occupancy (i.e. the number of data
items in the node) in this range. The minimum and maximum counts
will usually differ by just a small amount, on the order of one or two
items, which turns out to be enough to signifcantly reduce the need
for tree rotations. With a mix of inserts and deletes, this little bit of
extra room reduces the amount of data passed down to leaves due to
insert overllows, and it also reduces the amount of data borrowed
from leaves due to delete underflows. Thus, having flexibility in the
occupancy of internal nodes allows storage utilization and
insert/delete time to be traded off to some extent. Leaf nodes and
half-leaf nodes have an occupancy ranging from zero to the max-
imum count.

Minimum element of A Maximum element of A

Greatest Lower Bound of A’ ’ Least Upper Bound of A

Figure 4 -The Bounds of a T-node

-296--

3.2.1. Search and Update Operations for T Trees

Search Algorithm
Searching in a T Tree is similar to searching in a binary tree.

The main difference is that comparisons are made with the minimum
and maximum values of the node rather than a single value as in a
binary tree node. The algorithm works as follows:
(1) The search always starts at the root of the tree.
(2) If the search value is less than the minimum value of the node,

then search down the subtree pointed to by the left-child
pointer. Else, if the search value is greater than the maximum
value of the node, then search down the subtree pointed to by
the right-child pointer. Else, search the current node.
The search fails when a node is searched and the item is not

found or when a node that bounds the search value cannot be found.

Insert Algorithm
The insert operation begins with a search to locate the bound-

ing node. The new value is inserted into the bounding node and then
the tree is checked for balance. If the T Tree is unbalanced as a
result of the insertion (or deletion, for that matter), the appropriate
rebalancing operation checks the nodes in the path between the root
and the leaf where the insertion or deletion took place. Insertion
works as follows, although we postpone our discussion of the
rebalancing rotations until Section 3.2.2:
(1) Search for the bounding node.
(2) If a node is found, then check for room for another entry. If the

insert value will tit, then insert it into this node and stow. Else.
remove the minimum element from the node, insert the’originai
insert value, and make the minimum element the new insert
value. Proceed from here directly to the leaf containing the
greatest lower bound for the node holdina the oriainal insert
ialue. The minimum element (the new i’lsert valie) will be
inserted into this leaf, becoming the new greatest lower bound
value for the node holding the insert value.

(3) If the search exhausts the tree and no node bounds the insert
value, then insert the value into the last node on the search path
(which is a leaf or a half-leaf). If the insert value fits. then it
becomes the new minimum or maximum value for the node.
Otherwise, create a new leaf (so the insert value becomes the
lirst element in the new leaf).

(4) If a new leaf was added, then check the tree for balance by fol-
lowing the path from the leaf to the root. For each node in the
search path (going from leaf to root), if the two subtrees of a
node differ in depth by more than one level, then a rotation
must be performed (see Section 3.2.2). Once one rotation has
been done, the tree is rebalanced and processing stops.
A design note is in order here: When an internal node

overflows, and thus its minimum value is removed and passed down
to a leaf, the insert into the leaf requires no data movement because
the value becomes the leafs rightmost entry. If instead the max-
imum value had been removed from the internal node, it would have
to be inserted as the leftmost entry in the leaf, requiring intra-node
data movement. Hence, removing the minimum value instead of the
maximum value avoids this data movement.

Delete Algorithm
The deletion algorithm is similar to the insertion algorithm in

the sense that the element to be deleted is searched for, the operation
is performed, and then rebalancing is done if necessary. The algo-
tithm works as follows:
(1) Search for the node that bounds the delete value. Search for

the delete value within this node, reporting an error and stop-
ping if it is not found.

(2) If the delete will not cause an underflow (i.e. if the node has
more than the minimum allowable number of entries prior to
the delete), then simply delete the value and stop. Else, if this
is an internal node, then delete the value and borrow the
greatest lower bound of this node from a leaf or half-leaf to
bring this node’s element count back up to the minimum. Else,

this is a leaf or a half-leaf, so just delete the element. (Leaves
are oermitted to underflow, and half-leaves are handled in steu w.j

(3) If the node is a half-leaf and can be merged with a leaf,
coalesce the two nodes into one node (a leaf) and discard the
other node. Proceed to step (5).

(4) If the current node (a leaf) is not empty, then stop. Else, free
the node and proceed to step (5) to rebalance the tree.

(5) For every node along the path from the leaf up to the root, if
the two subtrees of the node differ in height by more than one,
perform a rotation operation (see Section 3.2.2). Since a rota-
tion at one node may create an imbalance for a node higher up
in the tree, balance-checking for deletion must examine all of
the nodes on the search path until a node of even balance is
discovered.

3.2.2. Rebalancing a T Tree
The rebalancing operations for a T Tree are similar to those for

an AVL tree IAho741. A T Tree’s balance is checked whenever a
leaf is added or deleted: as indicated in the descriptions of the inser-
tion and deletion algonthms. The search path is checked from the
leaf to the root - for each node in the path, if the node’s two sub-
trees differ in height by more than one level, a rotation operation is
needed. In the case of an insertion, at most one rotation is needed to
rebalance the tree, so processing stops after one rotation. Jn the case
of a deletion, a rotation on one node may trigger an imbalance for a
node higher up in the tree, so processing continues after a rotation
until an evenly balanced node is found. Figure 5 shows the simple
LL rotation and the more complex LR rotation for the case of an
insert. These are two of the four types of rotations used to rebalance
an AVL tree or a T Tree. The algorithms for the RR and RL rota-
tions are symmetrical to the LL and LR rotations, respectively, so
they are not shown.4 The rebalancing rotations for deletion are

Denotes a single node Denotes a subtree
of depth three

r---1

i x i Denotes a level of a subtree
I.---,

about to be added

A

B 4r

a BI C

Cl c,

0 LL

o+ LR

Xj ___A

Figure 5 -T Tree Rebalancing Operations

4 The names of the rotations (LL, RL, LR, and RR) are derived from
the child of the node that causes the imbalance. In the LL rotation in Figure
5, the Left Left child of A is longer; in the LR rotation, the Left Right child
is longer.

-297-

identical to rebalancing after insertion, except that the cause of the
imbalance in the tree is that a subtree has grown shorter rather than
longer.

The T Tree requires one special case rotation that the AVL tree
does not have. When an LR or RL rotation is done and the node C is
a leaf (and both nodes A and B are half-leaves), a regular rotation
would move C into an internal node position, as shown in Figure 6.
If C has only one item, which is always the case during an insert,
then C would never get to hold more than a single item as an internal
node (unless it is later rotated back into a leaf position), because
items are always inserted between the low and upper bound of an
internal node. Since this would be detrimental to storage utilization,
a special rotation operation first moves values from B to C so that,
after the rotation, C is a full internal node. This special case rotation
is shown in Figure 6.

Regular LR Rotation

A /“-

Special LR Rotation

(slide elemenls C
fromnloc)

Figure 6 - Special T Tree Rebalancing Operations

3.2.3. Other Properties of the T Tree
T-nodes are equipped with child and parent pointers so that

they can be traversed in either direction. From any node in a T Tree,
all of the other nodes can be retrieved - in order. This property is
useful when using the T Tree to perform a merge join [Lehm86b].
This property also allows the T Tree to store and retrieve duplicates
with no extra work. Duplicate values (if allowed) are placed next to
items with equal values - node boundaries are ignored. The update
and rotation operations work as before. To retrieve a set of tuple
pointers corresponding to a single value, one simply searches for the
value, marks the spot where the first such item is found, then scans
left, and then right from that spot.

4. Index Performance Tests
Each of the index structures described in Section 3 took part in

the index performance study. The index tests simulated the opera-
tions of a normal database management system so that the index
structures would be compared in a realistic environment. Each algo-
rithm implementation was done in “main memory” style, that is, the
indices held pointers to records (memory addresses) instead of keys

or actual records. To supply the indices with data, a random number
generator filled the test relation with unique 4 byte integers that were
used as key values for the indices and, since the values could be read
out of the relation, the search and delete operations were always
done on existing elements, hence they were always successful. The
chosen index size was 30,000 elements, because this was the largest
number of elements that most of the implementations could support
for the amount of memory available.’
4.1. Index Test Description

The tests were run in the following order: the data structures
were built, then searched, then subjected to three query mixes, then
searched with range queries, then scanned, and then half of the
values were deleted. We describe each test in more detail below.

Insert 30,000 elements - To measure the insert cost of,
30,000 elements were inserted into each index structure. The inserts
were each separate, as opposed to a special block insert. The index
structures allowed unique values only, thus, each insert operation
involved a search to ensure that the item was not already there.

Search for 30,000 random elements - To measure the
retrieval speed of the indices, each index was searched for 30,000
different elements, with each element requiring a new search.

Query mix - Each index structure was tested in a “normal”
update environment by performing a mix of inserts, searches, and
deletes. Three query mixes were used: the first query mix was com-
posed of 80 percent searches, 10 percent inserts and 10 percent
deletes; the second was composed of 60 percent searches, 20 percent
inserts and 20 percent deletes; and the third was composed of 40 per-
cent searches, 30 percent inserts and 30 percent deletes. To keep the
index structures at a constant size, the three operations were inter-
spersed and the percentages of inserts and deletes were kept equal,
thereby making the results easier to evaluate.

Query mix(l) - 24,000 searches, 3000 inserts, 3000 deletes
Query mix(2) - 18,000 searches, 6000 inserts, 6000 deletes
Query mix(3) - 12,000 searches, 9000 inserts, 9000 deletes

Range queries - Order-preserving data structures often need
to supply a list of values corresponding to a given range. Three
range queries were tested - each one testing different amounts of
searching and scanning. The lower and upper bounds of a range
known to be 10, 100, or 1000 elements apart were given to each
index. The index would search for the lower bound value, then scan
the elements in order until it found or passed the upper bound value.
Note that these tests are inappropriate for the hashing algorithms,
because they do not store values in logical order.

Range query 10: 30,000 queries, retrieving 10 elements per query
Range query 100: 3,000 queries, retrieving 100 elements per query
Range query 1000: 300 queries, retrieving 1000 elements per query

Sequential scan - To test the scanning speed of each data
structure, each item in the index was read. For the array and tree
data structures, the values were read in logical order. For the hash-
ing structures, the values were read in physical order.

Delete 15,000 elements - To get a more realistic delete cost,
only half of the index structure was deleted. By deleting only half of
the index, the cost of a single delete can be calculated as roughly
1/15,OOOth of the total time, because the data structures were not
greatly affected by having half of their elements removed. A T Tree,
for example, would become only one level smaller, and a B Tree
would probably not even change height. Removing all of the ele-
ments would have given a false impression of the delete cost since
the cost per item deleted would be much less for the second half of
the elements than the first half.

Storage costs -The storage cost of each of the data structures
after building the index with thirty thousand elements is sometimes
different from the storage cost after the query mixes, even though the
number of elements is the same, so each storage cost value was col-
lected. The storage cost represents the total number of bytes needed

5 Extendible Hashing still ran out of memory when run with the smal-
lest node sizes (e.g., 2, 4 and 6 items per node). This is due, in part, to an
inefficient storage allocator and, in part, to the algorithm itself (as will be
explained more fully in Section 4.4).

-298-

to store the given number of elements. The storage cost computa-
tions assume that byte (as opposed to word) alignment is permissi-
ble, and that the smallest unit of allocation is a byte. (The pointer
size for both data and nodes is four bytes.)

4.2. Reducing the Number of Test Parameters
Many of the index structures have several variable parameters

and, in order to keep the number of tests reasonable, some of these
parameters had to be held constant. Preliminary tests on the index
structures gave us some indications of reasonable values for the
parameters. For each structure, the number of variable parameters
was reduced to one, node size (except for Modified Linear Hashing,
where the average hash chain length was varied). The restriction to
one similar variable allowed the execution times of the index struc-
tures to be compared side by side in the same graphs. A discussion
of the parameter reduction process follows.

The B Tree has a variable node size, a variable leaf size, and
two possible node/leaf search methods: linear and binary search.
Prelir&ary tests showed that varying the leaf and node sizes
separately did not signihcantly affect the results, so they were varied
together at the same-size. Linear search on small nodes (4 and 6 ele-
ments) was 5 percent faster than the best binary search (on any size
node), but small nodes cause the tree to use much more space. Since
storage and performance are both important, the binary search was
used. The T Tree has a variable node size and two possible node-
searching methods: linear search and binary search. For the same
reasons as for the B Tree, binary search was used for the tests.

Extendible Hashing has a variable node size and three different
possible node search techniques: linear search, binary search, and
hash search. A hash search in the node would speed up the search
time, but it would introduce problems in collision resolution.
Separate chaining would waste at least half of the node’s space on
pointers, and open addressing would cause diflicuhies with delete by
wasting either time or space to fill in holes left by deleted items
[Knut73]. A binary search would have required keeping the node
sorted, and therefore would have added data movement cost for
insertion and deletion. Linear search seemed to be the simplest and
quickest method, so this was used for the tests.

Linear Hashing has a variable node size, a variable overflow
bucket size, a variable storage utilization, and three possible
node/bucket search techniques: linear search, binary search and hash
search. The overflow bucket size could range from a fraction of the
node size to several times the node size. The storage, insert and
delete costs were found to be better for larger buckets, while the
search and query mix costs were better for small buckets. An
overflow bucket that was half the size of the node gave reasonable
overall performance. The storage utilization (the number of data
bytes used divided by the total number of data bytes currently avail-
able) could range anywhere from a few percent to close to 100 per-
cent. It is used to trigger a change in directory size - when the
storage utilization goes up above a threshold value (usually because
of an excess of overflow buckets), then the directory expands. Simi-
larly. when the storage utilization falls below the threshold value
(d&to too many empty data slots), the directory shrinks. A lower
storage utilization threshold parameter value implies that less time
needs to be spent on data reorganization, since more space can be
wasted; less reorganization cost means higher performance. A value
of 70 percent seemed to give the best overall performance / storage
cost ratio. Lastly, for the same reasons stated for extendible hashing,
linear search was used to search the nodes and the overflow buckets.

Chained Bucket Hashing has only one parameter - table size.
The ureliminarv tests showed that a table size equal to half the
number of elements gives the best storage cost I performance ratio.
Modified Linear Hashing is very similar to Chain-bucket Hashing,
except that its hash table is dynamic. It uses its only parameter, the
average length of the hash chains, to determine when to split the next
hash chain. When the number of elements increases to the point that
the average chain length value (size of table I number of data ele-
ments) is greater than the threshold value, the directory expands, and
when the value is less then the threshold value, the directory shrinks.
The final set of the values chosen for the tests appear in Table 1.

Data Structure
Array
AVL Tree
B Tree
T Tree

Chained Bucket Hash

Extendible Hashing
Linear Hashing

Mod. Linear Hashing

I I Parameters
no parameters
no parameters
binary search, variable node size
binary search, minimum node size set
at two less than the maximum node
size, variable (maximum) node size
table size fixed at 50% of element
count (at 15,000)
linear search, variable node size
linear search, overflow bucket size of
half the node size, 70% storage
utilization factor, variable node size
linear search, variable average
hash chain length

Table 1 - Parameters Chosen for the Tests

4.3. Implementation Details
Each algorithm was implemented in the C programming

language and run in single-user mode on a VAX 11/750 with 2
megabytes of real memory (with no virtual memory involved). The
timing measurements were taken using “getrusage”, a timing facility
available in BSD UNIX 4.2. The execution times reflect that of a
main memory computer with a processing power of about 0.5 MIPS.
Some details about the implementation of the algorithms that might
help the reader to understand the results more fully follow:
. A standard hash function was used in all of the hashing imple-

mentations.
(key * P) mod table size (where P is a large prime)

In the cases where the table size was a power of two, the mod
operation was done by stripping off bits with a bit mask opera-
tion.

. Since there was no virtual memory mechanism available, the
Linear and Modified Linear Hashing directories had to be real-
located from memory when the table size grew or shrunk. To
amortize the cost of this reallocation over several increases in
directory size, new directories were allocated with an addi-
tional 1000 bytes for future growth. The memory for the array,
however, was constant, being allocated once for the duration of
the tests.

. Linear Hashing used an extra array of pointers to point to the
last overllow bucket in each chain. This helped the insertion
and deletion performance while sacrificing only a small amount
in storage. This array is figured into the the storage costs in
Graph 7 in the test results.

4.4. The Test Results
Graphs 1 through 6 show the execution times of the index

structures for a representative subset of the tests, while Graph 7
shows the storage costs. The graphs use solid lines to represent the
order-preserving structures and dashed lines to represent the hashing
structures. Note that the different node sizes on the X-axis represent
the average chain length for Modified Linear Hashing rather than
node size - Modified Linear Hashing always used single element
nodes. Also note that the array index structure had large execution
times in all of the tests involving updates because of its O(N) data
movement. The array is therefore omitted from further discussion
involving updates.6 The reader should keep in mind that the lowest
point (time or storage) in each graph line is more important than the
overall shape of the line. We are interested in the one node size that
can support the fastest execution times while requiring the least
amount of storage.

6 We wish to point out, however, that if the array were used as an in-
dex, a practical way of Ouilding it would be to do a bulk insert into the array
as a heap and then quicksort it afterwards. Tests from a main memory
query processing paper &ehm86b] show that an array index can be filled
and sorted in approximately half the time it takes to build a T Tree (with
node size 30).

-299.-

1827 &- - AnaY -
50 \ //

, ‘Exlendible llash

/’
/

/
/ T Tree

I

“I------
-__-----

Chained Bucker Ilash

o-
0 10 20 30 40 50 60 70 80 90 100

Node Size
Graph 1 -Index Insertion

10

Seconds

0

Modified Ljnear Hash

/ r-y

Chained Buckel Ilash

9471
AnaY -

5ir-

45 1 Linear IIash

II

/

I

4d\ A ! ,/Mcdilied Linear IIash

5r------- Chained Duckel Hash

3 0
10 20 30 40 50 60 70 80 90 100

Node Size
Graph 2 -Index Search Graph 3 - Query Mix of 60% Searches

INSERT 30,000 ELEMENTS - The results of this test are
shown in Graph 1. The cost of a series of inserts depends on the
search time and various operations particular to the individual data
structure, such as the amount of data moved, the number of hash
function calls, the number of tree rebalance operations, and the
number of memory allocation operations. Looking at the AVL Tree
search time versus the B Tree search time (Graph 2). it would seem
that the AVL Tree should have the better insert time, but it has about
the same insert time for B Tree Node sizes of 20 to 40 because it
makes more memory allocation calls (one per data item) and uses a
costly rotation operation to rebalance the tree after insertions. Insert-
ing a value into the B Tree, on the other hand, requires fewer
memory allocation calls, some intra-node data movement and, much
less frequently, some inter-node data movement (when a node splits
into two nodes).’ The T Tree has a search time close to that of the
AVL Tree, but it also has update characteristics similar to that of the
B Tree; the T Tree makes fewer memory allocation calls than the
AVL Tree and usually relies on intra-node data movement rather
than tree rotations to keep the tree balanced. Hence, the T Tree has
the best insertion times of the order-preserving index structures.

In each hashing structure, the search cost is independent of the
number of elements in the table, as there is a fixed cost to jump to
the right node and then search the set of elements at that node. Also,
hashing structures require little data movement because the new item
is added to the end of the heap of elements in the node. All four
hashing methods have approximately the same search cost for small
nodes (see Graph 2), and they all insert a data item in about the same
way (by appending to the end of the list), yet their insert costs are
very different. The difference between the hashing schemes is in the
amount of work needed to resize the directory. Linear Hashing splits
nodes in order, possibly splitting nodes that are not full. The node
splitting criteria is based on both the number and the distribution of
elements in the hash table.’ This means that table growth (node
splitting) is allowed only when the main nodes are close to full, SO a
nonuniform distribution causes some of the main nodes to remain
underlilled while some of the other nodes acquire long overflow
chains (and, correspondingly, long search times) due to the lack of
reorganization. As shown in Graph 1, different node sizes yield dif-
ferent distributions, which have a direct affect on the search portion
of the insert cost. Modified Linear Hashing, on the other hand, uses
a node splitting criteria that is based solely on the total number of

’ Memory allocation and tree rotation costs exceeds this data move-
ment cost for the node sizes used here due to the existence of the MOVC3
block move instruction on the VAX 111750. This move instruction executes
much faster than a hand optimized assembler routine of similar function.

a This is referred to as loud confrol in lLitw80], and it is based on the
ratio of data elements to space allocated.

elements in the table, so the average length of the overflow chains is
better controlled. It still uses the extra data reorganization of the
Linear Hashing algorithm, but its more closely monitored overflow
chain lengths result in a significantly decreased insert cost. Finally,
Extendible Hashing requires that a node splits only when it
overflows, so it does the least amount of reorganizing of data and
thus has the fastest index insertion time of the dynamic hashing
methods.

SEARCH - Graph 2 shows the search costs. The array uses a
pure binary search. The overhead of the arithmetic calculation and
movement of pointers is noticeable when compared to the
“hardwired” binary search of a binary tree. In contrast, the AVL
Tree needs no arithmetic calculations, as it just does one compare
and then follows a pointer. The T Tree does the majority of its
search in a manner similar to that of the AVL Tree, then, when it
locates the correct node, it switches to a binary search of that node.
Thus, the search cost of the T Tree search is slightly more than the
AVL Tree search cost, as some time is lost in binary searching the
linal node. The B Tree search time is the worst of the four order-
preserving structures, because it requires several binary searches, one
for each node in the search path.

The hashing schemes have a fixed cost for the hash function
computation plus the cost of a linear search of the node and any asso-
ciated overflow buckets. For the smallest node sizes, all four hash-
ing methods are basically equivalent. The differences lie in the
search times as the nodes get larger. Linear Hashing and Extendible
Hashing are just about the same, as they both search multiple-item
nodes. Modified Linear Hashing searches a single-item node linked
list, so each data reference requires traversing a pointer. This over-
head is noticeable when the chain becomes long. (Recall that “Node
Size” is really average chain length for Modilied Linear Hashing.)

QUERY MIXES - Graph 3 shows the “main event” of the
query tests. This test is most important, as it shows the index struc-
tures in a normal working environment. The query mix of 60 per-
cent searches, 20 percent inserts and 20 percent deletes was represen-
tative of the three query mix graphs, so it is the only one shown;
index structures with faster search times did somewhat better in the
80 percent search query mix and those structures with better update
characteristics did somewhat better in the 40 percent search query
mix. The T Tree performs better than the AVL Tree and the B Tree
here because of its better combined search I update capability. The
AVL, tree is faster than the B Tree because it is able to search faster
than the B Tree, but the execution times are fairly close because of
the B Tree’s better update capability. For the smallest node sizes,
Modified Linear Hashing, Extendible Hashing, and Chained Bucket
Hashing are all basically equivalent. They have similar search cost,
and when the need to resize the directory is not present, they all have
the same update cost. Linear Hashing, on the other hand, still reor-
ganized its data in an attempt to maintain a particular storage

-3oo-

30

25 AVL Tree

20

15
Seconds

10

5

0

Le
T Tree

Amy

0 10 20 30 ~~Osi~ 70 80 90 100

Graph 4 - Range Query

3

2

I

I

I

‘Extendible Ilash

I

AVL Tree

4o I /
’ Linear Hash I’\

i /

35. I i ‘~//
I

30. ‘/I 0

,”

25. I ’ : I
I,’ fl

/
/

Seconds

1

20.
Seconds

IS-

//Modified Linear Hash

/
/

// ,- AVL Tree

Linear Hash

0
u 10 20 30 4r9,6,si$ 70 80 90 100 0 10 20 30 $IIOsi$ 70 80 90 100

Graph 5 -Scan Graph 6 - Delete

utilization factor, and it had a slower query mix execution time as a
result.

RANGE QUERIES -The results of the range query tests are
shown in Graph 4. The range query returning 100 elements for each
of 3,000 queries was representative of the range query tests, so it is
the only one shown here. A range query is composed of two parts:
the search for the lower bound value, and then the scan through the
data stmcture until the upper bound value of the range is found or
surpassed. When few elements per query are returned, the range
query times are similar to the search times. As the number of ele-
ments returned per query increases, the index structure with the best
scanning speed becomes dominant. The array has the best scanning
speed, as its elements are contiguous, while the T Tree is close
because it has many logically contiguous elements in each node.
(This is only true for leaf nodes in the case of the B Tree.) The
slower search speed of the B Tree causes it to be third, and the slow
scanning speed of the AVL Tree (since each data reference requires
traversing a pointer) makes it the slowest of the four. Note that the
hash tables do not preserve a logical ordering of the values, so they
are not used for range queries.

SEQUENTIAL SCAN - The results of the sequential scan
tests are given in Graph 5. For most of the structures a scan is fast,
because there are segments of contiguous elements that can be
traversed quickly. The main exception is the AVL tree, because the
cost of walking a binary tree in order is exacerbated by the fact that
every data item is in a different node. In general, those index struc-
tures using linked lists had a slower scan time than those structures
that had segments of contiguous elements. (There is one anomaly
here in that Linear Hashing seems to have beaten the array. The
difference in times is only a tenth of a second however, and we attri-
bute it to the error margin in the timing facility.)

DELETE - Graph 6 shows the execution times of the index
structures for deleting half of each data structure. Chained Bucket
Hashing needs to do little work to remove an item from the hash
table, so it has the fasted execution time once again. Extendible
Hashing rarely decreases its hash table, so delete is fast, but space
may be wasted by its large directory and many partially filled nodes.
At the shortest possible average chain length, Modified Linear Hash-
ing is almost as fast as Chained Bucket Hashing; the difference in the
two times is the amount of time devoted to reducing the size of the
Modilied Linear Hashing directory. The T Tree is faster than the
AVL Tree and B Tree, as before, while the B Tree is a little faster
than the AVL Tree because less work is required to keep it balanced.

STORAGE COST - The storage costs for Linear Hashing,
Extendible Hashing, B Trees and T Trees were 5 percent less just
after they were created than their storage cost after the query mixes.
(The storage costs for the index structures after the query mixes are
shown in Graph 7). The array uses the minimum amount of storage,
so we discuss the storage costs of the other algorithms as a ratio of
their storage cost to the array storage cost. First, we consider the
fixed values: the AVL Tree storage factor is 3 because of the two
node pointers it needs for each data item, and Chained Bucket Hash-
ing has a storage factor of 2.3 because it has one pointer for each
data item and part of the table remains unused (the hash function is
not perfecrly uniform). Modified Linear Hashing is similar to
Chained Bucket Hashing for average an hash chain length of 2, but,
as its hash chains grow longer, the number of empty slots in the table
decreases and eventually the table becomes completely full. Finally,
Linear Hashing, B Trees, Extendible Hashing and T Trees all had
about equal storage factors of 1.5 for medium to large size nodes.
Extendible Hashing tends to use the largest amount of storage for
small nodes (2,4 and 6). This is because a small node size increases
the probability that some nodes will get more values than others,
causing the directory to double repeatedly and thus use large
amounts of storage. As its nodes get larger, the probability of this
happening becomes lower.

5occQo -

\Exlendible Ilash

4OcOOO- I
II

AVL Tree

Chained Buckel Hash
__--- ----- ----

Modified Linear Hash
--- ----__

lOoooo- AMY

07 - ’ - - ’ ’ ’ ’ ’ ’
0 10 20 30 4 od;Osiz~ 70 80 90 100

8

Graph 7 - Index storage costs

-30 I-

4.5. Test Observations
An important thing to notice about the hash-based indices is

that, while the Extendible Hashing and Modilied Linear Hashing had
very good performance for small nodes, they also had high storage
costs for small nodes. (However, the storage utilization for Modilied
Linear Hashing can probably be improved by using multiple-item
nodes, thereby reducing the pointer to data item ratio). Extendible
Hashing has another problem - storing duplicate values. If a oage
were to overflow wiih duplicate valu&, tile directory could irow
infinitely large and still not be able to resolve the problem. There is
no nor&al &erflow method in Extendible Hashing as there is in
Linear Hashing. If duplicates were allowed, then nodes would need
a special overflow pointer for duplicates, while processing regular
values in the normal fashion. As for the other two hash-based
methods: Chained Bucket Hashing has fast execution times, but it
has fairly high storage costs, and it is only a static structure; and
finally, Linear Hashing is just too slow to use in main memory.

5. Future Improvements
Some improvements and variations on the T Tree algorithms

have been discovered since the index experiments were conducted.
We briefly mention them here, and the reader is referred to
[Lehm86a] for more derail.
(1) The search algorithm can be changed so that it always performs

one compare per node rather than two (the existing worst case).
This would reduce the number of compares from (Log2 N + l/2
Log, N/K) to a true Log, N. (N is the number of elements in
the tree and K is the number of elements in a node.) Although
this difference is not significant when the number of compares
are simple, it results in significant gains when the compares are
expensive.

The modilied search algorithm compares the search key with
only the minimum element in a node and uses that result to
decide which subtree to search. If the right subtree is chosen,
the current node is marked for future consideration because the
elements in that node are still in the active search space. When
the search reaches a leaf, the last marked node is searched with
a binary search.

(2) A new hoe of T Tree. the T+ Tree. has been suggested. It

Looking at the order-preserving index structures, AVL Trees
have good search execution times and fair update execution times,
but they have high storage costs. Arrays have good search and scan
execution times and low storage costs, but any update activity at all
causes it to have execution times orders of magnitude higher than the
other index structures. AVL Trees and arravs do not have
sufficiently good performance I storage characterisfics for considera-
tion as main memory indices. T Trees and B Trees do not have the
storage problems df dynamic hashing methods; they have low
storage costs for those node sizes that lead to good performance.
The T Tree seems to be the best of choice for an order-preserving
index structure, as it performs well in all of the tests.

4.6. Comparing Apples and Oranges
A major problem with this type of comparison is the issue of

fairness. Though we did our best to code each index algorithm
equally well, the results are close in some cases, and it is possible
that constant factors could come into play and alter the results. Also,
some algorithms may have had small advantages because of the test
environment. For example, the data used for the tests was generated
by a random number generator, so the hashing schemes may have
been aided by having a uniform distribution of key values. Also,
because unique key values were used and searches and deletes were
always successful, those index structures using linear searches (i.e.,
the hashing structures) needed to search only half of the list, on the
average, to find the desired element.

To ensure that the tests were coded as fairly as possible, the
code was instrumented with counters to record the number of
occurrences of various operations, such as the number of data com-
oares. the amount of data movement, the number of hash calls, the
hum&r of tree rotations, the amount bf memory allocated and freed,
and the number of node searches. (These countem did not affect the
execution times because they we& compiled out of the code when
the timing tests were run.) Using these counters, it was possible to
observe the algorithms in action, making sure that the expected
amount of work was being done. We plan to use this technology-
independent information in the future to analyze the algorithms and
determine their merits without the interference of machine-related
dependencies.

. ,
keeps aliof its data in ieaf nodes, using the intemainodes (an
AVL Tree) for guidance into chained multi-item leaves. The
similaritie$ to By Trees are obvious. The T+ Tree would have
search and update performance similar to the T Tree, but the
chained leaves would be easier to scan (using a simple linked
list rather than a tree traversal) and possibly easier to maintain.

6. Conclusions
In this uaoer we introduced a new main memory index stmc-

ture, the T Trek. We compared the T Tree structure- against AVL
Trees. simule arrays. B Trees. Chained Bucket Hashinrr. Extendible
Hashing, linear gashing and ‘Modified Linear Hashing.’ Our results
indicate that a mix of two different index structures provides the best
overall storage and performance. For unordered data, Modified
Linear Hashing should give excellent performance for exact match
queries. When used as a temporary structure where the size of the
index is known in advance. the table size can be chosen initially to fit
the application, thereby removing the reorganization overhead and
allowinrr Modified Linear Hashing to behave like Chained Bucket
Hashing: For ordered data, the T l%ee provides excellent overall per-
formance for a mix of searches, inserts, and deletes, and it does so at
a relatively low cost in storage space. We plan to use the T Tree as
the primary ordered access method for our prototype implementation
of a main memory database management system, and we plan to use
Modified Linear Hashing as the primary unordered access method.

7. Acknowledgements
Our thanks to Udi Manber for pointing out an optimization to

the T Tree search algorithm and the possibility of T+ Trees. Also,
the NSF-sponsored crystal multicomputer project at the University
of Wisconsin provided the many VAX 1 l/750 CPU-hours that were
required for the index structure performance study.

-302-

8. References]Warr8 11 D. H. D. Warren, Eflicient Processing of Interactive
[Aho74]

[Amma85]

[Come791

[DeWi84]

[Elha84]

[Fagi79]

[Fish861

[Horw85]

[KjeI84]

[Knut73]

[Lam801

[Lehm86a]

[Lehm86b]

[Lela85]

[Lint841

[LitwSO]

[Mul184]

[Shap86]

[Snod84]

A. Aho, J. Hopcroft and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley
Publishing Company, 1974.
A. Ammann, M. Hanrahan and R. Krishnamurthy,
Design of a Memory Resident DBMS, Proc. lEEE
COMPCON, San Francisco, February 198.5.
D. Comer, The Ubiquitous B-Tree, Computing Surveys
II,2 (June 1979).

[Will841

Relational Database Queries Expressed-in Logic, Proc.
7th Co& Very Large Data Buses, Cannes, Fance,
September, 198 1.
D. E. Willard, New TRIE Data Structures Which
Support Very Fast Search Operations, Journal of
F;;ptr and Systems Sciences 28,3 (June 1984),

D. J. Dewitt, R. Katz, F. Olken, L. Shapiro, M.
Stonebraker and D. Wood, Implementation Techniques
for Main Memory Database Systems, Proc. ACM
SfGMOD Conf., June 1984, 1-8.
K. Elhardt and R. Bayer, A Database Cache for High
Performance and Fast Restart in Database Systems,
ACM Trans. on Database Systems 9,4 (December
1984), 503-526.
R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong,
Extendible Hashing : A fast access method for dynamic
liles, ACM Trans. on Database Systems 4,3 (Sept.
1979), 315-344.
M. Fishetti, Technology ‘86: Solid State, IEEE
Spectrum 23,l (January 1986).
S. Horwitz and T. Teitelbaum, Relations and
Attributes: A Symbiotic Basis for Editing
Environments, Proc. of the ACM SIGPLAN Co& on
Language Issues in Programming Environments,
Seattle, WA, June 1985.
P. Kjellberg and T. Zahle, Cascade Hashing, Proc. 10th
Conf. Very Large Data Bases, Singapore, August 1984,
481-492.
D. Knutb, The Art of Computer Programming,
Addison-Wesley, Reading, Mass., 1973.
P. Larson, Linear Hashing with Partial Expansions,
Proc. 6th Conf. Very Lurge Data Bases, Montreal,
Canada, October 1980,224-23 1.
T. Lehman, Design and Performance Evaluation of a
Main Memory Relational Database System, Ph.D.
Dissertation (University of Wisconsin-Madison),
August 1986. (in progress).
T. Lehman and M. Carey, Query Processing in Main
Memory Database Management Systems, Proc. ACM
SIGMOD Conf, May 1986.
M. Leland and W. Roome, The Silicon Database
Machine, Proc. 4th Int. K’orkshop on Database
Machines, Grand Bahama Island, March 1985.
M. Linton, Implementing Relational Views of
Programs, Proc. of the ACM SIGSOFTISIGPLAN
Software Eng. Symp. on Practical Software
Development Environments, Pittsburgh, PA, April
1984.
W. Litwin, Linear Hashing : A New Tool For File and
Table Addressing, Proc. 6th Conf. Very Large Data
Bases, Montreal, Canada, October 1980.
J. Mullin, Unihed Dynamic Hashing, Proc. 10th Conf.
Very Large Data Buses, Singapore, August 1984, 473-
480.
L. D. Shapiro, Join Processing in Database Systems
with Large Main Memories, ACM Tranr. on Database
Systems, 1986. (to appear).
R. Snodgrass, Monitoring in a Software Development
Environment: A Relational Approach, Proc. of the
ACM SIGSOFTISIGPLAN Software Eng. Symp. on
Practical Sofhvare Development Environments,
Pittsburgh, PA, April 1984.

-303-

