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ABSTRACT
Recent efforts applying machine learning techniques to query
optimization have shown few practical gains due to substan-
tive training overhead, inability to adapt to changes, and
poor tail performance. Motivated by these difficulties, we
introduce Bao (the Bandit optimizer). Bao takes advantage
of the wisdom built into existing query optimizers by provid-
ing per-query optimization hints. Bao combines modern tree
convolutional neural networks with Thompson sampling, a
well-studied reinforcement learning algorithm. As a result,
Bao automatically learns from its mistakes and adapts to
changes in query workloads, data, and schema. Experimen-
tally, we demonstrate that Bao can quickly learn strategies
that improve end-to-end query execution performance, in-
cluding tail latency, for several workloads containing long-
running queries. In cloud environments, we show that Bao
can offer both reduced costs and better performance com-
pared with a commercial system.

1. INTRODUCTION
Query optimization is the task of transforming a user-

issued declarative SQL query into an execution plan. De-
spite decades of study [30], query optimization remains a
unsolved problem [17]. Several works have applied machine
learning techniques to query optimization [32, 16, 19, 33,
35], often showing remarkable results. We argue that none
of the techniques are yet practical, as they suffer from sev-
eral fundamental problems:

1. Long training time. Most proposed machine learning tech-
niques require an impractical amount of training data before
they have a positive impact on query performance. For ex-
ample, ML-powered cardinality estimators based on super-
vised learning require gathering precise cardinalities from
the underlying data, a prohibitively expensive operation in
practice (this is why we wish to estimate cardinalities in the
first place). Reinforcement learning techniques must pro-
cess thousands of queries before outperforming traditional
optimizers, which can take on the order of days [19].
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Figure 1: Disabling loop join in PostgreSQL can signifi-
cantly improve (16b) or harm (24b) a particular query’s per-
formance. These example queries are from the Join Order
Benchmark (JOB) [15].

2. Handling change. While performing expensive training
operations once may already be impractical, changes in query
workload, data, or schema can make matters worse. Super-
vised cardinality estimators must be retrained when data
changes, or risk becoming stale. Several proposed reinforce-
ment learning techniques require retraining when either the
workload or the schema change [14, 20, 25, 19].

3. Tail catastrophe. Recent work has shown that learning
techniques can outperform traditional optimizers on aver-
age, but often perform catastrophically (e.g., 100x regres-
sion in query performance) in the tail [19, 26, 24, 9]. This
is especially true when training data is sparse. While some
approaches offer statistical guarantees of their dominance in
the average case [35], such failures, even if rare, are unac-
ceptable in many real world applications.

4. Black-box decisions. While traditional cost-based opti-
mizers are already complex, understanding query optimiza-
tion is even harder when black-box deep learning approaches
are used. Moreover, in contrast to traditional optimizers,
current learned optimizers do not provide a way for database
administrators to influence or understand the learned com-
ponent’s query planning.

5. Integration cost. To the best of our knowledge, all previ-
ous learned optimizers are still research prototypes, offering
little to no integration with a real DBMS. None even sup-
ports all features of standard SQL, not to mention vendor
specific features. Hence, fully integrating any learned opti-
mizer into a commercial or open-source database system is
not a trivial undertaking.
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1.1 Bao
In [18], we introduced Bao (Bandit optimizer), the first

learned optimizer which overcomes the aforementioned prob-
lems. This paper presents a short summary of Bao’s key
techniques and our experimental insights. Bao is fully inte-
grated into PostgreSQL as an extension, and can be easily
installed without the need to recompile PostgreSQL. The
database administrator (DBA) just needs to download our
open-source module, and even has the option to selectively
turn the learned optimizer on or off for specific queries.

The core idea behind Bao is to avoid learning an optimizer
from scratch. Instead, we take an existing optimizer (e.g.,
PostgreSQL’s optimizer) and learn when to activate (or de-
activate) some of its features on a query-by-query basis. In
other words, Bao is a learned component that sits on top of
an existing query optimizer in order to enhance query opti-
mization, rather than replacing or discarding the traditional
query optimizer altogether.

For instance, on a particular query, the PostgreSQL op-
timizer might under-estimate the cardinality for some joins
and wrongly select a loop join when other join algorithms
(e.g., merge join, hash join) would be more effective [15].
This occurs in query 16b of the Join Order Benchmark [15],
and disabling loop-joins for this query yields a 3x perfor-
mance improvement (see Figure 1). Yet, it would be wrong
to always disable loop joins. For example, for query 24b,
disabling loop joins causes the performance to degrade by
almost 50x, an arguably catastrophic regression.

At a high level, Bao tries to “correct” a traditional query
optimizer by learning a mapping between an incoming query
and the execution strategy the query optimizer should use
for that query. We refer to these corrections – a subset of
strategies to enable – as query hint sets. Effectively, through
the provided hint sets, Bao limits and steers the search space
of the traditional optimizer.

Our approach assumes a finite set of hint sets and treats
each hint set as an arm in a contextual multi-armed bandit
problem. Bao learns a model that predicts which hints will
lead to good performance for a particular query. When a
query arrives, our system selects a hint set, executes the re-
sulting query plan, and observes a reward. Over time, Bao
refines its model to more accurately predict which hint set
will most benefit an incoming query. For example, for a
highly selective query, Bao can automatically steer an opti-
mizer towards a left-deep loop join plan (by restricting the
optimizer from using hash or merge joins), and to disable
loop joins for less selective queries.

By formulating the problem as a contextual multi-armed
bandit, Bao can take advantage of Thompson sampling, a
well-studied sample-efficient algorithm [3]. Because Bao uses
an underlying query optimizer, Bao can potentially adapt
to new data and schema changes just as well as the un-
derlying optimizer. While other learned query optimization
methods have to relearn what traditional query optimizers
already know, Bao immediately starts learning to improve
the underlying optimizer, and is able to reduce tail latency
even compared to traditional query optimizers. In addition
to addressing the practical issues of previous learned query
optimization systems, Bao comes with a number of desir-
able features that were either lacking or hard to achieve in
previous traditional and learned optimizers:

1. Short training time. In contrast to other deep-learning
approaches, which can take days to train, Bao can outper-
form traditional query optimizers with much less training
time (≈ 1 hour). Bao achieves this by taking full advan-
tage of existing query optimization knowledge, which was
encoded by human experts into traditional optimizers avail-
able in DBMSes today. Moreover, Bao can be configured
to start out using only the traditional optimizer and only
perform training when the load of the system is low.

2. Robustness to schema, data, and workload changes. Bao
can maintain performance even in the presence of workload,
data, and schema changes. Bao does this by leveraging a
traditional query optimizer’s cost and cardinality estimates.

3. Better tail latency. While previous learned approaches
either did not improve or did not evaluate tail performance,
we show that Bao is capable of improving tail performance
by orders of magnitude with as little as 30 minutes to a few
hours of training.

4. Interpretability and easier debugging. Bao’s decisions can
be inspected using standard tools, and Bao can be enabled
or disabled on a per-query basis. Thus, when a query misbe-
haves, an engineer can examine the query hint chosen by Bao
and the decisions made by the underlying optimizer with EX-

PLAIN. If the underlying optimizer is functioning correctly,
but Bao made a poor decision, Bao can be specifically dis-
abled. Alternatively, Bao can be off by default, and only
enabled on specific queries known to have poor performance
with the underlying traditional query optimizer.

5. Low integration cost. Bao is easy to integrate into an ex-
isting database and often does not even require code changes,
as most database systems already expose all necessary hints
and hooks. Moreover, Bao builds on top of an existing op-
timizer and can thus support every SQL feature supported
by the underlying database.

6. Extensibility. Bao can be extended by adding new query
hints over time, without retraining. Additionally, Bao’s
feature representation can be easily augmented with ad-
ditional information which can be taken into account dur-
ing optimization, although this does require retraining. For
example, when Bao’s feature representation is augmented
with information about the cache, Bao can learn how to
change query plans based on the cache state. This is a desir-
able feature because reading data from cache is significantly
faster than reading information off of disk, and it is possi-
ble that the best plan for a query changes based on what is
cached. While integrating such a feature into a traditional
cost-based optimizer may require significant engineering and
hand-tuning, making Bao cache-aware is as simple as sur-
facing a description of the cache state.

Of course, Bao also has downsides. First, one of the most
significant drawbacks is that query optimization time in-
creases, as Bao must run the traditional query optimizer
several times for each incoming query. A slight increase
in optimization time is not an issue for problematic long-
running queries, since the improved latency of the plan se-
lected by Bao often greatly exceeds the additional optimiza-
tion time. However, for very short running queries, increased
optimization time can be an issue, especially if the applica-
tion issues many such queries. Thus, Bao is ideally suited
to workloads that are tail-dominated (e.g., 80% of query
processing time is spent processing 20% of the queries) or
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Figure 2: Bao system model

contain many long-running queries, although Bao’s architec-
ture also allows users to easily disable Bao for such short-
running queries, or enable Bao exclusively for problematic
longer-running queries. Second, by using only a limited set
of hints, Bao has a restricted action space, and thus Bao is
not always able to learn the best possible query plan. De-
spite this restriction, in our experiments, Bao is still able to
significantly outperform traditional optimizers while train-
ing and adjusting to change orders-of-magnitudes faster than
“unrestricted” learned query optimizers, like Neo [19].

In summary, the key contributions of this paper are:

• We introduce Bao, a learned system for query opti-
mization that is capable of learning how to apply query
hints on a case-by-case basis.

• For the first time, we demonstrate a learned query op-
timization system that outperforms both open source
and commercial systems in cost and latency, all while
adapting to changes in workload, data, and schema.

2. BAO ARCHITECTURE
On a high-level, Bao combines a tree convolution model [22],

a neural network operator that can recognize important pat-
terns in query plan trees [19], with Thompson sampling [3],
a technique for solving contextual multi-armed bandit prob-
lems. This unique combination allows Bao to explore and
exploit knowledge quickly. The architecture of Bao is shown
in Figure 2.

Generating n query plans: When a user submits a query,
Bao uses the underlying query optimizer to produce n query
plans, one for each set of hint. Many DBMSes provide a wide
range of such hints. While some hints can be applied to a
single relation or predicate, Bao focuses only on query hints
that are a boolean flag (e.g., disable loop join, force index
usage). The sets of hints available to Bao must be specified
upfront. Note that one set of hints could be empty, that is,
using the original optimizer without any restriction.

Estimating the run-time for each query plan: Afterwards,
each query plan is transformed into a vector tree (a tree
where each node is a feature vector). These vector trees are
fed into Bao’s value model, a tree convolutional neural net-
work [22], which predicts the quality (e.g., execution time)
of each plan. To reduce optimization time, each of the n
query plans can be generated and evaluated in parallel.

Selecting a query plan for execution: If we just wanted to ex-
ecute the query plan with the best expected performance, we
would train a model in a standard supervised fashion and
pick the query plan with the best predicted performance.
However, as our value model might be wrong, we might not

always pick the optimal plan, and, as we never try alterna-
tive strategies, never learn when we are wrong. To balance
the exploration of new plans with the exploitation of plans
known to be fast, we use a technique called Thompson sam-
pling [3] (see Section 3). It is also possible to configure Bao
to explore a specific query offline and guarantee that only
the best plan is selected during query processing (see [18]).

After a plan is selected by Bao, it is sent to a query ex-
ecution engine. Once the query execution is complete, the
combination of the selected query plan and the observed
performance is added to Bao’s experience. Periodically, this
experience is used to retrain the predictive model, creating
a feedback loop. As a result, Bao’s predictive model im-
proves, and Bao more reliable picks the best set of hints for
each query. For workloads that cannot ever afford a query
regression, this exploration can also be performed offline.

3. LEARNING FRAMEWORK
Here, we discuss Bao’s learning approach. We first define

Bao’s optimization goal, and formalize it as a contextual
multi-armed bandit problem. Then, we apply Thompson
sampling, a classical technique used to solve such problems.

Bao models each hint set HSeti ∈ F in the family of
hint sets F as if it were its own query optimizer: a function
mapping a query q ∈ Q to a query plan tree t ∈ T :

HSeti : Q→ T

This function is realized by passing the query Q and the
selected hint set HSeti to the underlying query optimizer.
We refer to HSeti as this function for convenience. We
assume that each query plan tree t ∈ T is composed of an
arbitrary number of operators drawn from a known finite set
(i.e., that the trees may be arbitrarily large but all of the
distinct operator types are known ahead of time).

Bao also assumes a user-defined performance metric P ,
which determines the quality of a query plan by executing
it. For example, P may measure the execution time of a
query plan, or may measure the number of disk operations
performed by the plan.

For a query q, Bao must select a hint set to use. We call
this selection function B : Q → F . Bao’s goal is to select
the best query plan (in terms of the performance metric P )
produced by a hint set. We formalize the goal as a regret
minimization problem, where the regret for a query q, Rq,
is defined as the difference between the performance of the
plan produced with the hint set selected by Bao and the
performance of the plan produced with the ideal hint set:

Rq =
(
P (B(q)(q))−min

i
P (HSeti(q))

)2
(1)

Contextual multi-armed bandits (CMABs) The regret mini-
mization problem in Equation 1 is a contextual multi-armed
bandit [39] problem. An agent must maximize their reward
(i.e., minimize regret) by repeatedly selecting from a fixed
number of arms. The agent first receives some contextual in-
formation (context), and must then select an arm. Each time
an arm is selected, the agent receives a payout. The payout
of each arm is assumed to be independent given the con-
textual information. After receiving the payout, the agent
receives a new context and must select another arm. Each
trial is considered independent.
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Figure 3: Bao prediction model architecture

For Bao, each “arm” is a hint set, and the “context” is the
set of query plans produced by the underlying optimizer.
Thus, our agent observes the query plans produced, chooses
one of those plans, and receives a reward based on the re-
sulting performance. Over time, our agent needs to improve
its selection and get closer to choosing optimally (i.e., min-
imize regret). Doing so involves balancing exploration and
exploitation: our agent must not always select a query plan
randomly (as this would not help to improve performance),
nor must our agent blindly use the first query plan it encoun-
ters with good performance (as this may leave significant im-
provements on the table). We use Thompson sampling [3],
a well-studied technique for solving bandit problems.

3.1 Tree convolutional neural networks
We next explain Bao’s predictive model, a tree convolu-

tion neural network [22, 19] responsible for estimating the
quality of a query plan. Tree convolution is a compos-
able and differentiable neural network operator specialized
to work with tree-shaped inputs. Here, we give an intuitive
overview of tree convolution, and refer to [19] for technical
details and analysis of tree convolution on plan trees.

Human experts studying query plans learn to recognize
good or bad plans by pattern matching: a pipeline of merge
joins without any intermediate sorts may perform well, whereas
a merge join on top of a hash join may induce a redundant
sort or hash operation. Similarly, a hash join which builds a
hash table over a very large relation may incur a spill, dras-
tically slowing down execution. While none of this patterns
are independently enough to decide if a query plan is good or
bad, they do serve as useful indicators for further analysis;
in other words, the presence or absence of such a pattern is a
useful feature from a learning perspective. Tree convolution
is precisely suited to recognize such patterns, and learns to
do so automatically, from the data itself.

Tree convolution consists of sliding tree-shaped “filters”
over a query plan tree (similar to image convolution, where
filters are convolved with an image) to produce a trans-
formed tree of the same size. These filters may look for
patterns like pairs of hash joins, or an index scan over a small
relation. Tree convolution operators are stacked in several
layers. Later layers can learn to recognize more complex
patterns, like a long chain of merge joins or a bushy tree of
hash operators. Because of tree convolution’s natural abil-
ity to represent and learn these patterns, we say that tree
convolution represents a helpful inductive bias [21] for query
optimization: that is, the structure of the network, not just
its parameters, are tuned to the underlying problem.

The architecture of Bao’s prediction model is shown in
Figure 3. The query plan tree is passed through three layers
of tree convolution. After the last layer of tree convolution,
dynamic pooling [22] is used to flatten the tree structure into
a single vector. Then, two fully connected layers are used to
map the pooled vector to a performance prediction.

3.2 Training loop
Bao’s training loop closely follows a classical Thompson

sampling regime: when a query is received, Bao builds a
query plan tree for each hint set and uses the current pre-
dictive model to select a plan to execute. After execution,
that plan and the observed performance are added to Bao’s
experience. Periodically, Bao retrains its predictive model
by sampling model parameters (i.e., neural network weights)
to balance exploration and exploitation. Practical consider-
ations specific to query optimization require a few deviations
from the classical Thompson sampling regime, which we dis-
cuss next.

In classical Thompson sampling [34], the model parame-
ters θ are resampled after every selection (query). In the
context of query optimization, this is not practical for two
reasons. First, sampling θ requires training a neural net-
work, which is a time-consuming process. Second, if the size
of the experience |E| grows unbounded as queries are pro-
cessed, the time to train the neural network will also grow
unbounded, as the time required to perform a training epoch
is linear in the number of training examples.

We use two techniques from prior work [4] to solve these
issues. First, instead of resampling the model parameters
(i.e., retraining the neural network) after every query, we
only resample the parameters every nth query. This obvi-
ously decreases the training overhead by a factor of n by
using the same model parameters for more than one query.
Second, instead of allowing |E| to grow unbounded, we only
store the k most recent experiences in E. By tuning n and
k, the user can control the tradeoff between model quality
and training overhead to their needs.

We also introduce a new optimization, specifically useful
for query optimization. On modern cloud platforms such
as [1], GPUs can be attached and detached from a VM with
per-second billing. Since training a neural network primar-
ily uses the GPU, whereas query processing primarily uses
the CPU, disk, and RAM, model training and query ex-
ecution can be overlapped. When new model parameters
need to be sampled, a GPU can be temporarily provisioned.
Model training can then be offloaded to the GPU. Once
model training is complete, the new model parameters can
be swapped in for use when the next query arrives, and the
GPU can be detached. Of course, users may also choose to
use a machine with a dedicated GPU, or to offload model
training to a different machine entirely, possibly with in-
creased cost and network usage.

4. RELATED WORK
One of the earliest applications of learning to query op-

timization was Leo [32], which used successive runs of the
similar queries to adjust histogram estimators. Recent ap-
proaches [16, 12, 27, 2] have learned cardinality estimations
or query costs in a supervised fashion. Unsupervised ap-
proaches have also been proposed [38, 37]. While all of these
works demonstrate improved cardinality estimation accu-
racy (potentially useful in its own right), they do not pro-
vide evidence that these improvements lead to better query
plans. Ortiz et al. [26] showed that certain learned cardinal-
ity estimation techniques may improve mean performance
on certain datasets, but tail latency is not evaluated. Negi
et al. [24] showed how prioritizing training on cardinality
estimations that have a large impact on query performance
can improve estimation models.
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Size Queries WL Data Schema

IMDb 7.2 GB 5000 Dynamic Static Static
Stack 100 GB 5000 Dynamic Dynamic Static
Corp 1 TB 2000 Dynamic Statica Dynamic

aThe schema change did not introduce new data, but did nor-
malize a large fact table.

Table 1: Evaluation dataset sizes, query counts, and if the
workload (WL), data, and schema are static or dynamic.

[20, 14] showed that, with sufficient training, reinforce-
ment learning based approaches could find plans with lower
costs (according to the PostgreSQL optimizer). [25] showed
that the internal state learned by reinforcement learning al-
gorithms are strongly related to cardinality. Neo [19] showed
that deep reinforcement learning could be applied directly to
query latency, and could learn optimization strategies that
were competitive with commercial systems after 24 hours
of training. However, none of these techniques are capable
of handling changes in schema, data, or query workload,
and none demonstrate improvement in tail performance.
Works applying reinforcement learning to adaptive query
processing [35, 11, 36] have shown interesting results, but are
not applicable to existing, non-adaptive systems like Post-
greSQL.

Our work is part of a recent trend in seeking to use ma-
chine learning to build easy to use, adaptive, and inventive
systems, a trend more broadly known as machine program-
ming [8]. In the context of data management systems, ma-
chine learning techniques have been applied to a wide vari-
ety of problems too numerous to list here, including index
structures [13], data matching [7], workload forecasting [28],
index selection [5], query latency prediction [6], and query
embedding / representation [31, 10].

5. EXPERIMENTS
The key question we pose in our evaluation is whether or

not Bao could have a positive, practical impact on real-world
database workloads that include changes in queries, data,
and/or schema. To answer this, we focus on quantifying
not only query performance, but also on the dollar-cost of
executing a workload (including the training overhead intro-
duced by Bao) on cloud infrastructure against PostgreSQL
and a commercial database system (Section 5.2). Here, we
present only a short summary of our experimental evalua-
tion; for a complete examination, see [18].

5.1 Setup
We evaluated Bao using the datasets listed in Table 1. The

IMDb dataset is an augmentation of the Join Order Bench-
mark [15]. We created a new real-world datasets and work-
load called Stack, now publicly available.1 – Stack contains
over 18 million questions and answers from StackExchange
websites (e.g., StackOverflow.com) over ten years. The Corp
dataset is a dashboard workload executed over one month
donated by an anonymous corporation. The Corp dataset
contains 2000 unique queries issued by analysts. Half way
through the month, the corporation normalized a large fact
table, resulting in a significant schema change. We emu-
late this schema change by introducing the normalization

1https://rm.cab/stack

after the execution of the 1000th query (queries after the
1000th expect the new normalized schema). The data re-
mains static.

We use a “time series split” strategy for training and test-
ing Bao. Bao is always evaluated on the next, never-before-
seen query qt+1. When Bao makes a decision for query qt+1,
Bao is only trained on data from earlier queries. Once Bao
makes a decision for query qt+1, the observed reward for that
decision – and only that decision – is added to Bao’s expe-
rience set. This strategy differs from previous evaluations
in [19, 20, 14] because Bao is never allowed to learn from
different decisions about the same query. In OLAP work-
loads where nearly-identical queries are frequently repeated
(e.g., dashboards), this may be an overcautious procedure.

Unless noted, all experiments were performed on Google’s
Cloud Platform, using a N1-4 VM type and TESLA T4
GPU. Cost and time measurements include query optimiza-
tion, model training (including GPU), and query execution.
Costs are reported as billed by Google, and include startup
times and minimum usage thresholds. Database statistics
are fully rebuilt each time a new dataset is loaded.

We compare Bao against PostgreSQL and a commercial
database system (ComSys) [29]. Both systems are config-
ured and tuned according to their respective documentation
and best practices guide; a consultant for ComSys double
checked our configuration through small performance tests.
For both baselines, we integrated Bao into the database us-
ing the original optimizer through hints. For example, we
integrated Bao into ComSys by leveraging ComSys original
optimizer with hints and executing all queries on ComSys.

Unless otherwise noted, queries are executed sequentially.
We use 48 hint sets, which each use some subset of the join
operators {hash join, merge join, loop join} and some subset
of the scan operators {sequential, index, index only}. For
a detailed description, see [18]. We found that setting the
lookback window size to k = 2000 and retraining every n =
100 queries provided a good tradeoff between GPU time and
query performance.

5.2 Is Bao practical?
In this first section, we evaluate if Bao is actually practical,

and evaluate Bao’s performance in a realistic warm-cache
scenario; we augment each leaf node vector with caching
information (see [18]).

Cost and performance in the cloud Figure 4 shows the cost
(left) and time required (right) to execute our three work-
loads in their entirety on the Google Cloud using an N1-16
VM. Bao outperforms PostgreSQL by almost 50% in cost
and latency across the different datasets (Figure 4a). Note,
that this includes the cost of training and the cost for at-
taching the GPU to the VM. Moreover, all datasets contain
either workload, data, or schema changes, demonstrating
Bao’s adaptability to this common and important scenarios.

The performance improvement Bao makes on top of the
commercial database is still significant though not as large
(Figure 4b). Across the three dataset, we see an improve-
ment of around 20%, indicating that ComSys optimizer is a
much stronger baseline. Note, that the costs do not include
the licensing fees for the commercial system. In our opinion,
achieving a 20% cost and performance improvement over a
highly capably query optimizer, which was developed over
decades, without requiring any code changes to the database
itself, is a very encouraging result.
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(a) Across our three evaluation datasets, Bao on the PostgreSQL
engine vs. PostgreSQL optimizer on the PostgreSQL engine.

(b) Across our three evaluation datasets, Bao on the ComSys
engine vs. ComSys optimizer on the ComSys engine.

Figure 4: Cost (left) and workload latency (right) for Bao
and two traditional query optimizers across three different
workloads on a N1-16 Google Cloud VM.

(a) Across four different VM types, Bao on the PostgreSQL en-
gine vs. PostgreSQL optimizer on the PostgreSQL engine.

(b) Across four different VM types, Bao on the ComSys engine
vs. ComSys optimizer on the ComSys engine.

Figure 5: Cost (left) and workload latency (right) for Bao
and two traditional query optimizers across four different
Google Cloud Platform VM sizes for the IMDb workload.
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Figure 6: Percentile latency for queries, IMDb workload. Each column represents a VM type, from smallest to largest. The
top row compares Bao against the PostgreSQL optimizer on the PostgreSQL engine. The bottom row compares Bao against
a commercial database system on the commercial system’s engine. Measured across the entire (dynamic) IMDb workload.

(a) VM type N1-2 (b) VM type N1-4 (c) VM type N1-8 (d) VM type N1-16

Figure 7: Number of IMDb queries processed over time for Bao and the PostgreSQL optimizer on the PostgreSQL engine.
The IMDb workload contains 5000 unique queries which vary over time.
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Figure 8: Absolute difference in query latency between Bao’s selected plan and PostgreSQL’s selected plan for the subset of
the IMDb queries from the Join Order Benchmark [15] (lower is better).

Hardware type As a second experiment we varied the hard-
ware type for the IMDb workload (Figure 5). For Post-
greSQL (Figure 5a), the difference in both cost and perfor-
mance is most significant with larger VM types (e.g., N1-16
vs. N1-8), suggesting the Bao is better capable of tuning
itself towards the changing hardware than PostgreSQL. We
did re-tune PostgreSQL for each hardware platform. More-
over, Bao itself benefits from larger machines as its paral-
lelizes the execution of all the arms (discussed later).

Interestingly, whereas the benefits of Bao increase with
larger machine sizes for PostgreSQL, it does not for the com-
mercial system (Figure 5b). This suggests that the commer-
cial system is more capable of adjusting to different hard-
ware types, or perhaps that the commercial system is “by
default” tuned for larger machine types. We note that the
N1-2 machine type does not meet the ComSys vendor’s rec-
ommended system requirements, although it does meet the
vendor’s minimum system requirements.

Tail latency analysis The previous two experiments demon-
strate Bao’s ability to reduce the cost and latency of an
entire workload. Since practitioners are often interested in
tail latency, here we examine the distribution of query la-
tencies within the IMDb workload on multiple VM types.
Figure 6 shows median, 95%, 99%, and 99.5% latencies for
each VM type (column) for both PostgreSQL (top row) and
the commercial system (bottom row). For each VM type,
Bao drastically decreases tail latencies when compared to the
PostgreSQL optimizer. For example, on an N1-8 instance,
99% latency fell from 130 seconds with the PostgreSQL op-
timizer to under 20 seconds with Bao. This suggests that
most of the cost and performance gains from Bao come from
reductions at the tail of the latency distribution. Compared
with the commercial system, Bao always reduces tail latency,
although the reduction is only significant on the smaller VM
types where resources are more scarce.

It is important to note that Bao’s improvement in tail
latency (Figure 6) is primarily responsible for the overall
improvements in workload performance (Figure 4). This is
because these tail queries are disproportionately large con-
tributors to workload latency (see Section 5.1 for a quan-
tification). In fact, Bao hardly improves the median query
performance at all (< 5%). Thus, in a workload comprised
entirely of such “median” queries, performance gains from
Bao could be significantly lower. We next examine the worst
case, in which the query optimizer is already making a near-
optimal decision for each query. To demonstrate this, we
executed the fastest 20% of queries from the IMDb work-
load using Bao and PostgreSQL. In this setup, Bao executed
the restricted workload in 4.5m compared to PostgreSQL’s

4.2m – this 18 second regression is attributable to additional
overhead of Bao (quantified in [18]).

Training time and convergence A major concern with any
application of reinforcement learning is convergence time.
Figure 7 shows time vs. queries completed plots (perfor-
mance curves) for each VM type while executing the IMDb
workload. In all cases, Bao has similar performance to Post-
greSQL for the first 2 hours, and exceeds the performance
afterwards. Plots for the Stack and Corp datasets are simi-
lar. Plots comparing Bao against the commercial system are
also similar, with slightly longer convergence times: 3 hours
to exceed the performance of the commercial optimizer.

The IMDb workload is dynamic, yet Bao adapts to changes
in the query workload. This is visible in Figure 7: Bao’s per-
formance curve remains straight after a short initial period,
indicating that shifts in the query workload did not produce
a significant change in query performance.

Query regression analysis Practitioners are often concerned
with query regressions (e.g., when statistics change or a new
version of an optimizer is installed) and thus naturally ask,
would Bao cause regressions? Figure 8 shows the absolute
performance improvement for Bao and what the theoreti-
cal optimal set of hints would be able to achieve (green)
for each of the Join Order Benchmark (JOB) [15] queries, a
subset of our IMDb workload. A negative value is a perfor-
mance improvement, a positive value a regression. For this
experiment, we trained Bao by executing the entire IMDb
workload with the JOB queries removed, and then executed
each JOB query without updating Bao’s predictive model.
That is, Bao has not seen any of the JOB queries before, and
there was no predicate overlap. Of the 113 JOB queries, Bao
only incurs regressions on three, and these regressions are all
under 3 seconds. Ten queries see performance improvements
of over 20 seconds. Of course, Bao (blue) does not always
choose the optimal hint set (green).

6. CONCLUSION AND FUTURE WORK
This work introduced Bao, a bandit optimizer which steers

a query optimizer using reinforcement learning. Bao is ca-
pable of matching the performance of commercial optimizers
with as little as one hour of training time. We have demon-
strated that Bao can reduce median and tail latencies, even
in the presence of dynamic workloads, data, and schema.

In the future, we plan to investigate integrating Bao into
cloud systems. With inspiring results from Microsoft [23],
we believe that Bao can improve resource utilization in multi-
tenant environments where disk, RAM, and CPU time are
scarce resources. We additionally plan to investigate if Bao’s
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predictive model can be used as a cost model in a traditional
database optimizer, enabling more traditional optimization
techniques to take advantage of machine learning.
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