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Bitmap indexing has been touted as a promising approach for pro-
cessing complex adhoc queries in read-mostly environments, like
those of decision support systems. Nevertheless, only few possible
bitmap schemes have been proposed in the past and very little is
known about the space-time tradeoff that they offer. In this paper,
we present a general framework to study the design space of bitmap
indexes for selection queries and examine the disk-space and time
characteristics that the various alternative index choices offer. In
particular, we draw a parallel between bitmap indexing and num-
ber representation in different number systems, and define a space
of two orthogonal dimensions that captures a wide array of bitmap
indexes, both old and new. Within that space, we identify (analyt-
ically or experimentally) the following interesting points: (1) the
time-optimal bitmap index; (2) the space-optimal bitmap index; (3)
the bitmap index with the optimal space-time tradeoff (knee); and
(4) the time-optimal bitmap index under a given disk-space con-
straint. Finally, we examine the impact of bitmap compression and
bitmap buffering on the space-time tradeoffs among those indexes.
As part of this work, we also describe a bitmap-index-based evalua-
tion algorithm for selection queries that represents an improvement
over earlier proposals. We believe that this study offers a useful
first set of guidelines for physical database design using bitmap in-
dexes.
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While the query performance issues of on-line transaction process-
ing (OLTP) systems have been extensively studied [7] and are pretty
much well-understood, the state-of-the-art for Decision Support
Systems (DSS) is still evolving as indicated by the growing ac-
tive research in this area [3]. Current database systems, which are
optimized mainly for OLTP applications, are not suitable for DSS
applications due to their different requirements and workload [6].
In particular, DSS operate in read-mostly environments, which are
�
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dominated by complex adhoc queries that have high selectivity fac-
tors (i.e., large foundsets).

A promising approach to process complex queries in DSS is
the use of bitmap indexing [8, 9, 10]. Bitmap manipulation tech-
niques have already been used in some commercial products [12]
to speed up query processing: a notable example is Model 204,
a pre-relational DBMS from Computer Corporation of America
[8]. More recently, various DBMS vendors, including Oracle, Red-
Brick, and Sybase, have introduced bitmap indexes into their prod-
ucts to meet the performance requirements of DSS applications
[5, 6]. In its simplest form, a bitmap index on an indexed attribute
consists of one vector of bits (i.e., bitmap) per attribute value, where
the size of each bitmap is equal to the cardinality of the indexed re-
lation. The bitmaps are encoded such that the  "!$# record has a value
of % in the indexed attribute if and only if the  !$# bit in the bitmap
associated with the attribute value % is set to & , and the  !'# bit in
each of the other bitmaps is set to ( . This is called a Value-List
index [10]. An example of a Value-List index for a &*) -record re-
lation + is shown in Figure 1, where each column in Figure 1(b)
represents a bitmap ,.- associated with an attribute value % .

/10325436 798:7<;=79>:79?:7A@B79C:79D:7FEG79H
1 3 0 0 0 0 0 1 0 0 0
2 2 0 0 0 0 0 0 1 0 0
3 1 0 0 0 0 0 0 0 1 0
4 2 0 0 0 0 0 0 1 0 0
5 8 1 0 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 1 0 0
7 2 0 0 0 0 0 0 1 0 0
8 0 0 0 0 0 0 0 0 0 1
9 7 0 1 0 0 0 0 0 0 0
10 5 0 0 0 1 0 0 0 0 0
11 6 0 0 1 0 0 0 0 0 0
12 4 0 0 0 0 1 0 0 0 0

(a) (b)

Figure 1: Example of a Value-List Index. (a) Projection of indexed
attribute values with duplicates preserved. (b) Value-List Index.

Consider a high-selectivity-factor query with selection predi-
cates on two different attributes. A conventional OLTP optimizer
would generate one of the following three query plans: (P1) a full
relation scan, (P2) an index scan (using the predicate with lower
selectivity factor) followed by a partial relation scan to filter out
the non-qualifying tuples, or (P3) an index scan for each selection
predicate, followed by a “merge” of the results from the two in-
dex scans. Due to the compact sizes of bitmaps (especially for
attributes with low cardinality) and the efficient hardware support
for bitmap operations (AND, OR, XOR, NOT), plan (P3) using
bitmap indexes is likely to be more efficient than a plan that re-



quires a partial or full relation scan (plans (P1) and (P2)). A simple
cost analysis shows that evaluating plan (P3) with bitmap indexes
is more efficient than using the conventional RID-list based indexes
for queries with selectivity factor above some threshold. Let � and� be the relation and query result cardinalities, respectively. As-
sume that each RID is � bytes long and that one bitmap is scanned
per predicate. In terms of the number of bytes read, using bitmap
indexes for plan (P3) is more efficient than using RID-list based
indexes if )

� ��� ���) �
	 ; i.e., �������� . Furthermore, operations on
bitmaps are more CPU-efficient than merging RID-lists.

Various bitmap indexes [8, 9, 10, 13, 14] have been designed for
different query types, including range queries, aggregation queries,
and OLAP-style queries. However, as there is no overall best bitmap
index over all kinds of queries, maintaining multiple types of bitmap
indexes for an attribute may be necessary in order to achieve the de-
sired level of performance. While the gains in query performance
using a multiple-index approach might be offset by the high update
cost in OLTP applications, this is not an issue in the read-mostly
environment of DSS applications. Indeed, the multiple-index ap-
proach is adopted by Sybase IQ, a DBMS specifically designed for
data warehousing applications, which supports five different types
of bitmap indexes, and requires the database to be fully inverted
[1]. Maintaining multiple indexes for an attribute, however, further
increases the disk space requirement of data warehouse applica-
tions. Understanding the space-time tradeoff of the various bitmap
indexes is therefore essential for a good physical database design.

In this paper, we study the space-time tradeoff of bitmap in-
dexes for the class of selection queries, i.e., queries with predi-
cates of the form “ ����� % ”, where � refers to the indexed attribute,��� is one of six comparison operators � ��� � ���������� !�#" %$ , and %
is the predicate constant. We refer to selection predicates where���'&(�  !�)" %$ as equality predicates, and to selection predicates
where ���*&+� ��� � �������,$ as range predicates. Information on
bitmap indexes for other types of queries (e.g., star-join and group-
by queries) can be found elsewhere [9, 10].

The main contributions in this paper are as follows:

- The presentation of a general framework to study the design
space of bitmap indexes for selection queries. The frame-
work not only captures the existing proposed ideas but re-
veals several other design alternatives as well.

- An analysis of the space-time tradeoff of bitmap indexes;
in particular, we identify analytically or experimentally four
interesting points in a typical space-time tradeoff graph, as
shown in Figure 2:

(A) The space-optimal bitmap index.

(B) The time-optimal bitmap index under a given space con-
straint.

(C) The bitmap index with the optimal space-time tradeoff,
i.e., the knee of the space-time tradeoff graph.

(D) The time-optimal bitmap index.

- An experimental study of the effects of bitmap compression
on the space-time tradeoff issues.

- An analytical study of the effects of bitmap buffering on the
space-time tradeoff issues.

- The proposal of a more efficient evaluation algorithm for
bitmap indexes. The new algorithm reduces the number of
bitmap operations by about . ()/ and incurs one less bitmap
scan for a range predicate evaluation.

The rest of this paper is organized as follows. In Section 2, we
present a framework to study the design space of bitmap indexes for

Space

Time

(C) Optimal Space-Time Tradeoff (knee)

(D) Time-Optimal 

(B) Time-Optimal under Space Constraint M 

(A) Space-Optimal 

Infeasible Region

M

Figure 2: Space-Time Tradeoff Issues

selection queries. Section 3 presents an improved evaluation algo-
rithm for bitmap indexes, including both analytical and experimen-
tal performance evaluations. Section 4 presents an analytical cost
model for the space-time tradeoff study. Section 5 compares the
space-time tradeoff of two basic bitmap encoding schemes. In Sec-
tion 6, we examine the space-optimal (point (A)) and time-optimal
(point (D)) bitmap indexes. In Section 7, we characterize the knee
of the space-time tradeoff graph of bitmap indexes (point (C)). Sec-
tion 8 presents an optimal as well as a heuristic approach to find
the time-optimal bitmap index under space constraint (point (B)).
In Section 9, we present an experimental study of the impact of
bitmap compression on the space-time tradeoff issues. Section 10
presents an analytical study of the effect of bitmap buffering on the
space-time tradeoff issues. Finally, we summarize our results in
Section 11.

For the rest of this paper, we use the term index to refer to a
bitmap index. Due to lack of space, the derivations of analytical
results and the proofs of theorems and algorithms’ correctness are
omitted from this paper; full details are given elsewhere [2].
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In this section, we present a framework to examine the design space
of indexes for selection queries. The framework has been inspired
by the work of Wong et. al. [13, 14].

Let C denote the attribute cardinality; i.e., the number of dis-
tinct actual values of the indexed attribute. The attribute cardinality
is generally smaller than the cardinality of the attribute domain; i.e.,
the number of all possible values of the indexed attribute. Without
loss of generality and to keep the presentation simple, we assume
in this paper that the actual attribute values are consecutive integer
values from ( to CED & . For the general case where the actual at-
tribute values are not necessarily consecutive, a bitmap index can
be built either on the entire attribute domain, or on C consecu-
tive values by mapping each actual attribute value to its rank via a
lookup table.

As described in Section 1, the Value-List index is a set of bitmaps,
one per attribute value. In other words, if one views this set as
a two-dimensional bit matrix (Figure 1(b)), the focus is on the
columns. If the focus moves on the rows, however, then the in-
dex can be seen as the list of attribute values represented in some
particular way. As there is a large number of possible representa-
tions for attribute values (integers in this case), this clearly opens
up the way for defining a whole host of bitmap indexing schemes.
In classifying all these representations, we identify two major or-
thogonal parameters that define the overall space of alternatives.
In particular, considering the Value-List index again, we observe
that each attribute value is represented as a single digit (in base- C
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arithmetic), this digit being encoded in bits by turning exactly one
out of C bits on. The arithmetic we choose for the value repre-
sentation, i.e., the decomposition of the value in digits according to
some base, and the encoding scheme of each digit in bits are the
two dimensions of the space and are analyzed below.

(1) Attribute Value Decomposition Consider an attribute value
% and a sequence of � � D & 	 numbers

���
��� � ��� ��� � �����	� �
� � � . Fur-

thermore, define
�
�
 �� C ��� ���� � � �	� . Then % can be decomposed

into a sequence of � digits
�
% �
�
% ��� � �	�	�	��� % � � as follows:

%
 �

� � � � ��� % � � � � � � � � 	 � % � � � � % � ��� � � � � � � � 	 � % � � � � � � 	 � % � � ��� % � ���	�	���	�
 

% ��� ��� ����� � � ��� � �	�	� � % � �
� � ����� � � ��� � ���	� � % � � ��� % � �

where % �  �� �! ��" � � , � �  $#&%�')( E* ')( E�+ , &
�
 
� � , and each digit

% � is in the range (
�
% � ��� � .

Based on the above, each choice of � and sequence
���
�
�
�
��� � ����������

�
�

gives a different representation of attribute values, and
therefore a different index. An index is well-defined if

� � � ) ,
&
�
 
� � . The sequence

�,�
�
���
��� � �	�������
� � � is the base of

the index, which is in turn called a base-
�-�

�
�
�
��� � �	�	�	� �
� � �

index. If
�
�
 .�

��� �  /�	���  .�
�10 �

, then the base is called
uniform and the index is called base-

�
for short. The index consists

of � components, i.e., one component per digit. Each component
individually is now a collection of bitmaps, constituting essentially
a base-

� � index.
Let � � denote the number of bitmaps in the  !$# component of

an index and �*, � ' � �� �
, � ' � �� ���	�	���

,32� $ denote the collection of� � bitmaps that form the  "!$# component. Figure 3 shows a base-�54 �64 �
Value-List index (based on the same 12-record relation

in Figure 1). By decomposing a single-component index into a ) -
component index, the number of bitmaps has been reduced from 7
to 8 .

/ 0 2 436 7ADD 7<ED 7AHD 7ADE 7<EE 7AHE
1 3

E69&:<;�H=<=�= = =&> 0 1 0 0 0 1

2 2
H�9&:<;�D=<=�= = =&> 0 0 1 1 0 0

3 1
H�9&:<; E=<=�= = =&> 0 0 1 0 1 0

4 2
H�9&:<;�D=<=�= = =&> 0 0 1 1 0 0

5 8
D�9&:<;�D=<=�= = =&> 1 0 0 1 0 0

6 2
H�9&:<;�D=<=�= = =&> 0 0 1 1 0 0

7 2
H�9&:<;�D=<=�= = =&> 0 0 1 1 0 0

8 0
H�9&:<;�H=<=�= = =&> 0 0 1 0 0 1

9 7
D�9&:<; E=<=�= = =&> 1 0 0 0 1 0

10 5
E69&:<;�D=<=�= = =&> 0 1 0 1 0 0

11 6
D�9&:<;�H=<=�= = =&> 1 0 0 0 0 1

12 4
E69&:<; E=<=�= = =&> 0 1 0 0 1 0

(a) (b)

Figure 3: Example of a 2-Component Value-List Index (a) Pro-
jection of indexed attribute values with duplicates preserved. (b)
Base-

�?4 ��4 �
Value-List Index.

(2) Bitmap Encoding Scheme Consider the  !'# component of
an index with attribute cardinality

� � . There are essentially two
major schemes to directly encode the corresponding values % � ( (

�
% � ��� � D & ) in bits � :
- Equality Encoding: There are

� � bits, one for each possible
value. The representation of value % � has all bits set to ( , ex-
cept for the bit corresponding to % � , which is set to & . Clearly,
an equality-encoded component consists of

� � bitmaps.

- Range Encoding: There are
� � bits again, one for each possi-

ble value. The representation of value % � has the % � rightmost
bits set to ( and the remaining bits (starting from the one cor-
responding to % � and to the left) set to &

�
. Intuitively, each

bitmap , - '� has & in all the records whose  !'# component
value is less than or equal to % � . Since the bitmap ,

* ' � �� has
all bits set to & , it does not need to be stored, so a range-
encoded component consists of � � � D & 	 bitmaps.

Figures 4(b) and (c) show the range-encoded indexes correspond-
ing to the equality-encoded indexes in Figure 1 and Figure 3, re-
spectively.

/�0 25436 79;:7A> 7A? 7 @B7AC 7ADB7FEG79H
1 3 1 1 1 1 1 0 0 0
2 2 1 1 1 1 1 1 0 0
3 1 1 1 1 1 1 1 1 0
4 2 1 1 1 1 1 1 0 0
5 8 0 0 0 0 0 0 0 0
6 2 1 1 1 1 1 1 0 0
7 2 1 1 1 1 1 1 0 0
8 0 1 1 1 1 1 1 1 1
9 7 1 0 0 0 0 0 0 0
10 5 1 1 1 0 0 0 0 0
11 6 1 1 0 0 0 0 0 0
12 4 1 1 1 1 0 0 0 0

(a) (b)7 ED 7 HD 7 EE 7 HE
1 0 1 1
1 1 0 0
1 1 1 0
1 1 0 0
0 0 0 0
1 1 0 0
1 1 0 0
1 1 1 1
0 0 1 0
1 0 0 0
0 0 1 1
1 0 1 0

(c)

Figure 4: Examples of Range-Encoded Bitmap Indexes. (a) Projec-
tion of indexed attribute values with duplicates preserved. (b) Sin-
gle Component, Base-9 Range-Encoded Bitmap Index. (c) Base-�@4 �64!�

Range-Encoded Bitmap Index.

Figure 5 shows the two-dimensional design space of indexes
for selection queries, with the two existing alternatives, namely,
the Value-List index and the Bit-Sliced index [10], classified as
shown. The Value-List index, which is the simplest index and is
the most commonly implemented, has a single component and is
equality-encoded. The Bit-Sliced index [10] has a uniform base
and is range-encoded. A base-10 Bit-Sliced index has been used
in MODEL 204 for evaluating range predicates [8]. The Bit-Sliced
index is also used in Sybase IQ for evaluating range predicates and

E We have excluded the third “basic” encoding scheme (the binary encoding
scheme) discussed in [13, 14], as it can be characterized in our framework as a base-2
decomposition with one of the two encodings we do present.D Clearly, a symmetric scheme exists as well, where the roles of right and left are
exchanged.
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Figure 5: Design Space of Bitmap Indexes for Selection Queries.

performing aggregation [10]. In this paper, we consider all well-
defined decompositions, and just the two encoding schemes pre-
sented above, which are used in practice.

� � � � = 7 
��� 2 ����� � A � � ��� � � � A 4 � 
� ��� = 9�� 
	� � � 4 2�
 � � �*��� 2 �; � ��= � 7 ��� � 2 > 2 �
An evaluation algorithm for selection queries based on range-encoded
indexes has been proposed by O’Neil and Quass (Algorithm 4.3 in
[10]), which we referred to as Algorithm RangeEval. In this
section, we present an improved evaluation algorithm (Algorithm
RangeEval-Opt) that reduces the number of bitmap operations
by about . (#/ and requires one less bitmap scan for a range pred-
icate evaluation. Given this, in the rest of the paper, the improved
evaluation algorithm is used as the basis for the time analysis of
range-encoded indexes. Both evaluation algorithms are shown in
Figure 6.

Let � 2 and � � denote bitmaps with all bits set to ( and & , re-
spectively. Also let  , � , and � denote the logical AND, OR, and
XOR operations, respectively, and , denote the complement of a
bitmap , . Depending on the input predicate operator ( ��� ), Algo-
rithm RangeEval evaluates each range predicate by computing
two bitmaps: the ,	��� bitmap and either the ,	��� or ,	��� bitmap.
For example, if the predicate is “

�
”, then the result bitmap , ���

is obtained by computing the bitmaps , ��� and , ��� ; steps that
involved ,	��� , ,���� , or , � � are not required. The final result
bitmap that is returned is either , ��� , , ��� , , ��� , , ��� , , ��� , or
, � � , corresponding to the predicate operator “

�
”, “
�

”, “
�

”, “ � ”,
“
 

”, or “
" 

”, respectively. As we show below, such an evaluation
strategy not only costs more bitmap operations to incrementally
build the two intermediate bitmaps, but also incurs more bitmap
scans since the evaluation of the bitmap , ��� , which corresponds
to an equality predicate evaluation, is the most expensive predicate
in terms of bitmap scans.

Algorithm RangeEval-Opt avoids the intermediate equal-
ity predicate evaluation by evaluating each range query in terms
of only the “

�
” predicate based on the following three identities:

(1) � �
% 0 � �

%6D & , (2) � �
% 0 � � % , (3) � �

% 0 � � %%D & . Furthermore, the evaluation of the “
�

” predi-
cate itself does not require an equality predicate evaluation. Con-
sequently, Algorithm RangeEval-Opt requires the computation
of only one bitmap , for any predicate evaluation, as opposed to
two bitmaps ( ,	��� and either ,	��� or ,	��� ) required in Algorithm
RangeEval.

Figure 7 compares the two algorithms for evaluating the pred-
icate “ � ��� 8?� ” using a

4
-component base- & ( index. Clearly,

Algorithm RangeEval-Opt is more efficient as it requires only

� bitmap operations and . bitmap scans, compared to Algorithm
RangeEval, which incurs & ( bitmap operations and 8 bitmap
scans. Moreover, while efficient processing of Algorithm BSRange-
Opt requires buffering for only one bitmap (the intermediate/final
result), efficient processing of Algorithm RangeEval requires buffer-
ing for two bitmaps (for , ��� and , ����� , ��� ).
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Figure 7: Comparison of Evaluation Strategies for Selection Predi-
cate “ � ��� 8?� ” using a

4
-Component, Base- & ( Range-Encoded

Bitmap Index. (a) Algorithm RangeEval. (b) Algorithm
RangeEval-Opt.

�! � � � � A " ��� �*� A$# ��= 7 �1
� ��� � � 9%�&� � A ��� ��� � � � A 4 � 
� ����= � 9�� 
� � � 4 2'
 � � � � � 2 ��; � ��= � 7 ��� � 2 >

Evaluation Number of Bitmap Operations Num. of
Predicate AND OR NOT XOR Total Scans

RangeEval(*)%+ ,.- -0/%1 - - 2.-0/%1 ,.-(*3%+ ,.- -0/%1 4 - 56-0/%1 ,.-(*7%+ ,.- - - - 2�- ,.-(*8%+ ,.- - 4 - 5.- ,.-(:9;+ - 4 4 - ,�- ,.-(=<9;+ - 4 1 - ,.-0/%1 ,.-
RangeEval-Opt(*)%+ - - 1 4 ,.-0/%1 ,.- = 1(*3%+ - - 1 4 ,.-0/%1 ,.- = 1(*7%+ - - 4 4 ,�- ,.- = 1(*8%+ - - 4 4 ,�- ,.- = 1(:9;+ - 4 4 - ,�- ,.-(=<9;+ - 4 1 - ,.-0/%1 ,.-

Table 1: Worst Case Analysis of Evaluation Algorithms; � is the
number of index components.

Table 1 shows the worst case analysis of the performance of the
evaluation algorithms in terms of the number of bitmap operations
and scans. For Algorithm RangeEval, since each range pred-
icate evaluation entails an equality predicate evaluation (for ,>���
bitmap), the number of bitmap operations of a range predicate eval-
uation is at least twice that of the “

 
” predicate evaluation. By us-

ing a more direct evaluation strategy, Algorithm RangeEval-Opt

4



Evaluation Algorithms for Selection Queries Using Range-Encoded Bitmap Indexes.
Input: � is the number of components in the range-encoded index.�@�

�
�
�
��� � �	���	����� � � is the base of the index.��� is the predicate operator, ��� & � ����������� � �� !�#" %$ .

% is the predicate value.
, �#� is a bitmap representing the set of records with non-null values for the indexed attribute.

Output: A bitmap representation of the set of records that satisfies the predicate “ � ��� % ”.

Algorithm RangeEval
1) ,����  ,	���  � 2 ;
2) , ���  , �#� ;
3) let %

 
% � % ��� � �	�	� % � ;

4) for i = � downto & do
5) if ( % � � ( ) then
6) ,	���  ,���� � ��,	���  , - ' � �� 	 ;
7) if ( % � ��� � D & ) then
8) , ���  , ��� � ��, ���  , - '� 	 ;
9) ,����  ,����: ��, - '� � , - ' � �� 	 ;
10) else

11) ,����  ,����: , * ' � �� ;
12) else
13) , ���  , ��� � ��, ���  , 2� 	 ;
14) , ���  , ���  , 2� ;
15) , � �  ,����: , �#� ;
16) , ���  , ��� � , ��� ; , ���  , ��� � , ��� �
17) return ,���� ;

Algorithm RangeEval-Opt
1) ,

 � � ;
2) if ( ��� &6� ��� � $ ) then %

 
% D & ;

3) let %
 
% � % ��� � �	��� % � ;

4) if ( ��� &6� ��� ������� � $ ) then
5) if ( % �

���
� D & ) then ,

 
, - E� ;

6) for i = ) to � do
7) if ( % � " � � D & ) then ,

 
,  , - '� ;

8) if ( % � " ( ) then ,
 
, � , - ' � �� ;

9) else
10) for i = 1 to � do
11) if ( % �  ( ) then ,

 
,  , 2� ;

12) else if ( % �  � � D & ) then ,
 
,  , * ' � �� ;

13) else ,
 
,  ��, - '� � , - ' � �� 	 ;

14) if ( ��� &6� ��� � �)" %$ ) then
15) return ,  , � � ;
16) else
17) return ,  , � � ;

Figure 6: Algorithms RangeEval and RangeEval-Opt.

reduces the number of bitmap operations for range predicate eval-
uations by about half; the number of bitmap scans for range pred-
icates is reduced by one. Both algorithms have the same cost for
an equality predicate evaluation. For both evaluation algorithms,
the worst case occurs when (

�
% � � � � D & , & �  

� � , which
corresponds also to the most probable case.

�! 0 � >#7�2 
� = 2�� �	� A # ��= 7 �1
� ��� � �:9���� � A � � ��� � � � A 4 � 
"� ��� = �9�� 
�� � � 4 2'
 � � �*��� 2 � ; � ��= � 7 ��� � 2#>
In this section, we compare the performance of the evaluation al-
gorithms in terms of the average number of bitmap scans and the
average number of bitmap operations. Indexes with uniform base
are generated by varying the two main parameters: the attribute
cardinality C and the base number

�
. We experimented with C  . ( � & ( ( , and &�( ( ( ; for each value of C , the entire space of base-�

range-encoded indexes are generated by varying
�

from ) to C .
For each index, we generated a total of 8)C selection queries of the
form “ � ����� ” by varying the predicate ��� &�� ����������� � �� !�)" %$
and the predicate constant (

� � � C . Each query is evaluated
using Algorithm RangeEval and Algorithm RangeEval-Opt.
For a given range-encoded index and an evaluation algorithm, the
average number of bitmap scans (operations) is computed by tak-
ing the average of the number of bitmap scans (operations) over all8#C queries.

Figure 8 compares the performance of the two evaluation algo-
rithms as a function of the base number with C  & ( ( . The graphs
clearly demonstrate that Algorithm RangeEval-Opt is more ef-
ficient than Algorithm RangeEval. Similar trends are obtained
for other values of C .

� # � ���
	 � � 2)A 9�� 
 5 7 ��� 2'
�� � = 2� 
���� 2 ��� � � � A " ��� �
Our cost model for the space-time tradeoff analysis uses the fol-
lowing two metrics:

- The space metric is in terms of the number of bitmaps stored.

- The time metric is in terms of the expected number of bitmap
scans for a selection query evaluation, and is based on the as-
sumption that the queries in the query space � are uniformly
distributed, where �  � � ��� %�������&�� ��� � ���������� !�)" $:�
(
�
%
� C $&�

Note that our time metric incorporates only the I/O cost (i.e.,
number of bitmap scans) and does not include the CPU cost (i.e.,
number of bitmap operations) as the number of bitmap scans and
the number of bitmap operations for a query evaluation are cor-
related. We denote the space and time metric of an index � by� �������:��� 	 and �   �:��� 	 , respectively.

� # ��= 7 � 
"� ��� � �:9<; � ��= � 7 � � �*����� � 4 5 �'� 2 = 2 �
This section compares the performance of the two basic encoding
schemes, namely, equality encoding and range encoding, for selec-
tion queries. Our result shows that range encoding provides better
space-time tradeoff than equality encoding in most cases. Let �
denote an � -component index with base

���
�
�
�
��� � �	�	��� �
� � � .

Based on the cost model, we have the following result.

Theorem 5.1 If � is equality-encoded, then

� �������:��� 	  �� ��� � � � � where � �   � � � if
� � � ) �

& �"!$#��&%('  � � � (1)
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Figure 8: RangeEval vs RangeEval-Opt for Uniform
Base Range-Encoded Bitmap Indexes, C  & ( ( .

�   �:��� 	  &4 �� � � � �)"! � � & 	 � where (2)

! �  �� �* '���� * '��� � � � � � D & 		��
 * '�� D * '����� if
� � � ) �

& �(!�#��&% '  � � �
If � is range-encoded, then

� �������:��� 	  �� ��� � � � � D & 	 (3)

�   �:��� 	  
) � � D �� � � � &� � � &4 � &� � D & 	 	 (4)

The time analysis for range-encoded indexes is based on Algo-
rithm RangeEval-Opt. The evaluation algorithm for equality-
encoded indexes is not shown here due to space constraint; details
can be found elsewhere [2].

A range-encoded index requires one or two bitmap scans per
component for a selection predicate evaluation. On the other hand,
an equality-encoded index requires only one bitmap scan per com-
ponent for an equality predicate evaluation, but for a range predi-
cate evaluation, the number of bitmap scans required per compo-
nent is between two and half the number of bitmaps in that com-
ponent. Figure 9 compares the space-time tradeoff of range- and
equality-encoded indexes for C  

) ( , & ( ( , and & ( ( ( . The re-
sults show that range-encoding in general provides better space-
time tradeoff than equality-encoding in most cases.

Given the overall superiority of range-encoding, in the remain-
der of this paper, we focus on the space-time tradeoff of range-
encoded indexes. Henceforth, we use the term index as an abbrevi-
ation for a range-encoded index.� 5 7 ��� 2'
��<7 ��� = � A � � � � � = 2�
��,7 ��� = � A ; � ��= � 7 ��� � 2#>?2 �
In this section, we identify both the space-optimal and time-optimal
indexes (i.e., points (A) and (D) in Figure 2). We refer to the
most space-efficient (respectively, time-efficient) index among all
indexes with � components as the n-component space-optimal in-
dex (respectively, n-component time-optimal index). Note that the� -component space-optimal index might not be unique; for exam-
ple, if C  & ( ( ( , then the base-

� 4
)
�64
)
�

and base-
� 4

&
�64 4 �

indexes are both ) -component space-optimal indexes.
Based on Equations (3) and (4), we have the following result.

Theorem 6.1 (1) The number of bitmaps in an � -component
space-optimal index is given by � � � D ) 	 � % , where

�  
��� C � and % is the smallest positive integer such that��� � � D & 	 ��� � � C . The index with base
��� D & �	�	�����
� D &� ��� �

��� � ,� �	�	�����
�� � � �� �
is an � -component space-optimal index.

(2) The space-efficiency of space-optimal indexes is a non-decreasing
function of the number of components.

(3) The base of the � -component time-optimal index is
�
)
�����	���

)� � � �
��� � �


"!� � ( E � � .

(4) The time-efficiency of time-optimal indexes is a non-increasing
function of the number of components.

By Theorem 6.1, it follows that the space-optimal index corre-
sponds to the index with the maximum number of components (i.e,�  $#&% ��' � � C 	)( with each base number equal to ) ), and the time-
optimal index corresponds to the index with the minimum number
of components (i.e, �  & ). These are probably immediate corol-
laries of information theory and/or number theory results as well,
but they are easy enough to prove that doing so seemed easier than
tracking down the existing literature.* ; � ��= � 7 ��� � 2#>,+ � ��� �<7 ��� = � A 5 7 ��� 2'
�� � = 2 � 
���� 2 ���.-0/ � 2 221
In this section, we characterize the knee of the space-time tradeoff
graph, referred to as the knee index (point (C) in Figure 2), which
corresponds to the index with the best space-time tradeoff. Note
that our characterization is an approximate one as finding a precise
analytical characterization is generally a difficult problem. How-
ever, it turns out that our approximate characterization has very
good accuracy.

We first give a definition of the knee index that will serve as
a basis for comparing with our approximate characterization. Let3  �"� � � � � ���	����� � � $ denote the set of optimal indexes

�
corre-

sponding to the points in the space-time tradeoff graph such that� �������:��� � 	 � � �������:��� �54 � 	 � & �76 � � . For &
�76 � � , let 8:9 �

and +;9 � denote the gradients of the line segments formed by � �
C The set of optimal indexes < is the maximal subset of all possible indexes <>= such

that for each ?A@B< , there does not exist another index in <>= that is more efficient
than ? in both time and space.
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Figure 9: Comparison of Space-Time Tradeoff of Range- and Equality-Encoded Bitmap Indexes.

with � � � � and � �04 � , respectively. 8	9 � and + 9 � are defined as
follows:

��� ��� ���
	���
� ����� ���
	����� �04 � �������� ��
� �54 � ��� ������� ��
� �����! and

"#� ��� ���
	���
� � � � ��� ���
	����� ���������� ��
� ����� ������� ���� � � � � �! 
where $  � � � � �:��� � 	 � �   �:��� � 	 is a normalizing factor. The

index ��% & �"� � & 3 ��8	9 � � &
�
+ 9 � � &

$
with the maximum

ratio 8	9&% � + 9&% is the knee index.

0

2

4

6

8

10

0 200 400 600 800 1000

Ti
m

e 
(E

xp
ec

te
d 

N
um

be
r o

f B
itm

ap
 S

ca
ns

)

Space (Number of Bitmaps)

Time-Optimal Index
Space-Optimal Index

All Index

Figure 10: Space-Time Tradeoff of Bitmap Indexes, C  
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We now motivate our approximate characterization, which is
based on the results of Theorem 6.1. Figure 10 compares the space-

time tradeoff graphs for three classes of indexes: the class of space-
optimal indexes, the class of time-optimal indexes, and the en-
tire class of indexes, for C  

&�( ( ( ; similar results are obtained
for other values of C . The graph for space-optimal (respectively,
time-optimal) indexes consist of at most

# % � ' � � C 	)( points, where
each point corresponds to an � -component space-optimal (respec-
tively, time-optimal) index, &

� � � # % ��' � � C 	)( . Note that since
the space-optimal index is generally not unique, each point in the
space-optimal graph shown corresponds to the most time-efficient
index among all equally space-efficient indexes with the same num-
ber of components. Figure 10 shows that the tradeoff graph for
space-optimal indexes provides a good approximation to that for
all indexes. In particular, the set of points on the graph for space-
optimal indexes is a subset of the set of points on the graph for all
indexes.

Figure 11 shows the same space-optimal tradeoff graph as in
Figure 10 but with each point labelled with the number of compo-
nents of the corresponding space-optimal index. We observe that
the knee of the space-time tradeoff graph for the space-optimal in-
dex corresponds to a ) -component index, something that was con-
sistent throughout our experimentation. Hence, we characterize the
knee index as the most time-efficient ) -component space-optimal
index, which is obtained from the following result.

Theorem 7.1 The base of the most time-efficient ) -component space-
optimal index is given by

��� � D(' �
� ��� ' � , where
�
�
 
 � C � ,� �  
 !* E � , and '  *),+�- �*( � # * D � * E 4 � . * D 4 * E0/ D � � !� + $ .

We have compared the knee index based on our approximate char-
acterization with that based on the definition for various values of
attribute cardinality; the results show that both knee indexes match
exactly for all the cases that we compared.

1 � � = 2'
��<7 ��� = � A ; � ��= � 7 ��� � 2#>329� � 2 
 587 ��� 2%# � � ����
���� � �
In this section, we consider the following practical optimization
problem (point (B) in Figure 2): Given a constraint on the available
disk space to store an index, say at most 4 bitmaps (or equiva-
lently, at most 4 � bits, where � is the number of records), deter-
mine the most time-efficient index. We first present an algorithm
that finds the optimal solution, and then present a more efficient
heuristic approach, which is near-optimal. Both algorithms are
shown in Figure 12. In the following, let � � denote an � -component
index; and ��5 �7698;:� and � ! �=< :� denote the � -component space- and
time-optimal indexes, respectively.

7



Algorithms to Find Time-Optimal Bitmap Index Under Space Constraint.
Input: 4 is the space constraint in terms of the maximum number of bitmaps.C is the attribute cardinality.
Output: The time-optimal bitmap index with no more than 4 bitmaps.

Algorithm TimeOptAlg
1) let � be the smallest number such that

� �������:����5 �9678;:� 	 � 4 ;
2) if (

� �������:��� ! �=< :� 	 � 4 ) then return ��! �=< :� ;
3) let ��� be the smallest number such that ��� � � and

� �������:��� ! �=< :� = 	 � 4 ;
4) let

�  �&��% � � ��� � � � � � �������:����% 	 � 4 $�� �"� ! �=< :� = $
;

5) return � � & � such that �   �:��� � 	 � �   � ��� 	 , � � & � ;

Algorithm TimeOptHeur
1) � � � � 	 = FindSmallestN( 4 , C );
2) if (

� � � � �:����! � < :� 	 � 4 ) then return � ! � < :� ;
3) return RefineIndex(I);

Figure 12: Algorithms TimeOptAlg and TimeOptHeur.

1! 5� �<7 ��� = � A � 7�7 
����1� �
Algorithm TimeOptAlg finds the actual optimal solution. By re-
sult (2) of Theorem 6.1, the solution must have at least � compo-
nents, where � is the smallest number of components such that� ����� � ��� 5 �7678 :� 	 � 4 . If the � -component time-optimal index
satisfies the space constraint (step 2), then by result (4) of Theo-
rem 6.1, it is the solution; otherwise, by result (4) of Theorem 6.1,
the solution index must have no more than � � components where� � � � is the smallest number of components such that the � � -
component time-optimal index satisfies the space constraint. Fig-
ure 13 shows two cases to illustrate the bounds on the number of
components of the solution index; each point on the space-time
tradeoff graphs shown is labelled with the number of components
of the corresponding index.

The time complexity of the algorithm is determined by the size
of the set of candidate indexes defined by

�
(step 4). This search

space is large as we need to enumerate for each value of
�

, � ��� �
� � , all possible

�
-component indexes such that

 %� � � � � � C and	 %� � � � � � D & 	 � 4 . Figure 14 shows the size of
�

as a function
of 4 for C  & ( ( ( .
1! 0 
 2 ��
"� ����� � � 7�7 
����1� �
To avoid the costly exhaustive search in the optimal approach (steps� and . ), we present in this section a heuristic approach (Algorithm
TimeOptHeur in Figure 12) to find an approximate optimal solu-
tion. Our experimental results show that the heuristic approach is
near-optimal with the optimal index being selected at least 7��#/ of
the time. The main idea is to first select a “seed” index that satis-
fies the space constraint, and then to improve the time-efficiency of
the seed index by adjusting its base numbers. For the seed index,
our approach uses an � -component index � with

� �������:��� 	  4 ,
where � is the least number of components such that

� �������:��� 5 �7678 :� 	� 4 . Both � and � are determined by Algorithm FindSmallestN
(Figure 15). Note that if � ! � < :� satisfies the space constraint (step
2), then, as in step 2 of Algorithm TimeOptAlg, � ! �=< :� is the op-
timal solution index. Algorithm RefineIndex (Figure 15) im-
proves the time-efficiency of an index; its correctness is based on
the following result.

Theorem 8.1 Let � � be an � -component index with base
���
�
���
��� � ��������
�

�
�

. Suppose there exists two base numbers
� � and

��
,

)
��� � ���  , and some integer constant (

� ' ��� � D ) , such that
�� � � � � � � � C , where

� � �  � � � D(' if  
 � ��� � ' if  
 �� �� � otherwise.
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Figure 13: Bounds on Number of Components of Solution Index in
Algorithm TimeOptAlg.

Let � �� be another � -component index with base
��� � � �
� � ��� � �&�	������ � � � as defined above. Then �   �:��� �� 	 � �   �:��� � 	 .

Based on Theorem 8.1, Algorithm RefineIndex essentially
tries to maximize the number of components with small base num-
bers; in particular, step 8 determines the largest possible ' value for
adjusting a pair of base numbers. To illustrate Algorithm Refine-
Index, consider a

4
-component index � with base

�
) &
�
) &
�
) )
�

and C  & ( ( ( . In the first iteration, with
� �  �   )�& , '  &�7

and the base is refined to
�
)
�
) )
� �1( � . In the second iteration,

with
� �  ) ) and

�   �1( , '  &�) and the base is refined to�
)
�
& (
� . ) � . After the final refinement step

4
, the base of the re-

fined index � � is
�
)
�
& (
� . ( � . By Equation (3),

� �������:��� 	  8�&
8



Algorithm FindSmallestN: Algorithm to Find the Bitmap Index with Least Number
of Components Under Space Constraint.
Input: 4 is the space constraint in terms of the maximum number of bitmaps.C is the attribute cardinality.
Output: � , the smallest number of components such that

� �������:��� 5 �9678;:� 	 � 4 , and
An � -component index � � with

� �������:��� � 	  4 .
1) �  ( ; // � is the number of components
2) repeat
3) �  � � & ;
4)

�  ��� 4 �� � ;
5) %  � 4 � �
	  � " � ; // % is the number of components with base (

� � & )
6) until ( � � � & 	 � � ��� � � C );
7) let � � be the � -component bitmap index with base

��� �	�	�����
�� � � �
��� � �
� � & �����	���
� � &� ��� �� �

;

8) return � � � � � 	 ;
Algorithm RefineIndex: Algorithm to Improve the Time-Efficiency of a Bitmap Index.
Input: � � is a � -component bitmap index.C is the attribute cardinality.
Output: A � -component bitmap index � �� such that �   � ��� �� 	 � �   � ��� � 	 and

� ����� � ��� �� 	 � � �������:��� � 	 .1) let � � �����
, � � �  !��� � ��� ��� � �	���	��� � � � be the base of � � ;

2) ��%?��" ���
, � � �  �� � � � � � ;

3) for  = � downto ) do
4) let

� � be the smallest base number from � � �����
, � � � ;

5) delete
� � from � � �����

, � � � ;
6) if (

� � � ) ) then
7) let

��
be the smallest base number from � � �����

, � � � ;
8) let '  �� *
	 � *�� 4� . *�	 4 *�� / D � @�� 	 � ���	��������������� �!� " ;

9) if ( (
� ' � � �,D ) ) then

10) ��% ��" ���
, � � �  � � ��#%$'&�(�6 5 : . *
	 �*) / . *�� 4 ) /*
	�*�� ;

11)
� �  � � D ' ;

12)
��  ?�� � ' ;

13)
� � �  ?� � ;

14)
� � �  � ! �+�, D * =+ � ;

15) return the � -component bitmap index with base
�@� � � �
� � ��� � �	�	�	����� � � � ;

Figure 15: Algorithms FindSmallestN and RefineIndex.

and
� �������:��� � 	  . 7 . By Equation (4), �   �:��� 	  . � ( � and�   �:��� � 	  � � &�( .

The time complexities of Algorithms FindSmallestN and
RefineIndex are

� � % ��' � � C 	 	 and
� � � % � ' � � � 	 	 , respectively,

where � is at most
# % ��' � � C 	)( . Therefore, the time complexity of

Algorithm TimeOptHeur is
� � % ��' � � C 	 % ��' � � % � ' � � C 	 	 	 .

Attribute Percentage of Max. Difference in
Cardinality, Solutions Expected Number-

that are Optimal of Bitmap Scans2 4 .�/�0 . 4�0 1.12 4.4 .�1�0 1 4�0 , 11 4�4.4 .�1�0 1 4�0 ,.2,�4�4.4 .�.�0 1 4�0 ,21
Table 2: Effectiveness of Heuristic Approach to Select Time-
Optimal Bitmap Index under Space Constraint.

Table 2 shows the effectiveness of the heuristic approach for
various values of attribute cardinality. The second column shows
the percentage of solutions selected by the heuristic approach that
are optimal for the attribute cardinality value indicated in the first
column. For those cases where the optimal and heuristic approaches
differ, the third column shows the maximum difference in the ex-
pected number of bitmap scans of their selected indexes. The result
indicates that the proposed heuristic approach is near-optimal.3 � � 2 �*���:9 ; � ��= � 7%# ��= 7 
 2 ��� � � � � � 5 7 ��� 2'
�� � = 2 � 
��� 2 ���
This section examines the effect of bitmap compression on the
space-time tradeoff of bitmap indexes.3! � ; � ��= � 7 ��� � 2 > 5 �	� 
�)4 2 5 � � 2 = 2 �
We first investigate different physical organizations for bitmap in-
dexes to identify storage schemes that have good space-time trade-
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�
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off. Consider an
�

-component bitmap index for a � -record re-
lation, where the  !$# index component comprises of � � bitmaps,

&
�
 
� �

. Let �  
%� ��� � � � . The entire bitmap index is essen-

tially a � ��� �
	 bit-matrix, where the  "!$# component is a � ��� � � 	
bit-matrix, and each bitmap is a � ��� & 	 bit-vector. Based on the
above view of a bitmap index, we compare the following three stor-
age schemes:

Bitmap-Level Storage (BS) Each bitmap is stored individually in
a single bitmap file of � bits. Thus, the bitmap index is
stored in � � -bit bitmap files.

Component-Level Storage (CS) Each index component is stored
individually in a row-major order in a single bitmap file of� ��� � � 	 bits, &

�
 
���

. Thus, the bitmap index is stored
in
�

bitmap files.

Index-Level Storage (IS) The entire index is stored in a row-major
order in a single bitmap file of � � bits.

We refer to a bitmap index that is organized using storage scheme�
(without any compression) as a

�
-index, and refer to a

�
-index

with all its bitmaps compressed as a � � -index (i.e., � for com-
pressed). For a & -component bitmap index, both a CS-index and
an IS-index are equivalent. For a bitmap index with the maximum
number of components; i.e., each component is of base ) , (1) both
a BS-index and a CS-index are equivalent, and (2) an IS-index is a
projection index

�
.

In a CS-index, each row of a component bit-matrix has either
a consecutive stream of & bits followed by a consecutive stream of
( bits if the index is range-encoded, or exactly one bit set to & if
the index is equality-encoded. In contrast, in a BS-index, the dis-
tribution of the bits in each bitmap is dependent on the distribution
of the attribute values. Thus, we expect a CS-index to be more
compressible than a BS-index.3! 0 � >#7�2 
� = 2�� �	� A85 2 ��� 7
Our experimental study uses two data sets extracted from the TPC-
D Benchmark [4]: data set 1 is for small attribute cardinality, and
data set 2 is for large attribute cardinality. Table 3 shows the key
characteristics of our experimental data. To limit the number of ex-
periments for each data set, our comparison of the space-time trade-
off is restricted to the class of space-optimal indexes (as a function
of the number of index components, � ) with � being varied from &
@ A projection index [10] on an attribute

(
in a relation 4 is simply the projection

of
(

on 4 with duplicates preserved and stored in RID-order.

Data Set 1 Data Set 2
Relation Lineitem Order

Relation Cardinality 8 � ( ( & � )�& . &
� . ( ( � ( ( (

Attribute Quantity Order Date
Attribute Cardinality, C . ( )

� �1( 8
Table 3: Characteristics of TPC-D Benchmark Data used in Exper-
iments

to 8 ; this is motivated by our results in Section 7 which show that
the space-time tradeoff of space-optimal indexes provides a good
approximation to the space-time tradeoff of all indexes. The data
compression code used is from the zlib library

�
.

Table 4 compares the compressibility of the three storage schemes
for both data sets. For each � -component index � and each com-
pressed storage scheme

�
, where &

� � � 8 and
� & �&� , � � � C � �� � � $ , we compute the percentage of the size of � under

�
to the

size of � under BS. For both data sets, the results show that CS-

Base Size of I Compressibility of
of under BS Storage Scheme ( � )

Index I (in bytes) cBS cCS cIS�	��
� ������������������� ����� � ����� � ����� ���������
�  ��!�������� ���� ���"�#� ����� � ��
��#��	���������� ���!������������� �� ��#� ����� � ����� ��$�������������� ������������
����  ���� � �����   � �� ��$���������������%�� ������������
����  ��"� 
  ���� �  ���� ��	���������������������� �"����
�
��� ����  ���� �  ���� �  � �� �
(a) Data Set 1

Base Size of I Compressibility of
of under BS Storage Scheme ( � )

Index I (in bytes) cBS cCS cIS�	����
��� ����
��� ���������
�
 ����� � ��� � ��� ��&���������� ����������������
�
 ����� � ����� � ����� ��'���������������(� ������������
�
�
 ��
�� � ��
��  ����� ��$��������������
� �"������������
�
 ���"� � ��
�� � ����� ��&�"���������%������ ��������������
�
 ����� � ����� � ����� ��$�������%�����������%�� ��������������
�
 �� �� � �����#�  ���� 

(b) Data Set 2

Table 4: Comparison of Compressibility of Different Storage
Schemes.

indexes give the best compression.
In terms of query evaluation cost, a BS-index requires at most

) bitmap file scans per index component. On the other hand, both a
CS-index and an IS-index require all the bitmap files to be scanned;
moreover, they also incur additional CPU overhead to extract the
bits of each relevant bitmap from the component bitmap files (which
are stored in row-major order). Thus, we expect cBS-indexes to
be more time-efficient than cCS- and cIS-indexes; this is indeed
supported by our experimental results. For example, consider the
base- . ( cBS-index; the average size of each compressed bitmap is�!)+* ,!�!,�* �
� ��- 2+. ,!,�)�!/  . � ) � & & � bytes. Even when two bitmaps (an
average of &

�
&�8?� � ) 4 8 bytes) are scanned to evaluate an equality

query, using the cBS-index is still significantly cheaper than us-
ing the cCS-index (or cIS-index), which requires � 4 8 � �#. � � � � � �
(
�
) � ) 	  7 � 7 7 � � (1)�8 bytes to be scanned.

Since cBS-indexes are the most time-efficient and cCS-indexes
are the most space-efficient, we shall compare the space-time trade-

? The zlib library is written by Jean-loup Gailly
and Mark Adler (http://www.cdrom.com/pub/infozip/zlib); the compression method
is based on a LZ77 variant called deflation.
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offs of only cBS- and cCS-indexes against BS-indexes for the rest
of this section. Each bitmap index is used to evaluate a set of )#C
selection queries � (using Algorithm RangeEval-Opt), where�  �?� ��� % � ��� & � ���� %$:� ( � %

� C $&� The predicate oper-
ator is restricted to “

�
” (for range queries) and “

 
” (for equality

queries) to limit the number of queries.
The performance of each index is measured in terms of its space-

and time-efficiency. The space metric is in terms of the total space
of all its bitmaps (in MBytes), and the time metric is in terms of the
average predicate evaluation time (in secs) which includes (1) the
time to read the bitmaps, (2) the time for in-memory bitmap decom-
pression (for compressed bitmaps), and (3) the time for bitmap op-
erations. The average predicate evaluation time, � 6 -�� , is computed

as follows: � 6 -��  &
) C

! � ��
-
� 2 � � �- � � �- � , where � �$�- denote the

time to evaluate the predicate “ � ��� % ”.3! � � >#7�2 
� = 2�� �	� A � 2 � � A �	�
This section presents experimental results for indexes under the
storage schemes BS, cBS, and cCS for data set 1; results for data
set 2 are not shown due to space limitation. Figure 16(a) shows the
time-efficiency of the indexes as a function of the number of index
components. Both BS- and cBS-indexes outperform cCS-indexes
significantly; in particular, for cCS-indexes, over � ()/ of the to-
tal evaluation time is due to bitmap decompression. The decom-
pression cost for cCS-indexes generally increases with the number
of bitmap components since the number of bits to be extracted is
an increasing function of the number of components. For cCS-
indexes, since all the compressed bitmap files need to be scanned
for a query evaluation, their I/O cost is a function of the total size of
all compressed bitmap files, which generally decreases as the num-
ber of components increases. In contrast, for both BS- and cBS-
indexes, since the number of bitmaps to be scanned increases with
the number of components, their I/O cost is an increasing function
of the number of components. Comparing BS- and cBS-indexes,
while cBS-indexes incur a lower I/O cost, this is often offset by
their bitmap decompression cost; our results show that both BS-
and cBS-indexes are almost comparable in their time-efficiency.

Figure 16(b) compares the space-efficiency of the indexes as
a function of the number of index components. There are two
main observations. First, as we already know from Table 4, cCS-
indexes are the most space-efficient. Second, the results show that
the effectiveness of bitmap compression decreases as the number
of components increases. This can be explained by the fact that
the number of bitmaps is a decreasing function of the number of
components (result (2) of Theorem 6.1); in particular, there is a
significant space reduction when an index is decomposed from one
to two components. Consequently, the gain of bitmap compression,
with respect to space reduction, is only marginal once an index has
been decomposed (i.e., � � ) ). Thus, in terms of improving space
efficiency, decomposing an  -component BS-index to an �$ � & 	 -
component BS-index could be more effective than compressing the
 -component index.

Figure 16(c) compares the space-time tradeoff of the indexes.
The result shows that BS- and cBS-indexes have comparable space-
time tradeoff, which is better than that of cCS-indexes.

��� � � 2 �*� �:9<; � � 2 
� � 4 � � 5 7 �1� 2�
�� � = 2� 
��� 2 ���
This section considers the effect of bitmap buffering on the space-
time tradeoff issues that we have addressed. As the typical size of
buffer space is at least & GB in database systems running on SMP
systems for large data warehouse applications [11], it is likely that
a good number of bitmaps can remain memory-resident. By taking

into account the amount of main-memory allocated for buffering
bitmaps, more optimal indexes with better space-time tradeoff can
be designed.

The unit of buffering that we consider here is the number of
bitmaps. Consider an � -component index � with base

�@�
�
� �
��� � ��	�	�����

�
�

. Let  denote the number of bitmaps that can be buffered
in main-memory, where &

�  � � �������:��� 	 . We denote a  -
bitmap buffer assignment for � by

� �
�
���
��� � �	�	������� � � , where� � is the number of bitmaps in the  "!$# component of � that are

buffered. A  -bitmap buffer assignment for � is well-defined if

(
� � � ��� � � � & �  � � � and

�� ��� � � �   �
In addition to the uniform query distribution assumption stated

in Section 4, we further assume that the buffer hit rate for each
referenced bitmap is uniformly distributed (i.e., the probability that
a reference to any bitmap in the  !$# component is a buffer hit is
given by & '* ' � � ). Then, the expected number of bitmaps scans for
a selection query evaluation using an � -component index � with a -bitmap buffer assignment is given by

�   �:��� 	  ) � � D �� � � � & � � �� � � &4 � & � �
��

� D & 	 	 (5)

We now present an optimal bitmap buffering policy for indexes.
From result (3) of Theorem 6.1 and Theorem 8.1, we know that an
index is more time-efficient if it has more components with smaller
base numbers. Since buffering the bitmaps in an index component
effectively reduces the base of that component, it follows that it
is more beneficial (in terms of reducing the expected number of
bitmap scans) to buffer a bitmap from a component with a smaller
base number than from one with a larger base number. The follow-
ing optimal bitmap buffering policy is based on a prioritization of
the index components using their base numbers.

Theorem 10.1 Consider the following priority assignment to bitmap
components:

1. Partition the components of an index into two disjoint sets�
and

� � such that
�  �1& �  

� � � � � � � � � � $ and� �  ��& �  � � �1 "& � $ .
2. Components in

�
have higher priority than those in

� � .
3. Within each set (

�
or
� � ), components with smaller base

numbers have higher priority.

Based on the above priority assignment, a bitmap buffering policy
that favors bitmaps from a higher priority component over those
from a lower priority component is optimal.

Based on Equation (5) and the above optimal bitmap buffering
policy, we have the following result.

Theorem 10.2 If  �
( , the time-optimal index is an  -component

index with base
�
)
���	�����

)� � � �< � � ��� C
) < � ��� � .

Figure 17 compares the space-time tradeoff of indexes (based
on the optimal bitmap buffering policy) as a function of the number
of buffered bitmaps  for C  

& ( ( ( . As expected, the space-
time tradeoff improves as  increases. Based on our experimental
observations, we have the following approximate characterization
of the knee:
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Figure 16: Comparison of Space-Time Tradeoff of Compressed Bitmap Indexes under Different Storage Schemes for Data Set 1.

The knee of the space-time tradeoff graph corresponds
approximately to an �  � ) 	 -component index with
base

�
)
���	�����

)� � � �<
��� � D ' �
� � � ' � , where C �  
 !��� � ,�

�
 
 � C � � ,

� �  � ! =* E � , and

'  *),+�- � ( � # * D � * E 4 � . * D 4 * E / D � � ! =� + $ .
Note that the approximate knee characterization in Section 7 is a
special case of the above result. Our experimental results show that
the approximate knee characterization has very good accuracy.
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Figure 17: Space-Time Tradeoff as a Function of the Number
of Buffered Bitmaps  , C  &�( ( ( .

� � # � � � A ��� � � � �
In this paper, we have presented a general framework to study
the design space of bitmap indexes for selection queries, and have
examined several space-time tradeoff issues. To the best of our
knowledge, this study represents a first set of guidelines for physi-
cal database design using bitmap indexes.

Our results indicate that range-encoded bitmap indexes offer, in
most cases, better space-time tradeoff than equality-encoded bitmap
indexes. Concentrating on these, we have identified the time-optimal
index, the space-optimal index, the index with the optimal space-
time tradeoff, and the time-optimal index under disk-space con-
straints. In addition, we have proposed an optimal bitmap buffering
policy and examined its impact on the space-time tradeoff issues.
All these results are based on an improved evaluation algorithm for

selection queries that we have proposed for range-encoded bitmap
indexes.

For future work, we plan to explore bitmap indexes for the more
general class of selection queries that is based on the membership
operator.
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