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Abstract 

Small Materialized Aggregates (SMAs for 
short) are considered a highly flexible and ver- 
satile alternative for materialized data cubes. 
The basic idea is to compute many aggregate 
values for small to medium-sized buckets of tu- 
ples. These aggregates are then used to speed 
up query processing. We present the general 
idea and present an application of SMAs to 
the TPC-D benchmark. We show that ex- 
ploiting SMAs for TPC-D Query 1 results in 
a speed up of two orders of magnitude. Then, 
we investigate the problem of query process- 
ing in the presence of SMAs. Last, we briefly 
discuss some further tuning possibilities for 
SMAs. 

1 Introduction 

Among the predominant demands put on data ware- 
house management systems (DWMSs) is performance, 
i.e., the highly efficient evaluation of complex analyt- 
ical queries. A very successful means to speed up 
query processing is the exploitation of index struc- 
tures. Several index structures have been applied to 
data warehouse management systems (for an overview 
see [2, 171). Among them are traditional index struc- 
tures [l, 3, 61, bitmaps [15], and R-tree-like structures 
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Since most of the queries against data warehouses 
incorporate grouping and aggregation, it seems to be 
a good idea to materialize according views. The most 
popular of these approaches is the materialized data 
cube where for a set of dimensions, for all their possi- 
ble grouping combinations, the aggregates of interest 
are materialized. Then, query processing against a 
data cube boils down to a very efficient lookup. Since 
the complete data cube is very space consuming [5,18], 
strategies have been developed for materializing only 
those parts of a data cube that pay off most in query 
processing [lo]. Another approach-based on [14]-is to 
hierarchically organize the aggregates [12]. But still 
the storage consumption can be very high, even for a 
simple grouping possibility, if the number of dimen- 
sions and/or their cardinality grows. On the user side, 
the data cube operator has been proposed to allow for 
easier query formulation [8]. But since we deal with 
performance here, we will throughout the rest of the 
paper use the term data cube to refer to a materialized 
data cube used to speed up query processing. 

Besides high storage consumption, the biggest dis- 
advantage of the data cube is its inflexibility. Each 
data cube implies a fixed number of queries that can 
be answered with it. As soon as for example an ad- 
ditional selection condition occurs in the query, the 
data cube might not be applicable any more. Further- 
more, for queries not foreseen by the data cube de- 
signer, the data cube is useless. This argument applies 
also to alternative structures like the one presented 
in [12]. This inflexibility-together with the extrordi- 
nary space consumption-maybe the reason why, to 
the knowledge of the author, data cubes have never 
been applied to the standard data warehouse bench- 
mark TPC-D [19]. (cf. Section 2.4 for space require- 
ments of a data cube applied to TPC-D data) Our goal 
was to design an index structure that allows for effi- 
cient support of complex queries against high volumes 
of data as exemplified by the TPC-D benchmark. 

The main problem encountered is that some queries 
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refuse the application of a (traditional) index struc- 
ture (like B-Trees [l, 31 and Extendible Hashing [6]) 
due to efl’iciency reasons. A typical situation is, when 
e.g. more than one tenth of a relation qualifies for a 
selection predicate. Then the only effect of using an 
index is to turn sequential I/O into random I/O (in 
the presence of a non-clustered index). Even worse, 
some queries are designed such that the use of an in- 
dex structure is prohibitively expensive. An example 
of such a query is Query 1 (cf. Fig. 3) of the TPC- 
D Benchmark [19]. Its low selectivity-95%-g?% of 
all tuples qualify-forbids the use of an index, and a 
sequential scan is the only possibility to “efficiently” 
evaluate this query. Taking a look at the TPC-D 
benchmark results’ it becomes clear that Query 1 is 
among the two or three2 most time consuming TPC-D 
queries. 

Small materialized aggregates (SMAs) are designed 
such that they are useful even for queries where tradi- 
tional indexes fall short. They differ from traditional 
indexes in three important aspects: 

They exhibit a very simple sequential organiza- 
tion. 

They directly reflect (and exploit) the physical or- 
ganization of the indexed table. 

A single SMA is rarely useful, but in most situa- 
tions a set of SMAs is required to answer a query 
efficiently. 

SMAs share the first property with the lately intro- 
duced projection indexes [16]. In fact, SMAs can be 
seen as a generalization of projection indexes. In a 
projection index on a certain attribute, for all tuples 
in the relation to index, the attribute value is stored 
sequentially in a file. SMAs generalize this approach 
in that an aggregate value is stored for a set of tuples. 

The above differences result in several advantages: 

SMAs can be used where traditional index struc- 
tures fail. 

SMAs are very space efficient. 

SMAs are easy to implement. 

SMAs are cheap to maintain. 

SMAs are amenable to bulkloading. 

The latter point is especially important for applica- 
tions like data warehousing. Although there is this 
overwhelming set of advantages, there also exists a 
slight disadvantage: query processing-especially the 
generation of query execution plans-becomes a little 

lsee http://www.tpc.org 
2Depending on the platform. 

more complex. Hence, we devote one section to this 
problem. 

The rest of the paper is organized as follows. Sec- 
tion 2 presents the basic version of SMAs. This sec- 
tion also illustrates the usage of SMAs for process- 
ing Query 1 of the TPC-D benchmark and presents 
benchmark results for Query 1. Section 3 introduces 
query processing techniques exploiting SMAs. Sec- 
tion 4 briefly discusses further tuning measures and 
improvements of SMAs. Section 5 concludes the pa- 
per. 

2 The Idea of SMAs 

2.1 Definition of simple SMAs 

We assume the relations for which SMAs are computed 
to be physically organized into a sequence of buckets. 
Examples of buckets are single pages or consecutive 
sequences of pages. A bucket must reflect the physical 
organization of the relation since the order of the en- 
tries in the SMA will directly correspond to the phys- 
ical order of the buckets on disc. Hence, buckets can 
only be sets of consecutive tuples on disk. In this re- 
spect, SMAs are similar to projection indexes [16]. 

The main idea of SMAs is to compute and ma- 
terialize a single value (or a set of values) for each 
bucket of tuples. These values will be aggregates. For 
all buckets, the resulting values are materialized in a 
separate SMA-file. The SMA-file is organized sequen- 
tially: the value for the first bucket is the first value 
in the SMA-file, the second value is the second value 
in the SMA-file and so on. Contrary to traditional in- 
dex structures, a SMA-file does not contain any other 
additional information. 

The above situation is illustrated in Figure 1. It 
contains three buckets with three tuples each. Ev- 
ery tuple contains an attribute L-SHIPDATE whoses 
values are specified in the figure. Two SMA-files ma- 
terialize the minimum and maximum value found fox 
L-SHIPDATE in each bucket. Further, there is one 
SMA-file materializing the number of tuples in each 
bucket. 

SMAs can be specified by a simple SQL query and 
a specification of the bucket. However, there is one 
major point to obey: 

l The select clause may contain only a single entry. 

Another restriction we apply for the moment is that 
we forbid joins. Hence, we allow only for a single en- 
try within the from clause. This restriction will be 
relaxed in Section 4. Further, we do not allow an or- 
der specification. The use of grouping is defered until 
the next subsection, the specification of bucket sizes 
until Section 4. 
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SMA-File 1: min 97-02-02 97-04-01 97-05-02 

SMA-File 2: max 97-04-22 97-05-07 97-06-03 

SMA-File 2: count 3 13 3 1 

97-03-I 1 97-04-01 

97-04-22 I 97-05-07 I 

97-02-02 97-04-28 

Bucket 1 Bucket 2 Bucket 3 

The following is a typical definition of a SMA called 
min: 

define sma min 
select min(L-SHIPDATE) 
from L-LINEITEM 

For every page, the minimum of all shipdates of tu- 
ples on that page is materialized. The consequence of 
this SMA definition is that a single SMA-file is created 
which is filled with the minimum values of shipdates 
found among the tuples in a bucket. Besides min, we 
allow for the aggregate functions max, sum, and count 
in the select clause of a SMA definition. 

Some of the advantages of SMAs become clear al- 
ready. They are very space efficient. Assume that a 
bucket corresponds to a 4K-page and a single date field 
can be stored in 32 bits, then the size of a single SMA- 
file is only l/lOOOth of the size of the original data. 
Hence, many SMA-files can easily be supported. Fur- 
ther, due to the direct correspondence between SMA- 
file entries and buckets (via the order), SMA-files are 
easy to update. The algorithms behind are simple and 
very efficient. At most one additional page access is 
needed for an updated tuple. Last not least, bulkload- 
ing a SMA-file requires only simple algorithms and is 
very efficient. For every bucket the aggregate can eas- 
ily be computed and storing this aggregate is cheap: 
only one page access is needed for 1000 pages of tuples. 
Since nothing else has to be done (unlike in conven- 
tional index structures where pointer updates, split- 

Figure 1: Buckets and SMA-Files 
ting and the like occur) bulkloading and updating are 
both very simple and efficient operations. 

2.2 Use and motivation of simple SMAs 

In general, SMAs are used for two purposes. Given a 
query, SMAs are used 

l to evaluate the selection predicate and 

l to compute the aggregate values specified in the 
select clause of the query. 

Whereas the usefulness of SMAs for the computation 
of aggregate values is quite obvious, the question arises 
how and when SMAs can be used to evaluate selection 
predicates. For the case where a bucket contains ex- 
actly a single tuple, a SMA degenerates to a projection 
index. Hence, we refer the reader to [16] for this case. 

Although we defer the general answer to this ques- 
tion to Section 3, we give an important use of SMAs 
for selection predicate evaluation. It is based on the 
exploitation of clustering. We base our discussion on 
implicit clustering since (1) we think this is the pre- 
dominant application area of SMAs and (2) this case 
motivates SMAs quite nicely. Nevertheless, the follow- 
ing discussion applies to other clustering strategies as 
well. 

Implicit clustering-sometimes called clustering by 
time of creation (TOC)-is often found in the data 
warehouse where new data is appended to the existing 
data. The second ingredient for implicit clustering are 
date and time values. Examples of important dates 
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are dates of order, shipment, arrival of items at the 
customer’s site, sending the bill, and payment [ll, 131. 
The TPC-D benchmark takes this fact into account by 
exhibiting four of these dates. In almost every of its 
queries at least one of these dates is referenced. 

A time-of-creation clustering strategy is now (often 
implicitly) applied if new orders are stored in the data 
warehouse by appending them to the old orders. Note 
that this will be the case in most data warehouses. 
This kind of implicit clustering (which in practice is 
often imperfect but still exploitable) results in an im- 
plicit clustering on order dates. Since old orders will 
be processed earlier than new orders, a similar argu- 
ment applies to shipdates and all the other dates men- 
tioned before. Note however, that this does not result 
in a strict clustering or even ordering on orderdate or 
shipdate. Instead, this clustering is approximated by 
reality: due to not available parts, a shipdate can be 
deferred, some shops might be late in providing their 
order information and so on. But the bottom line is 
that most likely there is some clustering effect of this 
kind, especially since data warehouses often contain 
data comprising several years. Figure 2 visualizes the 
effect of implicit clustering. For every order tuple, it 
contains one point. The x-value of a tuple is the date 
of its introduction into the data warehouse and the 
y-value is its order date. Since order tuples are typ- 
ically introduced into the data warehouse after their 
arrival (order) date, all points lie to the right of the 
diagonal. Since all data points are clustered around 
the diagonal or at least some line close to it, we call 
this diagonal data distribution. In practice, there will 
be an average time needed before the data is entered 
into the database and the real intervals needed will ex- 
hibit, a normal distribution around this average time. 
Consequently, the clustering effect becomes manifest. 
(Note that the TPC-D benchmark is not very realistic 
in this respect: it applies uniform distribution within 
an interval.) The same applies to shipdate. Assuming 
a certain average time needed to prepare the shipment, 
the actual times needed will be normally distributed 
and, again, the clustering effect becomes manifest. Of 
course, this clustering effect can also occur for non- 
date values, imprinted by seasonal effects, promotions 
and the like. 

For (implicitly) clustered data, SMAs can be used 
very effectively to select those buckets in which quali- 
fying tuples can be found. Consider the query 

select count(*) 
from L-LINEITEM 
where L-SHIPDATE < 97-04-30 

and assume that the attribute values shown in Fig. 1 
are L-SHIPDATE values. Then, by inspecting the max 
SMA-file, it is easy to see that all the tuples in Bucket 1 

qualify. By inspecting the min SMA-file, we see that 
none of the tuples in Bucket 3 qualify. Bucket 2 is 
called ambivalent since it does not qualify due to its 
max value and it does not disqualify due to its min 
value. 

To answer the query we inspect the count SMA- 
file to retrieve the total count of qualifying tuples of 
Bucket 1 and add the number of qualifying tuples of 
Bucket 2. This necessitates accessing Bucket 2. This 
example nicely illustrates the exploitation of diagonal 
data distribution: only ambivalent buckets have to be 
accessed. For clustered data, these ambivalent buckets 
are rare. 

2.3 Grouping SMAs 

Let us consider Query 1 of the TPC-D benchmark (cf. 
Fig. 3). This query involves grouping. In order to 
be useful, a SMA has to reflect the query’s group 
by clause or a finer grouping ([lo]). This is done by 
introducing an according group by clause into the 
specification of the SMA. 

For every possible group, there will be a single 
SMA-file containing the aggregated values for this 
group. For example, Query 1 results in four groups. 
Hence, there will be four SMA-files, one for each com- 
bination of L-RETURNFLAG and L-LINESTATUS 
values. In order to process Query 1 soleley on the basis 
of SMAs, eight SMA definitions are necessary. They 
are given in Figure 4 where we took the liberty to ab- 
breviate some of the attribute names. The SMAs min 
and max do not need a grouping and arc of the kind 
discussed before. All the other SMAs group by the 
attributes L-RETURNFLAG and L-LINESTATUS. 
Hence, each of these SMAs will be mat,erialized in four 
SMA-files, one for each possible group. As a total there 
will be 26 SMA-files which seems to be quite high a 
number, but the next subsection will reveal that the 
time to build them as well as their storage costs are 
quite low. 

Query 1 can now be answered by these,aggregates in 
the following way. First, the SMAs min and ma.7: are 
used to classify the pages of the relation LINEITEM 
into qualifying, disqualifying and ambiva.lent pages. 
Second, for each qualifying page, for every group, 
the according values are extracted from the remain- 
ing SMAs and summed up in a per-group-wise fashion. 
For every ambivalent page, the page is visited and the 
needed aggregates are computed from the tuples con- 
tained in the page. These two steps are performed 
concurrently. That is, all the SMAs are scanned se- 
quentially and at the same time: for every page in 
the LINEITEM file, the corresponding SMA values in 
all SMA-files are considered and the according action 
of the second step is taken. Note that this results 
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Figure 2: Diagonal Data Distribution 

SELECT L-RETURNFLAG, L-LINESTATUS, 
SUM(L-QUANTITY) AS SUM-QTY, 
SUM(L-EXTENDEDPRICE) AS SUM-BASE-PRICE, 
SUM(L-EXTENDEDPRICE*(l-L-DISCOUNT)) AS SUM-DISC-PRICE, 
SUM(L-EXTENDEDPRICE*(l-L-DISCOUNT)*(l+L-TAX)) AS SUM-CHARGE, 
AVC(L-QUANTITY) AS AVG-QTY, 
AVG(L-EXTENDEDPRICE) AS AVG-PRICE, 
AVG(L-DISCOUNT) AS AVG-DISC, 
COUNT(*) AS COUNT-ORDER 

FROM LINEITEM 
WHERE L-SHIPDDATE <= DATE '1998-12-01' - INTERVAL '[delta]' DAY 
GROUP BY L-RETURNFLAG, L-LINESTATUS 
ORDER BY L-RETURNFLAG, L-LINESTATUS 

Figure 3: Query 1 of the TPC-D Benchmark 
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in a sequential scan of the ambivalent pages in the 
LINEITEM file. In a last step, the average aggregates 
are computed from the sum aggregates by dividing by 
the count aggregate. 

Of course, these aggregates are specifically tailored 
for Query 1. In this respect the situation is not differ- 
ent from computing a data cube for it. However, the 
data cube’s definition must include all possible selec- 
tion attributes within its grouping clause. Hence, if 
order dates, ship dates, and receipt dates are of inter- 
est, they must be present in the group specification- 
resulting in extremely high storage costs. If one possi- 
ble selection predicate has been forgotten while speci- 
fying the data cube, then the whole existing material- 
ized data cube is of no use anymore. Not so for SMAs, 
new SMAs can be easily added for new attributes of in- 
terest. Hence, they are much more flexible than data 
cubes. Further, they are more versatile. If another 
query with restrictions on any of the attributes aggre- 
gated in some SMA occures, the SMA can be used to 
more efficiently answer the query. 

2.4 Performance 

In this section we briefly report on some experiments 
highlighting the crucial questions concerning the per- 
formance of SMA-based query processing: space re- 
quirements, creation time and query processing time. 
Before we give the actual performance figures let us 
recall some basic properties of SMA-files that justify 
why a brief performance evaluation is sufficient. First 
note that SMA-file sizes are linear in the number of 
buckets. Further, exactly one bucket summary has to 
be computed for every bucket. Its computation is in- 
dependent of other buckets. Hence, it is no problem 
to scale SMAs to very large data warehouses. Since 
creation and query processing times are also linear in 
the number of buckets, it suffices to give the perfor- 
mance for a single sufficiently large database. We do 
so by discussing the performance for TPC-D Query 1 
at a database size of 1 GB, the smallest allowed size 
of the TPC-D benchmark. The reason is a lack of disk 
space at our institution. 

In order to process this query, the eight SMA files 
given in the last section are created. The creation 
times and space requirements are summarized in the 
following table3: 

3Measured on a Spare Ultra I, 167 Mhz, with two Barracuda 
4GB disks, running Solaris 5.5 using our AODB data warehouse 
management system configured at 8MB intertransaction buffer, 
1MB intratransaction buffer. AODB has two buffers. One for 
pages that are cached between transactions (the intertransaction 
buffer), and one buffer for every transaction to process local 
data and to cache pages from the intertransaction buffer (the 
intratransaction buffer) 

sma file 1 @Y 1 dis ext 
creation time I 104s I 100s I 101s 
size 1468~ 1 1468~ 1 1468~ 1 

sma file extdis extdistax 
creation time 95s 99s 
size 1468~ 1468~ 

For counts and dates, 4 bytes are needed. For 
all other aggregate values we used 8 bytes. The to- 
tal space requirement of all SMA-files amounts to 
8444 4 K-pages or 33.776 MB. In our system, the 
LINEITEM relation consumes 733.33 MB. Hence, the 
accumulated size of all SMAs is only about 4 % of the 
total space. This shows that though several SMA files 
are needed in order to answer a single query, they are 
still very space efficient. The creation time for every 
SMA (not only a single SMA-file) is less than 2 min- 
utes. In comparison, a B+ tree on shipdate (though 
of no use for Query 1) consumes about 230 MB. Its 
creation time is far beyond the 15 minutes needed to 
create all SMAs. 

Next, we compare the space requirements of SMAs 
with that of a materialized data cube. For Query 1, 
6 aggregates of 8 bytes are necessary. Hence, ev- 
ery entry in the data cube is 48 byte wide. For the 
two flags, 4 possibilities exist. Every date attribute 
of LINEITEM (LSHIPDATE, LXOMMITDATE, 
L-RECEIPTDATE) has a range of seven years or 2556 
days. Hence, for the data cube we get a total storage 
requirement [5, 181 of about 

l 479.25 KB = 2556l * 4 * 48 B if only one date is 
used as a dimension, 

l 1196.25 MB = 2556’ * 4 * 48 B if two dates are 
added as dimensions, and 

l 2985.95 GB = 25563 * 4 * 48 B if all three dates 
are added as dimensions. 

Adding SMAs for the two missing dates would re- 
quire an additional 17.34 MB amounting to a total of 
51.12 MB. Comparing 51.12 MB to 2985.95 GB, the 
low storage overhead of SMAs compared to material- 
ized data cubes becomes obvious. 

Considering query response times, two aspects are 
of interest. First, the optimal case, that is when 
the relation is sorted on the restricted attribute. If 
LINEITEM is sorted on shipdate, the query processing 
times for Query 1 are 128s for query execution with- 
out SMAs (cold & warm start), 4.9s with SMAs (cold 
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define sma max 
select max(LSHIPDATE) 
from L-LINEITEM 

define sma min 
select min(LSHIPDATE) 
from LLINEITEM 

define sma dis 
select sum(LDISCOUNT) 
from LLINEITEM 
group by LRETFLAG, L-LINESTAT 

define sma ext 
select sum(LEXTENDEDPRICE) 
from LLINEITEM 
wow by LRETFLAG, L-LINESTAT 

define sma count 
select count(*) 
from LLINEITEM 
group by LRETFLAG, L-LINESTAT 

define sma extdis 
select sum(EXTPRICE * (l-DIS)) 
from L-LINEITEM 
group by LRETFLAG, L-LINESTAT 

define sma gty 
select sum(L-QUANTITY) 
from L-LINEITEM 
group by LRETFLAG, L-LINESTAT 

define sma extdistax 
select sum(EXTPRICE * (l-DIS) 

* (l+TAX)) 
from L-LINEITEM 
sow by LRETFLAG, LLINESTAT 

Figure 4: The SMAs needed for Query 1 of TPC-D 
start) and 1.9s with SMAs (warm start). Processing 
Query 1 with SMAs becomes two orders of magnitude 
faster! 

This is the optimal case. The question remains 
what happens if the number of ambivalent buckets 
grows. This question is answered by Figure 5. The 
x-axis shows the percentage of buckets that have to be 
investigated and the runtime of 

into qualifying, disqualifying, and ambivalent buck- 
ets. Then, we discuss the new algebraic operators 
SMAScan and SMA-GAggr. These will use the pro- 
cedure grade as a subroutine. 

3.1 Partitioning the Buckets of a Relation R 

Let us start by considering the different kinds of 
atomic selection predicates. They are 

1. Query 1 without SMAs 
l A=c, 

2. Query 1 with SMAs (warm) . A<c(A<c), 

The breakeven point is at about 25% of the total num- 
ber of buckets. That is, if more than 25% of all buck- 
ets are ambivalent and hence have to be accessed, then 
SMAs don’t pay anymore. However, even if SMAs are 
erroneously applied-e.g. due to a bad decision of the 
query optimizer-the overhead remains small with less 
than 2% of the total run time. 

l A>c(A>c),and 

l A<B(A<B) 

3 Query Processing 

This section discusses the problem of how to exploit 
SMAs for query processing. Since they differ consider- 
ably from traditional index structures, the generated 
plans will look different. As a side effect of discussing 
plan generation, the versatility of SMAs will become 
clear: SMAs can be exploited in many ways. This is 
contrary to data cubes. 

where A and B are attributes of a single relation R and 
c is a constant. The first goal is to divide the buck- 
ets of R into qualifying, disqualifying and ambivalent 
buckets. This will be done for a single atomic selection 
predicate, and a single SMA. This information is used 
to evaluate more complex selection predicates involv- 
ing and and of operations. These boolean connectives 
can also be used if more than a single SMA can be 
exploited. 

We describe query processing in the presence of 
SMAs in several steps. First, the procedure grade is 
described. It partitions the buckets of a relation R 

Let BU denote all the buckets of relation R, BUi 
the i-th bucket of relation R. Given a SMA mu(A), 
maxi(A) denotes the maximum of all values of at- 
tribute A found in bucket BUi, analogously, mini(A) 
denotes the minimum value. Given an atomic pred- 
icate, a single SMA, and a bucket i, we can assess 
bucket BUi as follows: 
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Figure 5: Runtime dependent on percentage of buckets to be processed 
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l ForA=c 

- if c < mini(A) then BUi E BU, 

- if c > maxi(A) then BUi E BUd 

- else BUi E BU, 

l For A 5 c 

- if maxi(A) 5 c then BUi E BU, 

- if mini(A) > c then BUi E BUd 

- else BUi E BU, 

l ForA>c 

- if mini(A) 2 c then BlJi E BU, 

- if maxi(A) < c then BUi E BUd 

- else BUi E BU, 

l A<B 

- if maxi(A) 5 mini(B) then BUi E BU, 

- if mini(A) > maxi(B) then BUi E BUd 
- else BUi E BU, 

where BU, denotes the qualifying buckets, Bud de- 
notes the disqualifying buckets and BU, denotes the 
ambivalent buckets. The else case is also applied if the 
max/min aggregates are not defined. The correctness 
of the above rules should be obvious. 

Having two partitions BU:, BU;, BU: and BU;, 
BUZ, BUZ for a given predicate/SMA combination, 
we can compute the partitions if the two combinations 
are conjunctively or disjunctively connected: 

and 

BU, = BU; f-7 BU; 

Bud = BU; u Bud” 

Bus = BU \ (BU, ‘J Bud) 

or 

BU, = BU,luBU; 

Bud = BU; n BU; 

Bus = BU \ (BU, u Bud) 

SMAs with min and max aggregates can also be 
exploited for the evaluation of selection predicates if 
their definitions contain a group by clause. Consider 
SMA definitions of the following form: 

define sma name 
select m4-V 
from R 
group by B1,...,Bn 

The rules to derive the partitions of BU are similar to 
those stated above except that we have to consider the 
maximum value of A for all groups. The case for min 
is analogous. 

But not only min and max aggregates are useful for 
selection predicates. If A is the only grouping attribute 
in a count SMA, like in 

define sma name 
select count(*) 
from R 
group by A 

then we can use this information to evaluate selection 
predicates on A. Let countA,i[x] denote the number of 
tuples in bucket i exhibiting a value x for attribute A. 
Then we can partition BU by the following rules. For 
every possible value of x, we compute the partitions 
for BU” as follows: 

l ForA=c 

- if x = c and countA,i[z] > 0 then BUi E 
BU; 

- else BUi E BU$ 

l ForA<c 

- if x 5 c and CountA,i[x] > 0 then BU, E 
BU; 

- else BUi E BU; 

l For A > c 

- if x > c and countA,i[x] > 0 then BUi E 
BU; 

- else BUi E BU$ 

We then integrate the partitions BU” into a single 
partitioning of BU by applying the following rules: 

BU, = f-l BU,” 

Bud = i)BUi 

Bus = & \ (BU, u Bud) 

Summarizing, whenever we have a selection pred- 
icate involving an attribute A of a relation R and a 
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SMA-definition in which A occurs, we can compute the 
partitions of the buckets of relation R into qualifying, 
disqualifying and ambivalent buckets. Let us integrate 
this procedure into a function grade that for a given 
bucket and predicate returns qualifies, disqualifies or 
ambivalent. This function will be used within the next 
two algebraic operators implementing SMA-Scan and 
SMA - GAggr . 

3.2 SMA-Scan 

The SMA-Scan operator is an operator of the physical 
algebra and implements the iterator concept [7]. The 
three parameters of the iterator are the relation R to 
be scanned, the predicate to be evaluated on its tuples 
and a set of SMAs useful for partitioning the buckets 
of R. 

The iterator is implemented as a class and provides 
an init procedure that initializes the internal data 
structures and computes the number of the first quali- 
fying or ambivalent bucket. Additionally, the bucket is 
fetched from disk. This is summarized in a subroutine 
getBucket. Successive calls to the function next then 
return pointers to qualifying tuples. A tuple qualifies 
if it is in a qualifying bucket or if the predicate ap- 
plied to the tuples yields true. The pseudo code of 
SMA-Scan is given in Figure 6. 

3.3 SMA-GAggr 

The SMA-GAggr operator computes the GAggr oper- 
ator of Dayal [4] in the presence of SMAs. The GAggr 
operator performs a grouping together with the com- 
putation of aggregates. The SMA-GAggr uses some 
SMAs-called selection SMAs-for selecting qualify- 
ing buckets and tuples. Hence, it encompasses the 
SMA-Scan operator. However, more aggregates-the 
aggregate SMAs-are used to compute the queried ag- 
gregates. For qualifying buckets, the aggregate values 
are readily available within the aggregate SMAs. Am- 
bivalent buckets must be inspected explicitly and the 
tuples must be grouped in order to compute the ag- 
gregate values. As for the SMA-Scan operator, the 
SMA-GAggr operator scans the relation and all SMAs 
in parallel. 

The computation of the aggregates is performed in 
three phases in a rather standard manner. For every 
group, a tuple wide enough to hold all the result ag- 
gregates is allocated. If the result aggregates do not 
contain a count(*) and if averages are demanded by the 
query, we add it. The aggregate values are initialized 
by 0 for sum, count, and avg aggregates. For the lat- 
ter, we first compute the sum and divide by the count 
in the last phase. For min and max aggregates, the 
minimum and maximum values are used for initializa- 
tion. In the second phase, for every bucket these values 

are then advanced in the obvious way. For example, for 
the sum aggregate the aggregate value of some qual- 
ifying bucket is added. For ambivalent buckets, the 
according value is added for each tuple contained in 
it. In the last phase, we divide the sums which should 
be averages by the computed count. 

The SMA-GAggr is a pipeline breaker. Within its 
init function, the result is computed. The next func- 
tion then merely returns one result after another. The 
pseudocode of SMA-GAggr can be found in Figure 7. 

4 Tuning Possibilities 

There are several tuning possibilities to further en- 
hance the performance of SMAs. The first obvious 
tuning measure is the bucket size. Here, the following 
trade off must be investigated. If the bucket size is 
small, then the SMA-files will become very large and 
more I/O for SMAs is the consequence. If the bucket 
sizes are large, then-due to imperfect clustering- 
many ambivalent buckets occur and for these the orig- 
inal relation must be accessed. Note that bucket sizes 
below a page size do not make sense. 

This trade off can be mitigated by using hierarchi- 
cal SMAs. Every SMA-file is again partitioned into 
buckets and for each bucket a second level SMA is 
computed. The advantage is that even for imper- 
fectly clustered relations, the second level SMA is use- 
ful for rather high and rather low selectivities. If a 
second level bucket qualifies or disqualifies, the first 
level SMA-file need not to have to be accessed, which 
saves some I/O. If the second level bucket is ambiva,- 
lent, then the first, level SMA-file can be exploited to 
inspect the situation at a finer grain. Since second 
level SMA-files will be very small we do not think that 
higher levels are useful. Also it is preferable to switch 
to hierarchical SMAs instead of increa.sing the bucket 
size. 

A last possibility to further enhance the perfor- 
mance by SMAs is to generalize SMAs to encompass 
semi-joins. To see this, consider queries containing the 
following pattern: 

select R.* 
from R, S 
where R.A 0 S.B 

where 0 is a comparison operator. If we can associate 
a minlmax value of the S.B values with each bucket of 
R, SMAs can be used to decrease the input to the scmi- 
join. We allow for semi-joins within SMA definitions. 
For example, the SMA 

define sma lineitem-orderdate 
select O-ORDERDATE 
from LINEITEM, ORDER 
where L-ORDERKEY = O-ORDERKEY 

485 



class SMA-Scan c 
SMA-Scan(R,pred,smas); 

init C 
currBucketNo = -1; getBucket0; 

3 

Tuple* next0 { 
while(buckets left) { 

if(there is an unseen tuple in bucket) { 
get this tuple; 
if(currGrade == qualifies) 

return tuple; 
else if (pred(tuple)) 

return tuple; 
else 

getBucket(); 
3 

3 

getBucket 1 
do C 

advance currBucketNo; advance all smas; 
currGrade = grade(currBucketNo, pred); 

3 
while(currGrade != qualifies and currGrade != ambivalent) 
read bucket currBucketNo; 

3: 

Figure 6: The SMA-Scan Iterator 

class SMA-GAggr ( 
SMA-GAggr(R, pred, aggregatespec, groupspec, selectionSMAs, aggregateSMAs); 

init(const) { /* computes the result */ 
forall(bucket in buckets) { 

switch(grade(bucket, pred)) -i 
case qualifies: advance the result aggregates using the 

aggregate SMAs; 
case disqualifies: do nothing 
case ambivalent: advance aggregates by inspecting the 

tuples within the bucket; 

3 
perform post processing for average aggregates; 

Tuple* next0 {return next unseen group;) 

Figure 7: The SMA-Group Iterator 
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is useful to compute restrictions on L-ORDERDATE 
as they occur in TPC-D queries 3, 5, 8, and 10. 

5 Conclusion 

We introduced SMAs as an alternative to data cubes. 
Unlike data cubes, SMAs are more versatile to exploit 
in several kinds of queries. If applicable in an optimal 
fashion, SMAs can accelerate query execution by sev- 
eral orders of magnitude. Further, they are very space 
efficient compared to data cubes, especially if the num- 
ber of dimensions and possible selections grows. 

Some enhancements to SMAs were briefly discussed. 
Among them hierarchical SMAs and SMAs encom- 
passing semi-joins. We plan further investigations on 
these and possibly other variations of SMAs. 
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