
Foundations and TrendsR© in Databases
Vol. 5, No. 1 (2012) 1–104
c© 2013 S. Babu and H. Herodotou
DOI: 10.1561/1900000036

Massively Parallel Databases and MapReduce
Systems

Shivnath Babu
Duke University

shivnath@cs.duke.edu

Herodotos Herodotou
Microsoft Research

herohero@microsoft.com

Contents

1 Introduction 2
1.1 Requirements of Large-scale Data Analytics 3
1.2 Categorization of Systems 4
1.3 Categorization of System Features 6
1.4 Related Work . 8

2 Classic Parallel Database Systems 10
2.1 Data Model and Interfaces 11
2.2 Storage Layer . 12
2.3 Execution Engine . 18
2.4 Query Optimization . 22
2.5 Scheduling . 26
2.6 Resource Management 28
2.7 Fault Tolerance . 29
2.8 System Administration 31

3 Columnar Database Systems 33
3.1 Data Model and Interfaces 34
3.2 Storage Layer . 34
3.3 Execution Engine . 39
3.4 Query Optimization . 41

ii

iii

3.5 Scheduling . 42
3.6 Resource Management 42
3.7 Fault Tolerance . 43
3.8 System Administration 44

4 MapReduce Systems 45
4.1 Data Model and Interfaces 46
4.2 Storage Layer . 47
4.3 Execution Engine . 51
4.4 Query Optimization . 54
4.5 Scheduling . 56
4.6 Resource Management 58
4.7 Fault Tolerance . 60
4.8 System Administration 61

5 Dataflow Systems 62
5.1 Data Model and Interfaces 63
5.2 Storage Layer . 66
5.3 Execution Engine . 69
5.4 Query Optimization . 71
5.5 Scheduling . 73
5.6 Resource Management 74
5.7 Fault Tolerance . 75
5.8 System Administration 76

6 Conclusions 77
6.1 Mixed Systems . 78
6.2 Memory-based Systems 80
6.3 Stream Processing Systems 81
6.4 Graph Processing Systems 83
6.5 Array Databases . 84

References 86

Abstract

Timely and cost-effective analytics over “big data” has emerged as a
key ingredient for success in many businesses, scientific and engineering
disciplines, and government endeavors. Web clicks, social media, scien-
tific experiments, and datacenter monitoring are among data sources
that generate vast amounts of raw data every day. The need to convert
this raw data into useful information has spawned considerable inno-
vation in systems for large-scale data analytics, especially over the last
decade. This monograph covers the design principles and core features
of systems for analyzing very large datasets using massively-parallel
computation and storage techniques on large clusters of nodes. We
first discuss how the requirements of data analytics have evolved since
the early work on parallel database systems. We then describe some of
the major technological innovations that have each spawned a distinct
category of systems for data analytics. Each unique system category
is described along a number of dimensions including data model and
query interface, storage layer, execution engine, query optimization,
scheduling, resource management, and fault tolerance. We conclude
with a summary of present trends in large-scale data analytics.

S. Babu and H. Herodotou. Massively Parallel Databases and MapReduce Systems.
Foundations and TrendsR© in Databases, vol. 5, no. 1, pp. 1–104, 2012.
DOI: 10.1561/1900000036.

1
Introduction

Organizations have always experienced the need to run data analyt-
ics tasks that convert large amounts of raw data into the information
required for timely decision making. Parallel databases like Gamma
[75] and Teradata [188] were some of the early systems to address this
need. Over the last decade, more and more sources of large datasets
have sprung up, giving rise to what is popularly called big data. Web
clicks, social media, scientific experiments, and datacenter monitoring
are among such sources that generate vast amounts of data every day.

Rapid innovation and improvements in productivity necessitate
timely and cost-effective analysis of big data. This need has led to
considerable innovation in systems for large-scale data analytics over
the last decade. Parallel databases have added techniques like columnar
data storage and processing [39, 133]. Simultaneously, new distributed
compute and storage systems like MapReduce [73] and Bigtable [58]
have been developed. This monograph is an attempt to cover the de-
sign principles and core features of systems for analyzing very large
datasets. We focus on systems for large-scale data analytics, namely,
the field that is called Online Analytical Processing (OLAP) as opposed
to Online Transaction Processing (OLTP).

2

1.1. Requirements of Large-scale Data Analytics 3

We begin in this chapter with an overview of how we have organized
the overall content. The overview first discusses how the requirements
of data analytics have evolved since the early work on parallel database
systems. We then describe some of the major technological innovations
that have each spawned a distinct category of systems for data ana-
lytics. The last part of the overview describes a number of dimensions
along which we will describe and compare each of the categories of
systems for large-scale data analytics.

The overview is followed by four chapters that each discusses one
unique category of systems in depth. The content in the following chap-
ters is organized based on the dimensions that will be identified in this
chapter. We then conclude with a summary of present trends in large-
scale data analytics.

1.1 Requirements of Large-scale Data Analytics

The Classic Systems Category: Parallel databases—which consti-
tute the classic system category that we discuss—were the first sys-
tems to make parallel data processing available to a wide class of users
through an intuitive high-level programming model. Parallel databases
were based predominantly on the relational data model. The declara-
tive SQL was used as the query language for expressing data processing
tasks over data stored as tables of records.

Parallel databases achieved high performance and scalability by
partitioning tables across the nodes in a shared-nothing cluster. Such a
horizontal partitioning scheme enabled relational operations like filters,
joins, and aggregations to be run in parallel over different partitions of
each table stored on different nodes.

Three trends started becoming prominent in the early 2000s that
raised questions about the superiority of classic parallel databases:

• More and more companies started to store as much data as they
could collect. The classic parallel databases of the day posed ma-
jor hurdles in terms of scalability and total cost of ownership as
the need to process these ever-increasing data volumes arose.

• The data being collected and stored by companies was diverse in

4 Introduction

structure. For example, it became a common practice to collect
highly structured data such as sales data and user demographics
along with less structured data such as search query logs and web
page content. It was hard to fit such diverse data into the rigid
data models supported by classic parallel databases.

• Business needs started to demand shorter and shorter intervals
between the time when data was collected (typically in an OLTP
system) and the time when the results of analyzing the data were
available for manual or algorithmic decision making.

These trends spurred two types of innovations: (a) innovations aimed
at addressing the deficiencies of classic parallel databases while pre-
serving their strengths such as high performance and declarative query
languages, and (b) innovations aimed at creating alternate system ar-
chitectures that can support the above trends in a cost-effective man-
ner. These innovations, together with the category of classic parallel
database systems, give the four unique system categories for large-scale
data analytics that we will cover. Table 1.1 lists the system categories
and some of the systems that fall under each category.

1.2 Categorization of Systems

The Columnar Systems Category: Columnar systems pioneered
the concept of storing tables by collocating entire columns together
instead of collocating rows as done in classic parallel databases. Systems
with columnar storage and processing, such as Vertica [133], have been
shown to use CPU, memory, and I/O resources more efficiently in large-
scale data analytics compared to row-oriented systems. Some of the
main benefits come from reduced I/O in columnar systems by reading
only the needed columns during query processing. Columnar systems
are covered in Chapter 3.

The MapReduce Systems Category: MapReduce is a program-
ming model and an associated implementation of a run-time system
that was developed by Google to process massive datasets by harness-
ing a very large cluster of commodity nodes [73]. Systems in the classic

1.2. Categorization of Systems 5

Category Example Systems in this Category
Classic Aster nCluster [25, 92], DB2 Parallel Edition [33],

Gamma [75], Greenplum [99], Netezza [116], SQL
Server Parallel Data Warehouse [177], Teradata [188]

Columnar Amazon RedShift [12], C-Store [181], Infobright [118],
MonetDB [39], ParAccel [164], Sybase IQ [147], Vec-
torWise [206], Vertica [133]

MapReduce Cascading [52], Clydesdale [123], Google MapReduce
[73], Hadoop [192, 14], HadoopDB [5], Hadoop++
[80], Hive [189], JAQL [37], Pig [94]

Dataflow Dremel [153], Dryad [197], Hyracks [42], Nephele [34],
Pregel [148], SCOPE [204], Shark [195], Spark [199]

Table 1.1: The system categories that we consider, and some of the systems that
fall under each category.

category have traditionally struggled to scale to such levels. MapReduce
systems pioneered the concept of building multiple standalone scalable
distributed systems, and then composing two or more of these systems
together in order to run analytic tasks on large datasets. Popular sys-
tems in this category, such as Hadoop [14], store data in a standalone
block-oriented distributed file-system, and run computational tasks in
another distributed system that supports the MapReduce programming
model. MapReduce systems are covered in Chapter 4.

The Dataflow Systems Category: Some deficiencies in MapReduce
systems were identified as these systems were used for a large number
of data analysis tasks. The MapReduce programming model is too re-
strictive to express certain data analysis tasks easily, e.g., joining two
datasets together. More importantly, the execution techniques used by
MapReduce systems are suboptimal for many common types of data
analysis tasks such as relational operations, iterative machine learn-
ing, and graph processing. Most of these problems can be addressed
by replacing MapReduce with a more flexible dataflow-based execution
model that can express a wide range of data access and communication

6 Introduction

patterns. Various dataflow-based execution models have been used by
the systems in this category, including directed acyclic graphs in Dryad
[197], serving trees in Dremel [153], and bulk synchronous parallel pro-
cessing in Pregel [148]. Dataflow systems are covered in Chapter 5.

Other System Categories: It became clear over time that new sys-
tems can be built by combining design principles from different system
categories. For example, techniques used for high-performance process-
ing in classic parallel databases can be used together with techniques
used for fine-grained fault tolerance in MapReduce systems [5]. Each
system in this coalesced category exposes a unified system interface
that provides a combined set of features that are traditionally associ-
ated with different system categories. We will discuss coalesced systems
along with the other system categories in the respective chapters.

The need to reduce the gap between the generation of data and the
generation of analytics results over this data has required system devel-
opers to constantly raise the bar in large-scale data analytics. On one
hand, this need saw the emergence of scalable distributed storage sys-
tems that provide various degrees of transactional capabilities. Support
for transactions enables these systems to serve as the data store for on-
line services while making the data available concurrently in the same
system for analytics. The same need has led to the emergence of par-
allel database systems that support both OLTP and OLAP in a single
system. We put both types of systems into the category called mixed
systems because of their ability to run mixed workloads—workloads
that contain transactional as well as analytics tasks—efficiently. We
will discuss mixed systems in Chapter 6 as part of recent trends in
massively parallel data analytics.

1.3 Categorization of System Features

We have selected eight key system features along which we will describe
and compare each of the four categories of systems for large-scale data
analytics.

Data Model and Interfaces: A data model provides the definition
and logical structure of the data, and determines in which manner data

1.3. Categorization of System Features 7

can be stored, organized, and manipulated by the system. The most
popular example of a data model is the relational model (which uses
a table-based format), whereas most systems in the MapReduce and
Dataflow categories permit data to be in any arbitrary format stored in
flat files. The data model used by each system is closely related to the
query interface exposed by the system, which allows users to manage
and manipulate the stored data.

Storage Layer: At a high level, a storage layer is simply responsible
for persisting the data as well as providing methods for accessing and
modifying the data. However, the design, implementation and features
provided by the storage layer used by each of the different system cat-
egories vary greatly, especially as we start comparing systems across
the different categories. For example, classic parallel databases use in-
tegrated and specialized data stores that are tightly coupled with their
execution engines, whereas MapReduce systems typically use an inde-
pendent distributed file-system for accessing data.

Execution Engine: When a system receives a query for execution,
it will typically convert it into an execution plan for accessing and
processing the query’s input data. The execution engine is the entity
responsible for actually running a given execution plan in the system
and generating the query result. In the systems that we consider, the
execution engine is also responsible for parallelizing the computation
across large-scale clusters of machines, handling machine failures, and
setting up inter-machine communication to make efficient use of the
network and disk bandwidth.

Query Optimization: In general, query optimization is the process a
system uses to determine the most efficient way to execute a given query
by considering several alternative, yet equivalent, execution plans. The
techniques used for query optimization in the systems we consider are
very different in terms of: (i) the space of possible execution plans (e.g.,
relational operators in databases versus configuration parameter set-
tings in MapReduce systems), (ii) the type of query optimization (e.g.,
cost-based versus rule-based), (iii) the type of cost modeling technique
(e.g., analytical models versus models learned using machine-learning

8 Introduction

techniques), and (iv) the maturity of the optimization techniques (e.g.,
fully automated versus manual tuning).

Scheduling: Given the distributed nature of most data analytics sys-
tems, scheduling the query execution plan is a crucial part of the sys-
tem. Systems must now make several scheduling decisions, including
scheduling where to run each computation, scheduling inter-node data
transfers, as well as scheduling rolling updates and maintenance tasks.

Resource Management: Resource management primarily refers to
the efficient and effective use of a cluster’s resources based on the re-
source requirements of the queries or applications running in the sys-
tem. In addition, many systems today offer elastic properties that allow
users to dynamically add or remove resources as needed according to
workload requirements.

Fault Tolerance:Machine failures are relatively common in large clus-
ters. Hence, most systems have built-in fault tolerance functionalities
that would allow them to continue providing services, possibly with
graceful degradation, in the face of undesired events like hardware fail-
ures, software bugs, and data corruption. Examples of typical fault
tolerance features include restarting failed tasks either due to appli-
cation or hardware failures, recovering data due to machine failure or
corruption, and using speculative execution to avoid stragglers.

System Administration: System administration refers to the activ-
ities where additional human effort may be needed to keep the system
running smoothly while the system serves the needs of multiple users
and applications. Common activities under system administration in-
clude performance monitoring and tuning, diagnosing the cause of poor
performance or failures, capacity planning, and system recovery from
permanent failures (e.g., failed disks) or disasters.

1.4 Related Work

This monograph is related to a few surveys done in the past. Lee and
others have done a recent survey that focuses on parallel data process-
ing with MapReduce [136]. In contrast, we provide a more comprehen-

1.4. Related Work 9

sive and in-depth coverage of systems for large-scale data analytics,
and also define a categorization of these systems. Empirical compar-
isons have been done in the literature among different systems that
we consider. For example, Pavlo and others have compared the perfor-
mance of both classic parallel databases and columnar databases with
the performance of MapReduce systems [166].

Tutorials and surveys have appeared in the past on specific dimen-
sions along which we describe and compare each of the four categories
of systems for large-scale data analytics. Recent tutorials include one
on data layouts and storage in MapReduce systems [79] and one on pro-
gramming techniques for MapReduce systems [174]. Kossmann’s survey
on distributed query processing [128] and Lu’s survey on query process-
ing in classic parallel databases [142] are also related.

2
Classic Parallel Database Systems

The 1980s and early 1990s was a period of rapid strides in the technol-
ogy for massively parallel processing. The initial drivers of this technol-
ogy were scientific and engineering applications like weather forecast-
ing, molecular modeling, oil and gas exploration, and climate research.
Around the same time, several businesses started to see value in ana-
lyzing the growing volumes of transactional data. Such analysis led to a
class of applications, called decision support applications, which posed
complex queries on very large volumes of data. Single-system databases
could not handle the workload posed by decision support applications.
This trend, in turn, fueled the need for parallel database systems.

Three architectural choices were explored for building parallel
database systems: shared memory, shared disk, and shared nothing. In
the shared-memory architecture, all processors share access to a com-
mon central memory and to all disks [76]. This architecture has limited
scalability because access to the memory quickly becomes a bottleneck.
In the shared-disk architecture, each processor has its private memory,
but all processors share access to all disks [76]. This architecture can
become expensive at scale because of the complexity of connecting all
processors to all disks.

10

2.1. Data Model and Interfaces 11

Figure 2.1: Shared-nothing architecture for parallel processing.

The shared-nothing architecture has proved to be the most viable
at scale over the years. In the shared-nothing architecture, each proces-
sor has its own private memory as well as disks. Figure 2.1 illustrates
the shared-nothing architecture used in parallel database systems. Note
that the only resource shared among the processors is the communica-
tion network.

A number of research prototypes and industry-strength parallel
database systems have been built using the shared-nothing architec-
ture over the last three decades. Examples include Aster nCluster
[25], Bubba [41], Gamma [75], Greenplum [99], IBM DB2 Parallel Edi-
tion [33], Netezza [116], Oracle nCUBE [48], SQL Server Parallel Data
Warehouse [177], Tandem [85], and Teradata [188].

2.1 Data Model and Interfaces

Most parallel database systems support the relational data model. A
relational database consists of relations (or, tables) that, in turn, consist
of tuples. Every tuple in a table conforms to a schema which is defined
by a fixed set of attributes [76].

This feature has both advantages and disadvantages. The simplicity
of the relational model has historically played an important role in the
success of parallel database systems. A well-defined schema helps with
cost-based query optimization and to keep data error-free in the face

12 Classic Parallel Database Systems

of data-entry errors by humans or bugs in applications. At the same
time, the relational data model has been criticized for its rigidity. For
example, initial application development time can be longer due to the
need to define the schema upfront. Features such as support for JSON
and XML data as well schema evolution reduce this disadvantage [71].

Structured Query Language (SQL) is the declarative language most
widely used for accessing, managing, and analyzing data in parallel
database systems. Users can specify an analysis task using an SQL
query, and the system will optimize and execute the query. As part of
SQL, parallel database systems also support (a) user-defined functions,
user-defined aggregates, and stored procedures for specifying analysis
tasks that are not easily expressed using standard relational-algebra
operators, and (b) interfaces (e.g., ODBC, JDBC) for accessing data
from higher-level programming languages such as C++ and Java or
graphical user interfaces.

2.2 Storage Layer

The relational data model and SQL query language have the crucial
benefit of data independence: SQL queries can be executed correctly
irrespective of how the data in the tables is physically stored in the
system. There are two noteworthy aspects of physical data storage in
parallel databases: (a) partitioning, and (b) assignment. Partitioning a
table S refers to the technique of distributing the tuples of S across
disjoint fragments (or, partitions). Assignment refers to the technique
of distributing these partitions across the nodes in the parallel database
system.

2.2.1 Table Partitioning

Table partitioning is a standard feature in database systems today [115,
155, 185, 186]. For example, a sales records table may be partitioned
horizontally based on value ranges of a date column. One partition may
contain all sales records for the month of January, another partition
may contain all sales records for February, and so on. A table can
also be partitioned vertically with each partition containing a subset of

2.2. Storage Layer 13

Uses of Table Partitioning in Database Systems
Efficient pruning of unneeded data during query processing
Parallel data access (partitioned parallelism) during query pro-
cessing
Reducing data contention during query processing and adminis-
trative tasks. Faster data loading, archival, and backup
Efficient statistics maintenance in response to insert, delete, and
update rates. Better cardinality estimation for subplans that ac-
cess few partitions
Prioritized data storage on faster/slower disks based on access
patterns
Fine-grained control over physical design for database tuning
Efficient and online table and index defragmentation at the par-
tition level

Table 2.1: Uses of table partitioning in database systems

columns in the table. Vertical partitioning is more common in columnar
database systems compared to the classic parallel database systems. We
will cover vertical partitioning in Chapter 3. Hierarchical combinations
of horizontal and vertical partitioning may also be used.

Table 2.1 lists various uses of table partitioning. Apart from giving
major performance improvements, partitioning simplifies a number of
common administrative tasks in database systems [9, 201]. The growing
usage of table partitioning has been accompanied by efforts to give
applications and users the ability to specify partitioning conditions for
tables that they derive from base data. SQL extensions from database
vendors now enable queries to specify how derived tables are partitioned
(e.g., [92]).

The many uses of table partitioning have created a diverse mix
of partitioning techniques used in parallel database systems. We will
illustrate these techniques with an example involving four tables:
R(a, rdata), S(a, b, sdata), T (a, tdata), U(b, udata). Here, a is an in-
teger attribute and b is a date attribute. These two attributes will be

14 Classic Parallel Database Systems

Figure 2.2: A hierarchical partitioning of table S

used as join keys in our examples. rdata, sdata, tdata, and udata are
respectively the data specific to each of the tables R, S, T , and U .

Figure 2.2 shows an example partitioning for table S. S is range-
partitioned on ranges of attribute a into four partitions S1-S4. Partition
S1 consists of all tuples in S with 0 ≤ a < 20, S2 consists of all tuples
in S with 20 ≤ a < 40, and so on. Each of S1-S4 is further range-
partitioned on ranges of attribute b. Thus, for example, partition S11
consists of all tuples in S with 0 ≤ a < 20 and 01 − 01 − 2010 ≤ b <

02− 01− 2010.
Range partitioning is one among multiple partitioning techniques

that can be used [53, 76, 108]:

• Hash partitioning, where tuples are assigned to tables based on
the result of a hash function applied to one or more attributes.

• List partitioning, where the unique values of one or more at-
tributes in each partition are specified. For example, a list parti-
tioning for the example table S may specify that all tuples with
a ∈ 1, 2, 3 should be in partition S1.

• Random (round-robin) partitioning, where tuples are assigned to
tables in a random (round-robin) fashion.

• Block partitioning, where each consecutive block of tuples (or
bytes) written to a table forms a partition. For example, par-

2.2. Storage Layer 15

Figure 2.3: Partitioning of tables R, S, T , U . Dotted lines show partitions with
potentially joining records

tition S1 may consist of the first 1000 tuples inserted into S, S2
may consist of the next 1000 tuples inserted into S, and so on.

Figure 2.3 shows how the partitioning of table S can be interpreted
as a two-dimensional partitioning. The figure also shows partitions for
tables R, T , and U . The dotted lines in the figure show the join relation-
ships between pairs of partitions. These relationships become important
when we talk about assignment in §2.2.2.

Figure 2.3 also shows how the sizes of partitions in a table may
not be uniform. Such skewed partition sizes can arise for a number
of reasons. Hash or equi-range partitioning produces skewed partition
sizes if the attribute(s) used in the partitioning function has a skewed
distribution. Skewed partition sizes may also come from data loading
and archival needs. For example, Table U in Figure 2.3 is partitioned
using unequal ranges on b. 10-day ranges are used for recent partitions
of U . Older data is accessed less frequently, so older 10-day partitions
of U are merged into monthly ones to improve query performance and
archival efficiency.

16 Classic Parallel Database Systems

2.2.2 Partition Assignment

Partition assignment is the task of deciding which node or nodes in the
parallel database system should store each partition of the tables in
the database. Three factors are usually considered as part of partition
assignment: degree of declustering, collocation, and replication.

Degree of Declustering

The degree of declustering for a table specifies the number of nodes
that store one or more partitions of the table. With full declustering,
the degree of declustering is equal to the number of nodes in the system
[75]. That is, tuples in a fully declustered table are spread over all nodes
in the system. Otherwise, the table is said to be partially declustered.

Partial declustering is typically accompanied by the creation of
nodegroups [33]. (Nodegroups are called relation clusters in [114].) A
nodegroup is a collection of nodes in the parallel database system. Each
nodegroup can be referenced by name. Consider the following example
(with syntax borrowed from [33]) for a parallel database system with
10 nodes numbered 1-10:

CREATE NODEGROUP GROUP_A ON NODES(1 TO 10);
CREATE NODEGROUP GROUP_B ON NODES(2, 4, 6, 8, 10);
CREATE TABLE R (a integer, rdata char[100]) IN GROUP_A PARTI-
TIONING KEY (a) USING HASHING;
CREATE TABLE S (a integer, b integer, sdata char[100]) IN GROUP_B
PARTITIONING KEY (a) USING HASHING;
CREATE TABLE T (a integer, tdata char[100]) IN GROUP_B PARTITION-
ING KEY (a) USING HASHING;

In this example, the database administrator chose to create two
nodegroups—GROUP_A and GROUP_B—for the cluster of 10 nodes
in the parallel database system. Group A consists of all 10 nodes
while Group B consists of 5 nodes. Partitions of table R are stored
on Group_A, so table R is fully declustered. Partitions of tables S and
T are stored on Group_B, so these tables are partially declustered.
Full declustering can benefit query processing over very large tables.
For example, table R may be very large. In this case, a query that does

2.2. Storage Layer 17

grouping and aggregation on R.a can be processed in parallel using all
10 nodes, without needing to move any data among the nodes.

Collocation

It is sometimes beneficial to have selective overlap among the nodes
on which the partitions of two or more tables are stored. Consider
the example in §2.2.2 where partitions of tables S and T are both
stored on the nodegroup Group_B. Also, note that both tables are hash
partitioned on the respective attribute a. If the same hash function and
number of partitions are chosen for both tables, then there will be a
one-to-one correspondence between the partitions of both tables that
will join with one another. In this case, it is possible to collocate the
joining partitions of both tables. That is, any pair of joining partitions
with be stored on the same node of the nodegroup.

The advantage of collocation is that tables can be joined without
the need to move any data from one node to another. However, col-
location of joining tables can be nontrivial when there are complex
join relationships. Consider our four example tables and their join re-
lationships shown in Figure 2.3. In this context, consider the following
example three-way-join query that joins tables R, S, and U .

Select *
From R, S, U
Where R.a = S.a and S.b = U.b

Suppose each partition can be stored only on one node in the parallel
database system. In this case, the only way to collocate all pairs of
joining partitions in the three tables is to store all partitions on a
single node of the system. Such an assignment—where all three tables
have a degree of declustering equal to one—would be a terrible waste
of the resources in the parallel database.

Replication

As we saw in the above example, the flexibility of assignment is limited
if tuples in a table are stored only once in the system. This problem can

18 Classic Parallel Database Systems

be addressed by replicating tuples on multiple nodes. Replication can
be done at the level of table partitions, which will address the problem
in the above example. For example, if table U is small, then partitions
of U can be replicated on all nodes where partitions of S are stored.

Replication can be done at the table level such that different replicas
are partitioned differently. For example, one replica of the table may
be hash partitioned while another may be range partitioned. Apart
from performance benefits, replication also helps reduce unavailability
or loss of data when faults arise in the parallel database system (e.g.,
a node fails permanently or becomes disconnected temporarily from
other nodes due to a network failure).

The diverse mix of partitioning, declustering, collocation, and repli-
cation techniques available can make it confusing for users of parallel
database systems to identify the best data layout for their workload.
This problem has motivated research on automated ways to recommend
good data layouts based on the workload [151, 169].

2.3 Execution Engine

To execute a SQL query quickly and efficiently, a parallel database
system has to break the query into multiple tasks that can be exe-
cuted across the nodes in the system. The system’s execution engine is
responsible for orchestrating this activity.

In most parallel database systems, each submitted query is handled
by a coordinator task. The coordinator first invokes a query optimizer in
order to generate a execution plan for the query. An execution plan in
a parallel database system is composed of operators that support both
intra-operator and inter-operator parallelism, as well as mechanisms to
transfer data from producer operators to consumer operators. The plan
is broken down into schedulable tasks that are run on the nodes in the
system. The coordinator task is responsible for checking whether the
plan completed successfully, and if so, transferring the results produced
by the plan to the user or application that submitted the query.

In this section, we will describe the components of a parallel execu-
tion plan. The next two sections will discuss respectively the techniques

2.3. Execution Engine 19

used to select a good execution plan and to schedule the tasks in the
plan.

2.3.1 Parallel Query Execution

Consider a query that joins two tables R and S based on the equi-join
condition R.a = S.a. In §2.2.2, we introduced a collocated join operator
that can perform the join if tables R and S are both partitioned and the
partitions are assigned such that any pair of joining partitions is stored
on the same node. A collocated join operator is often the most efficient
way to perform the join because it performs the join in parallel while
avoiding the need to transfer data between nodes. However, a collocated
join is only possible if the partitioning and assignment of the joining
tables is planned in advance.

Suppose the tables R and S are partitioned identically on the join-
ing key, but the respective partitions are not collocated. In this case,
a directed join operator can be used to join the tables. The directed
join operator transfers each partition of one table (say, R) to the node
where the joining partition of the other table is stored. Once a partition
from R is brought to where the joining partition in S is stored, a local
join can be performed.

Directed joins are also possible when the tables are not partitioned
identically. For example, directed joins are possible for R ./ S, T ./ S,
and U ./ S in Figure 2.3 despite the complex partitioning techniques
used. Compared to a collocated join, a directed join incurs the cost of
transferring one of the tables across the network.

If the tables R and S are not partitioned identically on the joining
attribute, then two other types of parallel join operators can be used
to perform the join: repartitioned join operator and broadcast join (or
fragment-and-replicate join) operator. The repartitioned join operator
simply repartitions the tuples in both tables using the same partitioning
condition (e.g., hash). Joining partitions are brought to the same node
where they can be joined. This operator incurs the cost of transferring
both the tables across the network.

The broadcast join operator transfers one table (say, R) in full to
every node where any partition of the other table is stored. The join

20 Classic Parallel Database Systems

is then performed locally. This operator incurs a data transfer cost of
size_of(R)× d, where size_of(R) is the size of R and d is the degree
of declustering of S. Broadcast join operators are typically used when
one table is very small.

As discussed in §2.2.1, partition sizes may be skewed due to a num-
ber of reasons. The most common case is when one or both tables
contain joining keys with a skewed distribution. The load imbalance
created by such skew can severely degrade the performance of join op-
erators such as the repartitioned join. This problem can be addressed
by identifying the skewed join keys and handling them in special ways.

Suppose a join key with value v has a skewed distribution among
tuples of a table R that needs to be joined with a table S. In the regular
repartitioned join, all tuples in R and S with join key equal to v will be
processed by a single node in the parallel database system. Instead, the
tuples in R with join key equal to v can be further partitioned across
multiple nodes. The correct join result will be produced as long as the
tuples in S with join key equal to v are replicated across the same
nodes. In this fashion, the resources in multiple nodes can be used to
process the skewed join keys [77].

While our discussion focused on the parallel execution of joins, the
same principles apply to the parallel execution of other relational op-
erators like filtering and group-by. The unique approach used here to
extract parallelism is to partition the input into multiple fragments,
and to process these fragments in parallel. This form of parallelism is
called partitioned parallelism [76].

Two other forms of parallelism are also employed commonly in exe-
cution plans in parallel database systems: pipelined parallelism and in-
dependent parallelism. A query execution plan may contain a sequence
of operators linked together by producer-consumer relationships where
all operators can be run in parallel as data flows continuously across ev-
ery producer-consumer pair. This form of parallelism is called pipelined
parallelism.

Independent parallelism refers to the parallel execution of indepen-
dent operators in a query plan. For example, consider the following
query that joins the four tables R, S, T , and U :

2.3. Execution Engine 21

Select *
From R, S, T, U
Where R.a = S.a and S.a = T.a and S.b = U.b

This query can be processed by a plan where R is joined with T , S

is joined with U , and then the results of both these joins are joined
together to produce the final result. In this plan, R ./ T and S ./ U

can be executed independently in parallel.

2.3.2 Abstractions for Data Transfer

In a parallel query execution plan, interprocess data transfer may be
needed between producer and consumer operators or between the dif-
ferent phases of a single operator (e.g., between the partition and join
phases of a repartitioned join operator). Straightforward techniques for
interprocess data transfer include materializing all intermediate tuples
to disk or directly using the operating system’s interprocess commu-
nication (IPC) mechanisms for each point-to-point data transfer. Such
techniques, while easy to implement, have some drawbacks. They may
incur high overhead or complicate the problem of finding good execu-
tion plans and schedules.

Parallel database systems have developed rich abstractions for in-
terprocess data transfers in parallel query execution plans. We will de-
scribe three representative abstractions: (a) split tables from Gamma
[75], (b) table queues from IBM DB2 Parallel Edition [33], and (c) ex-
change operators from Volcano [97].

Tuples output by an operator in a query plan in Gamma are routed
to the correct destination by looking up a split table [75]. Thus, a split
table maps tuples to destination tasks. For example, a split table that
is used in conjunction with a repartitioned join of tables R and S may
route tuples from both tables based on a common hash partitioning
function.

IBM DB2 Parallel Edition’s table queues are similar to split tables
but provide richer functionality [33]. Table queues provide a buffering
mechanism for tuples output by a producer task before the tuples are
processed by a consumer task. Based on the rate at which the consumer
can process tuples, tuple queues enable the rate at which the producer

22 Classic Parallel Database Systems

produces tuples to be controlled. A table queue can have multiple pro-
ducer tasks as well as consumer tasks. Furthermore, table queues can
implement multiple communication patterns such as broadcasting ver-
sus directed (i.e., does a tuple produced by a producer task go to all
consumer tasks or to a specific one?).

The exchange operator has a more ambitious goal beyond serving as
the abstraction of interprocess data transfer in Volcano’s query execu-
tion plans [97]. Exchange is a meta-operator that encapsulates all issues
related to parallel execution (e.g., partitioning, producer-consumer syn-
chronization) and drives parallel execution in Volcano. The benefit is
that query execution plans in Volcano can leverage different forms of
parallelism while still using the simpler implementations of relational
operators from centralized databases.

2.4 Query Optimization

The following steps are involved in the execution of a SQL query in a
parallel database system:

• Plan selection: choosing an efficient execution plan for the query.

• Scheduling: Generating executable tasks for the operators and
data transfers in the plan, and choosing the nodes where these
tasks will run.

• Resource allocation: Determining how much CPU, memory, and
I/O (both local I/O and network I/O) resources to allocate to
the executable tasks in the plan.

Plan selection, which is commonly referred to as query optimization,
is the focus of this section. Scheduling and resource allocation will be
covered respectively in the next two sections.

Plan selection for a query mainly involves the following steps:

• Ordering and choosing join operators.

• Access path selection for the tables.

2.4. Query Optimization 23

• Choosing the appropriate cost metric (e.g., completion time ver-
sus total resource usage) based on which the best plan for the
query can be determined.

The early approaches to plan selection in a parallel database sys-
tem used a two-phase approach [113, 104]. First, a cost-based query
optimizer—like the System R optimizer developed for centralized
database systems [26, 173]—was used to find the best serial plan [113].
Problems like join ordering and access path selection were addressed as
part of the selection of the best serial plan. Then, a post-optimization
phase was applied to transform this serial plan into a parallel exe-
cution plan. Decisions made in the post-optimization phase included
which attributes to repartition tables on such that data transfer costs
were minimized [104].

While the two-phase approach showed initial promise—especially
in shared-memory systems—it quickly became apparent that this ap-
proach can miss good plans in shared-nothing systems. For example,
consider the four-way join example query introduced in §2.3.1. The
best serial plan for the query may use the left-deep serial join order:
((R ./ S) ./ T) ./ U . Since a serial plan assumes that the plan will
run on a single node where all the data resides, the plan’s cost is influ-
enced primarily by factors like sort orders and the presence of indexes.
However, the best join order for parallel execution could be different
and bushy: (R ./ T) ./ (S ./ U). Such a plan can be very efficient if R

and T (and respectively, S and U) are stored in a collocated fashion.
Recall that collocated joins are very efficient because they can leverage
parallelism without incurring data transfer costs for the join processing.

As the above example shows, parallel database systems select
query execution plans from a large plan space. The different forms
of parallelism—partitioned, pipelined, and independent—motivate
searching for the best plan from a larger set of operators as well as
join trees compared to query execution in a centralized database sys-
tem. The use of semi-joins and partition-wise joins further increases
the size of the plan space for parallel execution plans [63, 108].

Semi-joins can act as size reducers (similar to a selection) such that
the total size of tuples that need to be transferred is reduced. The use of

24 Classic Parallel Database Systems

semi-joins is based on the following set of equivalences for the equi-join
of two tables R and S on the join key a:

R ./a S ≡ (R na S) ./a S

≡ R ./a (S na R)
≡ (R na S) ./a (S na R)

The use of a semijoin is beneficial if the cost to produce and transfer
it is less than the cost of transferring the whole table to do the join.
However, now the plan space is significantly larger because of the many
combinations in which joins and semi-join reducers can be used in a
plan [63].

Recall from §2.2.1 that many types of partitioning techniques are
used in parallel database systems. These techniques further increase the
search space during plan selection over partitioned tables. Consider an
example query Q1 over the partitioned tables R, S, and T shown in
Figure 2.3.

Q1: Select *
From R, S, T
Where R.a = S.a and S.a = T.a and S.b ≥ 02-15-10 and T.a < 25

Use of filter conditions for partition pruning: The partitions T4-
T8 and S11, S21, S31, S41 can be pruned from consideration because it
is clear from the partitioning conditions that tuples in these partitions
will not satisfy the filter conditions. Partition pruning can speed up
query performance drastically by eliminating unnecessary table and
index scans as well as reducing data transfers, memory needs, disk
spills, and resource-contention-related overheads.

Use of join conditions for partition pruning: Based on a transi-
tive closure of the filter and join conditions, partition pruning can also
eliminate partitions S32, S33, S42, S43, R3, R4, and U1.

The use of partition pruning will generate a plan like Q1P1 shown in
Figure 2.4. In such plans, the leaf operators logically append together
(i.e., UNION ALL) the unpruned partitions for each table. Each un-
pruned partition is accessed using regular table or index scans. The
appended partitions are joined using one of the parallel join operators
such as the collocated or repartitioned join operators.

2.4. Query Optimization 25

Figure 2.4: Q1P1 and Q1P2 are plans that can be generated by optimizers in
parallel database systems for our example query Q1. IS and TS are respectively
index and table scan operators. HJ and MJ are respectively parallel join operators
based on hash and merge. Union is a bag union operator.

Partition-aware join path selection: Depending on the data prop-
erties and data layout in the parallel database system, a plan like Q1P2
shown in Figure 2.4 can significantly outperform plan Q1P1 [108]. Q1P2
exploits certain properties arising from partitioning in the given setting:

• Tuples in partition R1 can join only with S12 ∪ S13 and T1 ∪ T2.
Similarly, tuples in partition R2 can join only with S22 ∪S23 and
T3. Thus, the full R ./ S ./ T join can be broken up into smaller
and more efficient partition-wise joins where the best join order
for R1 ./ (S12 ∪ S13) ./ (T1 ∪ T2) can be different from that
for R2 ./ (S22 ∪ S23) ./ T3. One likely reason is change in the
data properties of tables S and T over time, causing variations
in statistics across partitions.

• The best choice of join operators for R1 ./ (S12∪S13) ./ (T1∪T2)
may differ from that for R2 ./ (S22∪S23) ./ T3, e.g., due to storage
or physical design differences across partitions (e.g., index created
on one partition but not on another).

Apart from the large size of the plan space, an additional challenge
while selecting parallel query plans comes from the cost model used to
estimate the cost of plans. The cost metric introduced by the classic
System R query optimizer measures the total amount of work done
during plan execution [173].

26 Classic Parallel Database Systems

In a serial plan execution, the total work also corresponds to the
latency of plan execution. (Latency measures the time to complete
the plan execution.) However, the total work and latency metrics are
different in the execution of a parallel plan. Unfortunately, the la-
tency metric violates a fundamental assumption made in the dynamic-
programming-based plan selection algorithm introduced by the System
R query optimizer [93]. (Example 3 in [93] gives an illustration of how
the latency metric violates the principle of optimality needed by the
dynamic-programming-based plan selection algorithm in System R.)
The optimal parallel execution plan for the latency metric may not be
composed of optimal subplans for the same metric.

Because of the complexity posed by the plan space and cost metrics,
a variety of plan selection algorithms have been proposed for paral-
lel database systems. Deterministic algorithms proposed include those
based on dynamic programming [93], flow optimization [74], as well
as greedy approaches [143]. Randomized algorithms proposed include
those based on simulated annealing [134] and genetic search [179].

Finally, errors can arise while estimating plan execution costs be-
cause of reasons such as unknown data properties or uncertain resource
availability. This problem is more acute in parallel database systems
compared to centralized database systems. Adaptive plan selection has
been proposed as a way to address this problem [103].

2.5 Scheduling

As part of the execution of a parallel query plan, the plan is broken
down into a set of executable tasks. These tasks are scheduled to run
on the nodes of the parallel database system. The tasks usually form
a directed acyclic graph (DAG) based on producer-consumer relation-
ships. Subject to the possibility of pipelined parallel execution, a task
is ready to run after all its ancestor tasks in the DAG are complete.

Two common approaches are used to decide which node to sched-
ule a task on. In the first approach, this decision is made during plan
selection. The decision is often simplified because shared-nothing par-
allel database systems are predominantly based on function shipping

2.5. Scheduling 27

as opposed to data shipping. The goal of function shipping is to run
the computation as close to where the data is stored so that little data
movement is incurred. Most systems that use function shipping try
to run any computation on the node where the data needed by the
computation resides. Some parallel database systems—e.g., Netezza
[116]—can run computations on special-purpose database accelerator
cards that access data while data is being moved from disk to CPU.

A disadvantage of this approach is that it increases the complexity
of an already large search space for parallel execution plans. Systems
like the IBM DB2 Parallel Edition which use this approach use heuris-
tics to limit the size of the search space [33]. For example, for all the
possible subsets of nodes that can be used to run tasks of a join, only
a limited subset is considered: all the nodes, the nodes on which each
of the joining tables is partitioned, and a few others [33].

The second approach first determines the execution plan and then
uses a scheduling algorithm to determine the schedule. The scheduling
algorithm may be static or dynamic. Static scheduling algorithms de-
termine the schedule of all tasks in the plan before running any one of
the tasks. The problem of finding the best static schedule is NP-Hard
and approximation algorithms have been proposed for the problem [61].

The shelf algorithm was proposed for static scheduling in [187]. The
basic approach here begins with a fixed number of shelves, each of which
will be assigned one task initially. Each shelf will eventually contain one
or more tasks that are to be executed concurrently by all nodes. For
each of the remaining tasks that have not been assigned a shelf, the task
is either assigned an existing shelf or a new shelf without violating the
precedence constraints inherent in the task DAG. When a task is added
to an existing shelf, it will be competing for resources with the other
tasks in the shelf. As tasks are assigned, the total number of shelves
may increase. The initial number of shelves is determined by the height
of the task DAG since each task along the longest path in the DAG
must be processed one after the other due to precedence constraints.

Static scheduling algorithms cannot react to issues that arise during
task execution. For example, the load on a node may increase, which
can make the execution time of tasks on that node much larger than

28 Classic Parallel Database Systems

expected [51]. Dynamic scheduling algorithms can react to such prob-
lem by migrating task execution from one node to another at run-time.
For example, the algorithms proposed in [144] and [145] migrate tasks
from loaded nodes to idle nodes at run-time.

2.6 Resource Management

Resource management in parallel database systems happens at two
levels: at the level of individual nodes and at the level of the entire
system. Most parallel database systems are implemented by building
on the software of a centralized database system at each node. Thus,
many configuration parameters can be set independently—e.g., size
of memory buffers, maximum number of concurrent processes (MPL),
and the size of log files—at each node. This feature allows the database
administrator to tune the performance of each individual node based
on the differences in hardware capacities, database partition sizes, and
workloads across the nodes in the system [33].

Resource management at the level of the entire system can be done
through techniques such as workload differentiation—e.g., identifying
which queries are short-running and which ones are long-running, and
allocating resources appropriately to meet the respective requirements
of these query classes [129, 130]—and admission control which limits
the number of queries that can be running concurrently in the system
so that every query gets some guaranteed fraction of the total resources
during execution [46, 163].

Another important dimension of resource management is how the
system can scale up in order to continue to meet performance require-
ments as the system load increases. The load increase may be in terms
of the size of input data stored in the system and processed by queries,
the number of concurrent queries that the system needs to run, the
number of concurrent users who access the system, or some combina-
tion of these factors. The objective of shared-nothing parallel systems is
to provide linear scalability. For example, if the input data size increases
by 2x, then a linearly-scalable system should be able to maintain the
current query performance by adding 2x more nodes.

2.7. Fault Tolerance 29

Partitioned parallel processing is the key enabler of linear scalability
in parallel database systems. One challenge here is that data may have
to be repartitioned in order to make the best use of resources when
nodes are added to or removed from the system. Most commercial
parallel database systems support online reorganization where database
administration utilities like repartitioning can be done incrementally
without the need to quiesce query processing [33].

2.7 Fault Tolerance

One of the disadvantages of shared-nothing parallel processing is that
there are many more causes of failures in these systems compared to
centralized systems. Failures cause two important effects that the par-
allel database system needs to deal with. The first effect is task failure
where a task that was assigned some work in a query plan fails to com-
plete the work correctly. Task failure can happen due to many root
causes. For example, a node may crash due to a hardware problem,
a software bug, or due to a misconfiguration done by a database ad-
ministrator, killing all the tasks that were running on that node. Or, a
task may be killed by the operating system because the task’s memory
usage exceeded the memory allocated to the task.

Parallel database systems have traditionally had a coarse-grained
approach to deal with task failures. The predominant approach is to
convert task failures into query failures, and then resubmit the query.
It is common to have the coordinator task for the query run two-phase
commit across all nodes where tasks for the query ran. If all tasks
completed without failure, then the two-phase commit will declare the
query as successfully completed; otherwise, the query has failed and
will have to be rerun [33].

We will see in Chapters 4 and 5 how MapReduce and Dataflow
systems implement fine-grained fault tolerance at the task level. For
example, the failure of a few tasks in a MapReduce job does not au-
tomatically lead to a job failure. The execution of the MapReduce job
can be completed by rerunning successfully only the few tasks that may
have failed during the job execution. Such fine-grained fault tolerance

30 Classic Parallel Database Systems

is essential when jobs are long-running. However, when most queries
are short-running, the additional complexity that comes with support-
ing fine-grained fault tolerance may not be desirable over the simpler
alternative of resubmitting failed queries.

It is possible to implement fine-grained fault tolerance techniques
in parallel database systems. For example, Osprey is a shared noth-
ing parallel database system whose design is motivated by MapReduce
systems [45]. Osprey divides running queries into subqueries, and repli-
cates data such that each subquery can be rerun on a different node if
the node initially responsible fails or returns too slowly.

Osprey is implemented using a middleware approach with only a
small amount of custom code to handle cluster coordination. An in-
dependent database system is run on each node in the system. Tables
are partitioned among nodes and each partition is replicated on several
nodes. A coordinator node acts as a standard SQL interface to users
and applications. The coordinator node transforms an input SQL query
into a set of subqueries that are then executed on the worker nodes.
Each subquery represents only a small fraction of the total execution
of the query. Worker nodes are assigned a new subquery as they finish
their current one. In this greedy approach, the amount of work lost due
to node failure is small (at most one subquery’s work), and the sys-
tem is automatically load balanced because slow nodes will be assigned
fewer subqueries.

The second type of failure causes data to become inaccessible by
tasks, or worse, become lost irretrievably. These failures can have more
serious consequences. Hardware problems such as errors in magnetic
media (bit rot), erratic disk-arm movements or power supplies, and bit
flips in CPU or RAM due to alpha particles can cause bits of data to
change from what they are supposed to be [29]. Or, network partitions
can arise during query execution which make it impossible for a task
(say, a task running as part of a repartitioned join operator) running
on one node to retrieve its input data from another node.

Data replication is used to prevent data availability problems. Par-
allel database systems replicate table partitions on more than one node.
If one node is down, then the table partitions stored on that node can be

2.8. System Administration 31

retrieved from other nodes. Several techniques have been proposed for
data availability in the face of node failures, e.g., mirrored disks, data
clustering, disk arrays with redundant check information, and chained
declustering [43, 165, 114].

2.8 System Administration

Recall from §1.3 that system administration refers to the activities
where additional human effort may be needed to keep the system run-
ning smoothly while the system serves the needs of multiple users and
applications. It is typical to have dedicated database administrators
(DBAs) for system administration in deployments of parallel database
systems. DBAs have access to good tools provided by the database
vendors and other companies for a variety of administrative tasks like
performance monitoring, diagnosing the cause of poor query or work-
load performance, and system recovery from hardware failures (e.g.,
[60, 78]).

Performance tuning and capacity planning for parallel database sys-
tems can be challenging because of the large number of tuning choices
involved. For example, the space of tuning choices in classic parallel
database systems includes:

• Applying hints to change the query plan when the database query
optimizer picks a poor plan due to limited statistics, errors in the
cost model, or contention for system resources.

• Choosing the right set of indexes in order to balance the reduc-
tion in query execution times with the increase in data load and
update times.

• Manipulating the database schema using techniques such as de-
normalization in order to make query execution more efficient.

• Controlling the layout of data through appropriate choices of
declustering, partitioning, and replication.

• Picking hardware with the right amount of processing, memory,
disk, and network bandwidth.

32 Classic Parallel Database Systems

• Choosing the settings of server parameters like buffer pool size
and join heap size.

• Finding the right time to schedule maintenance tasks like in-
dex rebuilds and storage defragmentation so that efficient query
performance can be achieved while reducing resource contention
between query execution and administrative tasks.

• Setting the thresholds that control the policies for admission con-
trol and load balancing.

A parallel database system may not have a unique workload running
all the time. This factor increases the complexity of performance tun-
ing and capacity planning. For example, a common scenario is to have
several applications issuing complex queries against the database dur-
ing the day. At night, there may be a batch window of time when the
database is updated, e.g., through insertion of new data to the fact
tables and updates to the dimension tables.

If this overall workload is treated as a single set of queries and
updates—without accounting for the temporal separation between the
queries and the updates—then it is quite possible that no suitable set
of indexes can be found to improve the overall workload performance.
While some indexes may speed up the queries during the day, the up-
date cost incurred in the night for these indexes may far outweigh their
benefits [8].

3
Columnar Database Systems

Columnar parallel database systems store entire columns of tables
together on disk unlike the row-at-a-time storage of classic parallel
database systems. Columnar systems excel at data-warehousing-type
applications, where data is added in bulk but typically not modified
much (if at all), and the typical access pattern is to scan through large
parts of the data to perform aggregations and joins.

Research on columnar database systems has a long history dating
back to the 1970s. Decomposing records into smaller subrecords and
storing them in separate files was studied by Hoffer and Severance in
[112]. A fully decomposed storage model (DSM) where each column is
stored in a separate file was studied by Copeland and Khoshafian in
[68].

MonetDB, which has been in development at CWI since the early
nineties, was one of the first database system prototypes that fully
embraced columnar storage as its core data model [39]. Sybase IQ was
launched in 1996 as a commercial columnar database system [147]. The
2000s saw a number of new columnar database systems such as C-Store
[181], Infobright [118], ParAccel [164], VectorWise [206], Vertica [133],
and Amazon RedShift [12].

33

34 Columnar Database Systems

3.1 Data Model and Interfaces

Similar to classic parallel databases, columnar database systems use the
popular relational data model where data consists of tables containing
tuples with a fixed set of attributes. Columnar database systems also
share the same query interface, namely SQL, along with various stan-
dards like JDBC and ODBC. The main difference between columnar
database systems and the classic parallel database systems discussed
in Chapter 2 is in the storage data layout used for tables.

3.2 Storage Layer

In a pure columnar data layout, each column is stored contiguously at
a separate location on disk. It is common to use large disk pages or
read units in order to amortize disk head seeks when scanning multiple
columns on hard drives [2].

3.2.1 Column-oriented Data Layout

One common layout is to store a table of n attributes in n files. Each file
corresponds to a column and stores tuples of the form 〈k, v〉 [39]. (Each
of these files is called a binary association table, or BAT, in MonetDB
[117].) Here, the key k is the unique identifier for a tuple, and v is
the value of the corresponding attribute in the tuple with identifier
k. Tuple identifiers may be generated automatically by the columnar
database system based on the insertion order of tuples. An entire tuple
with tuple identifier k can be reconstructed by bringing together all
the attribute values stored for k.

It is possible to reduce the storage needs by eliminating the explicit
storage of tuple identifiers [133, 181]. Instead, the tuple identifier can
be derived implicitly based on the position of each attribute value in
the file. Vertica stores two files per column [133]. One file contains
the attribute values. The other file is called a position index. For each
disk block in the file containing the attribute values, the position index
stores some metadata such as the start position, minimum value, and
maximum value for the attribute values stored in the disk block. The

3.2. Storage Layer 35

position index helps with tuple reconstruction as well as eliminating
reads of disk blocks during query processing. The position index is
usually orders of magnitude smaller in size compared to the total size
of the attribute values. Furthermore, removing the storage of tuple
identifiers leads to more densely packed columnar storage [2, 133].

C-Store introduced the concept of projections. A projection is a
set of columns that are stored together. The concept is similar to a
materialized view that projects some columns of a base table. However,
in C-Store, all the data in a table is stored as one or more projections.
That is, C-Store does not have an explicit differentiation between base
tables and materialized views. Each projection is stored sorted on one
or more attributes.

When different projections can have different sort orders, and tu-
ple identifiers are not stored as part of the projections, a join index is
needed for reconstructing tuples across projections [181]. A join index
from a projection P1 to a projection P2 in a table T contains entries of
the form 〈k1, k2〉. Here, k1 is the identifier of the tuple in P1 correspond-
ing to the tuple with identifier k2 in P2. Note that k1 and k2 represent
different attribute sets corresponding to the same tuple in table T . A
join index from a projection P1 to a projection P2 can avoid explicitly
storing the tuple identifier k1, and instead derive the identifier from
the position in the join index.

In practice and in experiments with early prototypes of Vertica, it
was found that the overheads of join indices far exceeded the benefits
of using them [133]. These indices were complex to implement and the
run-time cost of reconstructing full tuples during parallel query execu-
tion was high. In addition, explicitly storing tuple identifiers consumed
significant disk space for large tables. Thus, Vertica does not use join
indices. Instead, Vertica implements the concept of super projections
[133]. A super projection contains every column of the table.

A projection is not limited to contain the attributes from a single
table only. Instead, the concept of denormalization can be used to create
projections that contain attributes from multiple joining tables. C-Store
proposed the creation of per-join projections that contain attributes
from a table F as well as attributes from tables D1, ..., Dn with which

36 Columnar Database Systems

F has a many-one joining relationship [181]. Commonly, F is a fact
table and D1, ..., Dn are the corresponding dimension tables. Pre-join
projections can eliminate the need for joins at run-time.

However, in deployments of Vertica, it has been found that pre-join
projections are uncommon because of three reasons: (i) the performance
of joins in columnar database systems are very good; (ii) most cus-
tomers are unwilling to slow down bulk data loads in order to optimize
such joins; and (iii) joins done during data load offer fewer optimiza-
tion opportunities than joins done at query time because the database
knows nothing apriori about the data in the load stream [133].

3.2.2 Column-oriented Compression

An important advantage of columnar data layouts is that columns can
be stored densely on disk, especially by using light-weight compression
schemes. The intuitive argument for why columnar layouts compress
data well is that compression algorithms perform better on data with
low information entropy (high data value locality) [2].

A spectrum of basic and hybrid compression techniques are sup-
ported by columnar databases. These include [133, 181]:

• Run Length Encoding (RLE): Here, sequences of identical values
in a column are replaced with a single pair that contains the value
and number of occurrences. This type of compression is best for
low cardinality columns that are sorted.

• Delta Value: Here, each attribute value is stored as a difference
from the smallest value. While such an approach leads to variable-
sized data representation, it is useful when the differences can be
stored in fewer bytes than the original attribute values. A block-
oriented version of this compression scheme would store each
attribute value in a data block as a difference from the small-
est value in the data block. This type of compression is best for
many-valued, unsorted integer or integer-based columns.

• Compressed Delta Range: Here, each value is stored as a delta
from the previous one. This type of compression is best for many-
valued float columns that are either sorted or confined to a range.

3.2. Storage Layer 37

• Dictionary: Here, the distinct values in the column are stored in a
dictionary which assigns a short code to each distinct value. The
actual values are replaced with the code assigned by the dictio-
nary. A block-oriented version of this compression scheme would
create a dictionary per block. The Blink system introduced a
compression scheme called frequency partitioning that partitions
the domain underlying each column, based upon the frequency
with which values occur in that column at load time [32]. Blink
creates a separate dictionary for each partition. Since each dic-
tionary needs to only represent the values of its partition, each
dictionary can use shorter codes for the actual values. Dictionary-
based compression is a general-purpose scheme, but it is good for
few-valued, unsorted columns [133, 181].

• Bitmap: Here, a column is represented by a sequence of tuples
〈v, b〉 such that v is a value stored in the column and b is a
bitmap indicating the positions in which the value is stored [181].
For example, given a column of integers 0,0,1,1,2,1,0,2,1, bitmap-
based compression will encode this column as three pairs: (0,
110000100), (1, 001101001), and (2,000010010). RLE can be fur-
ther applied to compress each bitmap.

Apart from the above compression schemes, hybrid combinations of
these schemes are also possible. For example, the Compressed Common
Delta scheme used in Vertica builds a dictionary of all the deltas in each
block [133]. This type is best for sorted data with predictable sequences
and occasional sequence breaks (e.g., timestamps recorded at periodic
intervals or primary keys).

3.2.3 Updates

One of the disadvantages of columnar storage is that write operations
cause two types of overheads. First, tuples inserted into a table have to
be split into their component attributes and each attribute (or group of
attributes in the case of projections) must be written separately. Thus,
tuple insertions cause more logical writes in columnar database systems
than in the row-based storage of classic parallel database systems.

38 Columnar Database Systems

The more serious overhead is that the densely-packed and com-
pressed data layout in columnar database systems makes insertions
to tuples within a disk block nearly impossible. A variety of schemes
have been proposed in columnar database systems to reduce the over-
heads caused by writes. The main theme in these schemes is to buffer
the writes temporarily, and then to apply them in bulk to update the
columnar data layout.

C-Store and Vertica pioneered the use of a two-storage scheme
consisting of a read-optimized store (RS) and a write-optimized store
(WS), along with a tuple mover that is responsible for moving tuples
from the write-optimized store to the read-optimized store [133, 181].
All write operations—inserts, deletes, and updates—are first done to
theWS which is memory-resident. RS, as the name implies, is optimized
for read and supports only a very restricted form of write, namely the
batch movement of records from WS to RS. Queries access data in both
storage systems.

Inserts are sent to WS, while deletes are marked in RS for later
purging by the tuple mover [133, 181]. Updates are implemented as
an insert and a delete. In order to support a high-speed tuple mover,
C-Store and Vertica borrow the LSM-tree concept [160]. Basically, the
tuple mover supports a mergeout process that moves tuples from WS
to RS in bulk by an efficient method of merging ordered WS data with
large RS blocks, resulting in a new copy of RS when the operation
completes.

Systems like SAP HANA [88] and VectorWise [206] use data struc-
tures based on deltas. For example, in HANA, every table has a delta
storage which is designed to strike a good balance between high up-
date rates and good read performance. Dictionary compression is used
here with the dictionary stored in a cache-sensitive B+-Tree (CSB+-
Tree) [88]. The delta storage is merged periodically into the main data
storage.

3.2.4 Partitioning

Data partitioning techniques used in parallel columnar database sys-
tems are fundamentally similar to the techniques used in the classic

3.3. Execution Engine 39

parallel database systems described in Chapter 2. The same is true for
the techniques used in declustering, assignment, and replication.

3.3 Execution Engine

The columnar data layout gives rise to a distinct space of execution
plans in columnar parallel database systems compared to classic paral-
lel database systems. In the MonetDB system, a new columnar algebra
was developed to represent operations on columnar data layouts [117].
Expressions in relational algebra and SQL are converted into colum-
nar algebra and then compiled into efficient executable plans over a
columnar data layout.

We will describe three aspects of the execution plan space in colum-
nar parallel database systems that provide opportunities for highly ef-
ficient execution: (a) operations on compressed columns, (b) vectorized
operations, and (c) late materialization.

3.3.1 Operations on Compressed Columns

It is highly desirable to have an operator operate on the compressed
representation of its input whenever possible in order to avoid the cost
of decompression; at least until query results need to be returned back
to the user or application that issued the query. The ability to operate
directly on the compressed data depends on the type of the operator
and the compression scheme used. For example, consider a filter opera-
tor whose filter predicate is on a column compressed using the bitmap-
based compression technique described in §3.2.2. This operator can do
its processing directly on the stored unique values of the column, and
then only read those bitmaps from disk whose values match the filter
predicate.

It is indeed possible for complex operators like range filters, ag-
gregations, and joins to operate directly on compressed data. Some
of the interesting possibilities arise because of novel dictionary-based
compression techniques (recall §3.2.2). All the tuples in a block may
be eliminated from consideration if the code for the constant in a filter
predicate of the form “attribute = constant” cannot be found in that

40 Columnar Database Systems

block’s dictionary. For example, a predicate “customerID = 42” cannot
be true for any tuple in any block not having the code for 42 in its
dictionary for the attribute customerID.

Order-preserving dictionary-based compression techniques are used
in systems like Blink [32] and MonetDB [117]. Here, encoded values are
assigned in each dictionary in an order-preserving way so that range
and equality predicates can be applied directly to the encoded values.
For example, Blink converts complex predicates on column values, such
as LIKE predicates, into IN-lists in the code space by evaluating the
predicate on each element of the dictionary. Due to order-preserving
dictionary coding, all the standard predicates (=, 6=,≤,≥) map to in-
teger comparisons between codes, irrespective of the data type. As a
result, even predicates containing arbitrary conjunctions and disjunc-
tions of atomic predicates can be evaluated in Blink using register-wide
mask and compare instructions provided by processors. Data is decom-
pressed only when necessary, e.g., when character or numeric expres-
sions must be calculated.

3.3.2 Vectorized Processing

While vectorized processing is not unique to columnar database sys-
tems, columnar layouts lend themselves naturally to operators process-
ing their input in large chunks at a time as opposed to one tuple at
a time. A full or partial column of values can be treated as an array
(or, a vector) on which the SIMD (single instruction multiple data)
instructions in CPUs can be evaluated. SIMD instructions can greatly
increase performance when the same operations have to be performed
on multiple data objects.

In addition, other overheads in operators such as function calls, type
casting, various metadata handling costs, etc., can all be reduced by
processing inputs in large chunks at a time. For example, SAP HANA
accelerates data scans significantly by using SIMD algorithms working
directly on the compressed data [88].

The X100 project (which was commercialized later as VectorWise)
explored a compromise between the classic tuple-at-a-time pipelining
and operator-at-a-time bulk processing techniques [40]. X100 operates

3.4. Query Optimization 41

on chunks of data that are large enough to amortize function call over-
heads, but small enough to fit in CPU caches and to avoid materi-
alization of large intermediate results into main memory. Like SAP
HANA, X100 shows significant performance increases when vectorized
processing is combined with just-in-time light-weight compression.

3.3.3 Late Materialization

Tuple reconstruction is expensive in columnar database systems since
information about a logical tuple is stored in multiple locations on disk,
yet most queries access more than one attribute from a tuple [2]. Fur-
ther, most users and applications (e.g., using ODBC or JDBC) access
query results tuple-at-a-time (not column-at-a-time). Thus, at some
point in a query plan, data from multiple columns must be “material-
ized” as tuples. Many techniques have been developed to reduce such
tuple reconstruction costs [4].

For example, MonetDB uses late tuple reconstruction [117]. All in-
termediate results are kept in a columnar format during the entire query
evaluation. Tuples are constructed only just before sending the final re-
sult to the user or application. This approach allows the query execu-
tion engine to exploit CPU-optimized and cache-optimized vector-like
operator implementations throughout the whole query evaluation. One
disadvantage of this approach is that larger intermediate results may
need to be materialized compared to the traditional tuple-at-a-time
processing.

3.4 Query Optimization

Despite the very different data layout, standard cost-based query op-
timization techniques from the classic parallel database systems apply
well in the columnar setting. At the same time, some additional factors
have to be accounted for in columnar database systems:

• Picking operator implementations that can operate on the com-
pressed data as discussed in §3.3.1.

• Late materialization of tuples as discussed in §3.3.3.

42 Columnar Database Systems

• Choosing the best projection(s) as input to the scan operations
in the leaves of the query plan. Important factors that impact
this decision include the attributes in the projection, the size of
the projection, the types of compression used in the projection
for the attributes of interest, and the sort order of the projection.
For example, Vertica’s optimizer tends to join projections with
highly compressed and sorted predicate and join columns first; to
make sure that not only fast scans and merge joins on compressed
columns are applied first, but also that the cardinality of the data
for later joins is reduced [133].

3.5 Scheduling

All the scheduling challenges listed for classic parallel database systems
in Chapter 2 exist in columnar parallel database systems. Furthermore,
since most popular columnar systems are of recent origin, they incorpo-
rate scheduling policies aimed at recent hardware trends such as nodes
with a large number of CPU cores [133, 206]. For example, systems like
VectorWise and Vertica have execution engines that are multi-threaded
and pipelined: more than one operator can be running at any time, and
more than one thread can be executing the code for any individual op-
erator.

3.6 Resource Management

Query execution over a columnar data layout poses some unique chal-
lenges. While this layout allows for a more fine-grained data access
pattern, it can result in performance overheads to allocate the memory
per column. This overhead can be significant when a large number of
columns are handled, e.g., when constructing a single result row con-
sisting of hundreds of columns [88].

Vectorized and pipelined execution engines used in columnar
database systems cause sharing of physical resources, especially mem-
ory, among multiple operators. Thus, careful resource management is
needed in order to avoid overheads such as unnecessary spills to disk.
Systems like Vertica partition query execution plans into multiple zones

3.7. Fault Tolerance 43

that cannot all be executing at the same time. Downstream operators
are able to reclaim resources previously used by upstream operators,
allowing each operator more memory than if a pessimistic assumption
were to be made that all operators would need their resources at the
same time [133]. Furthermore, during query compile time, each opera-
tor can be assigned a memory budget based on a user-defined workload
management policy, the resources available, and what each operator is
going to do.

Memory management becomes further complicated in systems that
focus on providing optimal performance for concurrent scan-intensive
queries that are common in analytical workloads. For example, the
X100 project uses cooperative scans [184, 207] where an Active Buffer
Manager (ABM) determines the order to fetch tuples at run-time de-
pending on the interest of all concurrent queries. The ABM can cause
table scans to return tuples out of order. The ABM is a complex com-
ponent since it has to strike a balance between optimizing both the
average query latency and throughput. Thus, the product version of
VectorWise uses a less radical, but still highly effective, variant of in-
telligent data buffering [206].

Further resource management challenges arise in columnar database
systems that have separate write-optimized and read-optimized stores
[133, 181]. Recall from §3.2.3 that a tuple mover is responsible for mov-
ing tuples in bulk from the write-optimized store to the read-optimized
store. The tuple mover must balance its work so that it is not overzeal-
ous (which can cause unnecessary resource contention and also create
many small files in the read-optimized store) but also not too lazy (re-
sulting in unnecessary spills and many small files in the write-optimized
store) [133].

3.7 Fault Tolerance

The techniques to deal with failures—e.g., query restarts on failure or
replication to avoid data loss—remain the same across classic parallel
database systems and columnar database systems. For example, Ver-
tica replicates data to provide fault tolerance. Each projection must

44 Columnar Database Systems

have at least one buddy projection containing the same columns. The
horizontal partitioning and assignment ensures that no row is stored
on the same node by a projection and its buddy projection. When a
node is down, the buddy projection is employed for data access as well
as to create a new replica of the projection [133].

C-Store and Vertica provide the notion of K-safety: with K or fewer
nodes down, the cluster is guaranteed to remain available. To achieve K-
safety, the database projection design must ensure at least K+1 copies
of each segment are present on different nodes such that a failure of any
K nodes leaves at least one copy available. The failure of K+1 nodes
does not guarantee a database shutdown. Only when node failures ac-
tually cause data to become unavailable will the database shut down
until the failures can be repaired and consistency restored via recovery.
A Vertica cluster will also perform a safety shutdown if N/2 nodes are
lost where N is the number of nodes in the cluster. The agreement pro-
tocol requires a N/2 + 1 quorum to protect against network partitions
and avoid a split brain effect where two halves of the cluster continue
to operate independently [133, 181].

3.8 System Administration

System administration for columnar database systems is mostly similar
to that for classic parallel database systems discussed in §2.8. However,
some notable differences arise due to differences in the space of critical
tuning decisions. For example, recall that in systems like C-Store and
Vertica, the choice of data layout includes selecting the right columnar
projections and sort order per projection. Two other important choices
are with respect to the type of compression for each column and the
scheduling of tuple movement between the read-optimized and write-
optimized stores. Index selection is usually unimportant.

4
MapReduce Systems

MapReduce is a relatively young framework—both a programming
model and an associated run-time system—for large-scale data pro-
cessing [73]. Hadoop is the most popular open-source implementation
of a MapReduce framework that follows the design laid out in the
original paper [72]. A number of companies use Hadoop in production
deployments for applications such as Web indexing, data mining, re-
port generation, log file analysis, machine learning, financial analysis,
scientific simulation, and bioinformatics research.

Even though the MapReduce programming model is highly flexible,
it has been found to be too low-level for routine use by practitioners
such as data analysts, statisticians, and scientists [159, 189]. As a result,
the MapReduce framework has evolved rapidly over the past few years
into a MapReduce stack that includes a number of higher-level layers
added over the core MapReduce engine. Prominent examples of these
higher-level layers include Hive (with an SQL-like declarative interface),
Pig (with an interface that mixes declarative and procedural elements),
Cascading (with a Java interface for specifying workflows), Cascalog
(with a Datalog-inspired interface), and BigSheets (with a spreadsheet
interface). The typical Hadoop stack is shown in Figure 4.1.

45

46 MapReduce Systems

Figure 4.1: Typical Hadoop software stack.

4.1 Data Model and Interfaces

MapReduce systems typically process data directly from files, permit-
ting data to be in any arbitrary format. Hence, MapReduce systems
are capable of processing unstructured, semi-structured, and structured
data alike.

The MapReduce programming model consists of two functions:
map(k1, v1) and reduce(k2, list(v2)) [192]. Users can implement their
own processing logic by specifying a customized map() and a reduce()
function written in a general-purpose language like Java or Python.
The map(k1, v1) function is invoked for every key-value pair 〈k1, v1〉
in the input data to output zero or more key-value pairs of the
form 〈k2, v2〉. The reduce(k2, list(v2)) function is invoked for every
unique key k2 and corresponding values list(v2) in the map out-
put. reduce(k2, list(v2)) outputs zero or more key-value pairs of the
form 〈k3, v3〉. The MapReduce programming model also allows other
functions such as (i) partition(k2), for controlling how the map out-
put key-value pairs are partitioned among the reduce tasks, and (ii)
combine(k2, list(v2)), for performing partial aggregation on the map
side. The keys k1, k2, and k3 as well as the values v1, v2, and v3 can be
of different and arbitrary types.

A given MapReduce program may be expressed in one among a
variety of programming languages like Java, C++, Python, or Ruby;
and then connected to form a workflow using a workflow scheduler such
as Oozie [161]. Alternatively, the MapReduce jobs can be generated

4.2. Storage Layer 47

Figure 4.2: Hadoop architecture.

automatically using compilers for higher-level languages like Pig Latin
[159], HiveQL [189], JAQL [36], and Cascading [52].

4.2 Storage Layer

The storage layer of a typical MapReduce cluster is an independent dis-
tributed file system. Typical Hadoop deployments use the Hadoop Dis-
tributed File System (HDFS) running on the cluster’s compute nodes
[176]. Alternatively, a Hadoop cluster can process data from other file
systems like the MapR File System [149], CloudStore (previously Kos-
mos File System) [127], Amazon Simple Storage Service (S3) [13], and
Windows Azure Blob Storage [50].

HDFS is designed to be resilient to hardware failures and focuses
more on batch processing rather than interactive use by users. The
emphasis is on high throughput of data access rather than low latency
of data access. An HDFS cluster employs a master-slave architecture
consisting of a single NameNode (the master) and multiple DataNodes
(the slaves), usually one per node in the cluster (see Figure 4.2). The
NameNode manages the file system namespace and regulates access to
files by clients, whereas the DataNodes are responsible for serving read
and write requests from the file system’s clients. HDFS is designed to
reliably store very large files across machines in a large cluster. Inter-
nally, a file is split into one or more blocks that are replicated for fault
tolerance and stored in a set of DataNodes.

The modularity of the storage architecture enables higher-level
systems to introduce their own features or extensions on top of the
distributed file system. For example, Hive organizes and stores the
data into partitioned tables [189]. Hive tables are analogous to ta-

48 MapReduce Systems

bles in relational databases and are represented using HDFS direc-
tories. Partitions are then created using subdirectories whereas the
actual data is stored in files. Hive also includes a system catalog—
called Metastore—containing schema and statistics, which are useful
in data exploration and query optimization. Hive’s Metastore inspired
the creation of HCatalog, a new table and storage management service
for data created using Hadoop [24]. HCatalog provides a unified table
abstraction and interoperability across data processing tools such as
MapReduce, Pig, and Hive.

Indexing in HDFS: Hadoop++ provides indexing functionality for
data stored in HDFS by means of an approach called Trojan Indexes
[80]. This approach is based on user-defined functions so no changes are
required to the underlying Hadoop system. The indexing information
is stored as additional metadata in the HDFS blocks that are read by
map tasks. The information is added when tables are written to HDFS
so that no overhead is caused during query processing.

Index creation in Hadoop++ can increase the data loading time.
This problem is addressed by HAIL [81] which also improves query
processing speeds over Hadoop++. HAIL creates indexes during the
I/O-bound phases of writing to HDFS so that it consumes CPU cycles
that are otherwise wasted. For fault tolerance purposes, HDFS main-
tains k replicas for every HDFS block. (k = 3 by default.) HAIL builds
a different clustered index in each replica. The most suitable index for
a query is selected at run-time, and the corresponding replica of the
blocks are read by the map tasks in HAIL.

Data collocation: A serious limitation of MapReduce systems is that
HDFS does not support the ability to collocate data. Because of this
limitation, query processing systems on top of MapReduce—e.g., Hive,
Pig, and JAQL—cannot support collocated join operators. Recall from
Chapter 2 that collocated joins are one of the most efficient ways to
do large joins in parallel database systems. Hadoop++ and CoHadoop
[84] provide two different techniques to collocate data in MapReduce
systems.

Hadoop++ uses the same “trojan” approach as in trojan indexes
in order to co-partition and collocate data at load time [80]. Thus,

4.2. Storage Layer 49

blocks of HDFS can now contain data from multiple tables. With this
approach, joins can be processed at the map side rather than at the
reduce side. Map-side joins avoid the overhead of sorting and shuffling
data.

CoHadoop adds a file-locator attribute to HDFS files and imple-
ments a file layout policy such that all files with the same locator are
placed on the same set of nodes. Using this feature, CoHadoop can
collocate any related pair of files, e.g., every pair of joining partitions
across two tables that are both hash-partitioned on the join key; or, a
partition and an index on that partition. CoHadoop can then run joins
very efficiently using a map-side join operator that behaves like the col-
located join operator in parallel database systems. CoHadoop relies on
applications to set the locator attributes for the files that they create.

Data layouts: It is also possible to implement columnar data layouts
in HDFS. Systems like Llama [140] and CIF [89] use a pure column-
oriented design while Cheetah [64], Hadoop++ [80], and RCFile [105]
use a hybrid row-column design based on PAX [10]. Llama partitions
attributes into vertical groups like the projections in C-Store and Ver-
tica (recall §3.2.1). Each vertical group is sorted based on one of its
component attributes. Each column is stored in a separate HDFS file,
which enables each column to be accessed independently to reduce read
I/O costs, but may incur run-time costs for tuple reconstruction.

CIF uses a similar design of storing columns in separate files, but
its design is different from Llama in many ways. First, CIF partitions
the table horizontally and stores each horizontal partition in a separate
HDFS directory for independent access in map tasks. Second, CIF uses
an extension of HDFS to enable collocation of columns corresponding
to the same tuple on the same node. Third, CIF supports some late
materialization techniques to reduce tuple reconstruction costs [89].

Cheetah, Hadoop++, and RCFile use a layout where a set of tuples
is stored per HDFS block, but a columnar format is used within the
HDFS block. Since HDFS guarantees that all the bytes of an HDFS
block will be stored on a single node, it is guaranteed that tuple re-
construction will not require data transfer over the network. The intra-
block data layouts used by these systems differ in how they use com-

50 MapReduce Systems

pression, how they treat replicas of the same block, etc. For example,
Hadoop++ can use different layouts in different replicas, and choose
the best layout at query processing time. Queries that require a large
fraction of the columns should use a row-oriented layout, while queries
that access fewer columns should use a column-oriented layout [122].

Almost all the above data layouts are inspired by similar data lay-
outs in classic parallel database systems and columnar database sys-
tems. HadoopDB [5] takes this concept to the extreme by installing
a centralized database system on each node of the cluster, and using
Hadoop primarily as the engine to schedule query execution plans as
well as to provide fine-grained fault tolerance. The additional storage
system provided by the databases gives HadoopDB the ability to over-
come limitations of HDFS such as lack of collocation and indexing.
HadoopDB introduces some advanced partitioning capabilities such as
reference-based partitioning which enable multi-way joins to be per-
formed in a collocated fashion [30]. The HadoopDB architecture is fur-
ther discussed in §4.3.

HDFS alternatives: A number of new distributed file systems are
now viable alternatives to HDFS and offer full compatibility with
Hadoop MapReduce. The MapR File System [149] and Ceph [191]
have similar architectures to HDFS but both offer a distributed meta-
data service as opposed to the centralized NameNode on HDFS. In
MapR, metadata is sharded across the cluster and collocated with the
data blocks, whereas Ceph uses dedicated metadata servers with dy-
namic subtree partitioning to avoid metadata access hot spots. In addi-
tion, MapR allows for mutable data access and is NFS mountable. The
Quantcast File System (QFS) [162], which evolved from the Kosmos
File System (KFS) [127], employs erasure coding rather than repli-
cation as its fault tolerance mechanism. Erasure coding enables QFS
to not only reduce the amount of storage but to also accelerate large
sequential write patterns common to MapReduce workloads.

4.3. Execution Engine 51

Figure 4.3: Execution of a MapReduce job.

4.3 Execution Engine

MapReduce execution engines represent a new data-processing frame-
work that has emerged in recent years to deal with data at massive
scale [72]. Users specify computations over large datasets in terms of
Map and Reduce functions, and the underlying run-time system au-
tomatically parallelizes the computation across large-scale clusters of
machines, handles machine failures, and schedules inter-machine com-
munication to make efficient use of the network and disk bandwidth.

As shown in Figure 4.2, a Hadoop MapReduce cluster employs a
master-slave architecture where one master component (called Job-
Tracker) manages a number of slave components (called TaskTrack-
ers). Figure 4.3 shows how a MapReduce job is executed on the clus-
ter. Hadoop launches a MapReduce job by first splitting (logically) the
input dataset into data splits. Each data split is then scheduled to one
TaskTracker node and is processed by a map task. A Task Scheduler
is responsible for scheduling the execution of map tasks while taking
data locality into account. Each TaskTracker has a predefined number
of task execution slots for running map (reduce) tasks. If the job will
execute more map (reduce) tasks than there are slots, then the map
(reduce) tasks will run in multiple waves. When map tasks complete,
the run-time system groups all intermediate key-value pairs using an

52 MapReduce Systems

external sort-merge algorithm. The intermediate data is then shuffled
(i.e., transferred) to the TaskTrackers scheduled to run the reduce tasks.
Finally, the reduce tasks will process the intermediate data to produce
the results of the job.

Higher-level systems like Pig [94] and Hive [189] use the underlying
MapReduce execution engine in similar ways to process the data. In
particular, both Pig and Hive will compile the respective Pig Latin and
HiveQL queries into logical plans, which consist of a tree of logical oper-
ators. The logical operators are then converted into physical operators,
which in turn are packed into map and reduce tasks for execution. A
typical query will result in a directed acyclic graph (DAG) of multiple
MapReduce jobs that are executed on the cluster.

The execution of Pig Latin and HiveQL queries as MapReduce jobs
results in Pig and Hive being well suited for batch processing of data,
similar to Hadoop. These systems thrive when performing long sequen-
tial scans in parallel, trying to utilize the entire cluster to the fullest.
In addition, both Pig and Hive are read-based, and therefore not ap-
propriate for online transaction processing which typically involves a
high percentage of random write operations. Finally, since MapReduce
is the basic unit of execution, certain optimization opportunities like
better join processing can be missed (discussed further in §4.4).

4.3.1 Alternative MapReduce Execution Engines

As discussed earlier in §4.2, HadoopDB is a hybrid system that com-
bines the best features of parallel database systems and MapReduce
systems [5]. HadoopDB runs a centralized database system on each
node and uses Hadoop primarily as the execution plan scheduling and
fault-tolerance layer. HadoopDB introduced the concept of split query
execution where a query submitted by a user or application will be
converted into an execution plan where some parts of the plan would
run as queries in the database and other parts would run as map and
reduce tasks in Hadoop [30]. The best such splitting of work will be
identified during plan generation. For example, if two joining tables
are stored partitioned and collocated, then HadoopDB can perform an
efficient collocated join like in parallel database systems.

4.3. Execution Engine 53

Figure 4.4: Architecture of the HadoopDB system, which has a hybrid design that
combines MapReduce systems and centralized databases.

Figure 4.4 shows the architecture of HadoopDB. The database con-
nector is an interface between the TaskTrackers in Hadoop and the
individual database systems. The database connector can connect to
a database, execute a SQL query, and return the query result in the
form of key-value pairs. Metadata about the databases is stored in the
system catalog. The catalog maintains system metadata such as con-
nection parameters, schema and statistics of the tables stored, locations
of replicas, and data partitioning properties.

The SMS (SQL to MapReduce to SQL) planner extends Hive and
produces split-execution query plans that can exploit features provided
by the available database systems. The data loader globally repartitions
tables based on a partition key, breaks down single-node partitions
further into smaller partitions, and bulk loads the single-node databases
with these smaller partitions.

54 MapReduce Systems

Clydesdale is a system that was built to demonstrate that a simple
architecture that leverages existing techniques from parallel database
systems can provide substantial performance benefits for query pro-
cessing in MapReduce systems [123]. Clydesdale is aimed at workloads
where the data fits a star schema. The fact table is stored on HDFS
using CIF [89]. Copies of the dimension tables are also stored in HDFS,
but are replicated to the local storage on each node in the cluster.

SQL queries submitted to Clydesdale are converted into a query
plan composed of MapReduce jobs. Join processing is done in the map
phase such that map tasks apply predicates to the dimension tables
and build hash tables in the setup phase. Then, the map tasks join the
tuples in the fact table by probing the hash tables. The reduce phase is
responsible for grouping and aggregation. Clydesdale draws on several
strategies for performance improvement: careful use of multi-core par-
allelism, employing a tailored star-join plan instead of joining tables in
a pairwise manner, and columnar storage. All these techniques together
give considerable improvement over processing the queries directly on
a MapReduce system.

Sailfish [170] is an alternative MapReduce framework for large scale
data processing whose design is centered around aggregating interme-
diate data, i.e., data produced by map tasks and consumed later by
reduce tasks. In particular, the output of map tasks (which consists
of key/value pairs) is first partitioned by key and then aggregated on
a per-partition basis using a new file system abstraction, called I-files
(Intermediate data files). I-files support batching of data written by
multiple writers and read by multiple readers. This intermediate data
is sorted and augmented with an index to support key-based retrieval.
Based on the distribution of keys across the I-files, the number of reduce
tasks as well as the key-range assignments to tasks can be determined
dynamically in a data-dependent manner.

4.4 Query Optimization

Being a much newer technology, MapReduce engines significantly lack
principled optimization techniques compared to database systems.

4.4. Query Optimization 55

Hence, the MapReduce stack (see Figure 4.1) can be poorer in per-
formance compared to a database system running on the same amount
of cluster resources [90, 166]. In particular, the reliance on manual
tuning and absence of cost-based optimization can result in missed
opportunities for better join processing or partitioning. A number of
ongoing efforts are addressing this issue through optimization oppor-
tunities arising at different levels of the MapReduce stack.

For higher levels of the MapReduce stack that have access to declar-
ative semantics, many optimization techniques inspired by database
query optimization and workload tuning have been proposed. Hive and
Pig employ rule-based approaches for a variety of optimizations such as
filter and projection pushdown, shared scans of input datasets across
multiple operators from the same or different analysis tasks [157], re-
ducing the number of MapReduce jobs in a workflow [137], and han-
dling data skew in sorts and joins. The AQUA system supports System-
R-style join ordering [193]. Improved data layouts [122, 140] and in-
dexing techniques [80, 81] inspired by database storage have also been
proposed, as discussed in §4.2.

Lower levels of the MapReduce stack deal with workflows of MapRe-
duce jobs. A MapReduce job may contain black-box map and reduce
functions expressed in programming languages like Java, Python, and
R. Many heavy users of MapReduce, ranging from large companies like
Facebook and Yahoo! to small startups, have observed that MapRe-
duce jobs often contain black-box UDFs to implement complex logic
like statistical learning algorithms or entity extraction from unstruc-
tured data [146, 159]. One of the optimization techniques proposed
for this level—exemplified by HadoopToSQL [121] and Manimal [49]—
does static code analysis of MapReduce programs to extract declarative
constructs like filters and projections. These constructs are then used
for database-style optimization such as projection pushdown, column-
based compression, and use of indexes.

Finally, the performance of MapReduce jobs is directly affected by
various configuration parameter settings like degree of parallelism and
use of compression. Choosing such settings for good job performance
is a nontrivial problem and a heavy burden on users [27]. Starfish has

56 MapReduce Systems

introduced a cost-based optimization framework for MapReduce sys-
tems for determining configuration parameter settings as well as the
cluster resources to meet desired requirements on execution time and
cost for a given analytics workload [110]. Starfish’s approach is based
on: (i) collecting monitoring information in order to learn the run-time
behavior of workloads (profiling), (ii) deploying appropriate models to
predict the impact of hypothetical tuning choices on workload behav-
ior, and (iii) using efficient search strategies to find tuning choices that
give good workload performance [107, 109].

4.5 Scheduling

The primary goal of scheduling in MapReduce is to maximize data-
locality; that is, to schedule the MapReduce tasks to execute on nodes
where data reside or as close to those nodes as possible. The original
scheduling algorithm in Hadoop was integrated within the JobTracker
and was called FIFO (First In, First Out). In FIFO scheduling, the Job-
Tracker pulled jobs from a work queue in order of arrival and scheduled
all the tasks from each job for execution on the cluster. This scheduler
had no concept of priority or size of the job, but offered simplicity and
efficiency.

As MapReduce evolved into a multi-tenant data-processing plat-
form, more schedulers were created in an effort to maximize the work-
load throughput and cluster utilization. The two most prominent sched-
ulers today are the Fair Scheduler [16] and the Capacity Scheduler [15],
developed by Facebook and Yahoo!, respectively. The core idea behind
the Fair Scheduler is to assign resources to jobs such that on aver-
age over time, each job gets an equal share of the available resources.
Users may assign jobs to pools, with each pool allocated a guaranteed
minimum number of Map and Reduce slots. Hence, this scheduler lets
short jobs finish in reasonable time while not starving long jobs. The
Capacity Scheduler shares similar principles with the Fair Scheduler,
but focuses on enforcing cluster capacity sharing among users, rather
than among jobs. In capacity scheduling, several queues are created,
each with a configurable number of map and reduce slots. Queues that

4.5. Scheduling 57

contain jobs are given their configured capacity, while free capacity
in a queue is shared among other queues. Within a queue, scheduling
operates based on job priorities.

There exists an extensive amount of research work improving the
scheduling policies in Hadoop [168]. Delay scheduling [198] is an exten-
sion to the Fair Scheduler that temporarily relaxes fairness to improve
data locality by asking jobs to wait for a scheduling opportunity on
a node with local data. Dynamic Proportional Share Scheduler [172]
supports capacity distribution dynamically among concurrent users,
allowing them to adjust the priority levels assigned to their jobs. How-
ever, this approach does not guarantee that a job will complete by
a specific deadline. Deadline Constraint Scheduler [124] addresses the
issue of deadlines but focuses more on increasing system utilization.
Finally, Resource Aware Scheduler [196] considers resource availability
on a more fine-grained basis to schedule jobs.

One potential issue with the Hadoop platform is that by dividing
the tasks across multiple nodes, it is possible for a few slow nodes to
rate-limit the rest of the job. To overcome this issue, Hadoop uses a
process known as speculative execution. In particular, Hadoop schedules
redundant copies of some tasks (typically towards the end of a job) for
execution across several nodes that are not currently busy. Whichever
copy of a task finishes first becomes the definitive copy and the other
copies are abandoned.

As discussed earlier, a typical HiveQL or Pig Latin query is parsed,
possibly optimized using a rule-based or cost-based approach, and con-
verted into a MapReduce workflow. A MapReduce workflow is a di-
rected acyclic graph (DAG) of multiple MapReduce jobs that read one
or more input datasets and write one or more output datasets. The jobs
in a workflow can exhibit dataflow dependencies because of producer-
consumer relationships and hence, must be scheduled serially in order
of their dependencies. Jobs without such dataflow dependencies can be
scheduled to be run concurrently and are said to exhibit cluster re-
source dependencies [139]. The scheduling of jobs within a workflow is
typically handled by the higher-level system itself (i.e., Hive and Pig).

58 MapReduce Systems

Figure 4.5: Hadoop NextGen (YARN) architecture.

4.6 Resource Management

In the original version of Hadoop, each node in a cluster is statically
assigned a predefined number of map and reduce slots for running map
and reduce tasks concurrently [192]. Hence, the allocation of cluster
resources to jobs is done in the form of these slots. This static allocation
of slots has the obvious drawback of lowered cluster utilization since slot
requirements vary during the MapReduce job life cycle. Typically, there
is a high demand for map slots when the job starts, whereas there is a
high demand for reduce slots towards the end. However, the simplicity
of this scheme simplified the resource management performed by the
JobTracker, in addition to the scheduling decisions.

Overall, the Job Tracker in Hadoop has the dual role of managing
the cluster resources as well as scheduling and monitoring MapReduce
jobs. Hadoop NextGen (also known as MapReduce 2.0 or YARN) [22]
separates the above two functionalities into two separate entities: a
global ResourceManager is responsible for allocating resources to run-
ning applications, whereas a per-application ApplicationMaster man-
ages the application’s life-cycle (see Figure 4.5). There is also a per-
machine NodeManager that manages the user processes on that node.

4.6. Resource Management 59

The ApplicationMaster is a framework-specific library that negotiates
resources from the ResourceManager and works with the NodeMan-
ager(s) to execute and monitor the tasks. In the YARN design, MapRe-
duce is just one application framework; the design permits building and
deploying distributed applications using other frameworks as well.

The resource allocation model in YARN addresses the static allo-
cation deficiencies of the previous Hadoop versions by introducing the
notion of resource containers. A container represents a specification of
node resources—called attributes—such as CPU, memory, disk band-
width, and network bandwidth. In this model, only a minimum and a
maximum for each attribute are defined, and ApplicationMasters can
request containers with attribute values as multiples of the minimum.
Hence, different ApplicationMasters have the ability to request different
container sizes at different times, giving rise to new research challenges
on how to efficiently and effectively allocate resources among them.

Hadoop also supports dynamic node addition as well as decommis-
sioning of failed or surplus nodes. When a node is added in the cluster,
the TaskTracker will notify the JobTracker of its presence and the Job-
Tracker can immediately start scheduling tasks on the new node. On the
other hand, when a node is removed from the cluster, the JobTracker
will stop receiving heartbeats from the corresponding TaskTracker and
after a small period of time, it will stop scheduling tasks on that node.

Even though newly-added nodes can be used almost immediately
for executing tasks, they will not contain any data initially. Hence, any
map task assigned to the new node will most likely not access local
data, introducing the need to rebalance the data. HDFS provides a
tool for administrators that rebalances data across the nodes in the
cluster. In particular, the HDFS Rebalancer analyzes block placement
and moves data blocks across DataNodes in order to achieve a uniform
distribution of data, while maintaining data availability guarantees.

Hadoop On Demand (HOD) [17] is a system for provisioning and
managing virtual clusters on a larger shared physical cluster. Each vir-
tual cluster runs its own Hadoop MapReduce and Hadoop Distributed
File System (HDFS) instances, providing better security and perfor-
mance isolation among the users of each cluster. Under the covers,

60 MapReduce Systems

HOD uses the Torque resource manager [178] to do the node alloca-
tion. On each node, HOD will automatically prepare the configuration
files and start the various Hadoop components. HOD is also adaptive in
that it can shrink a virtual cluster when the workload changes. In par-
ticular, HOD can automatically deallocate nodes from a cluster after
it detects no jobs were running for a given time period. This behavior
permits the most efficient use of the overall physical cluster resources.

4.7 Fault Tolerance

Fault tolerance features are built in all the layers of the Hadoop stack,
including HDFS, MapReduce, and higher-level systems like Pig and
Hive. HDFS is designed to reliably store very large files across machines
in a large cluster by replicating all blocks of a file across multiple ma-
chines [176]. For the common case, when the replication factor is three,
HDFS’s default placement policy is to put one replica on one node in
the local rack and the other two replicas on two different nodes in a dif-
ferent rack. In case of a failure—a DataNode becoming unavailable, a
replica becoming corrupted, or a hard disk on a DataNode failing—the
NameNode will initiate re-replication of the affected blocks in order to
ensure that the replication factor for each block is met. Data corruption
is detected via the use of checksum validation, which is performed by
the HDFS client by default each time the data is accessed.

The primary way that the Hadoop MapReduce execution engine
achieves fault tolerance is through restarting tasks [192]. If a particular
task fails or a TaskTracker fails to communicate with the JobTracker
after some period of time, then the JobTracker will reschedule the failed
task(s) for execution on different TaskTrackers. Failed map tasks are
automatically restarted (in other nodes) to process their part of the
data again (typically a single file block). Intermediate job data are per-
sisted to disk so that failed reduce tasks can also be restarted without
requiring the re-execution of map tasks.

4.8. System Administration 61

4.8 System Administration

System administration for MapReduce systems is a less established
area compared to database administration as done by DBAs. MapRe-
duce system deployments are administered predominantly by cluster
operations personnel, some of whom may specialize per system layer
(e.g., HDFS operations staff). Some notable differences between paral-
lel database systems and MapReduce systems make it harder to tune
MapReduce systems for high performance. For example, it is common
in MapReduce systems to interpret data (lazily) at processing time,
rather than (eagerly) at loading time. Hence, properties of the input
data (e.g., schema) may not be known.

Furthermore, there are many possible ways in which a MapRe-
duce job J in a workload that runs on a MapReduce system could
have been generated. A user could have generated J by writing the
map and reduce functions in some programming language like Java
or Python. J could have been generated by query-based interfaces like
Pig or Hive that convert queries specified in some higher-level language
to a workflow of MapReduce jobs. J could have been generated by
program-based interfaces like Cascading or FlumeJava [55] that inte-
grate MapReduce job definitions into popular programming languages.
This spectrum of choice in MapReduce job generation increases the
complexity of administrative tasks like system monitoring, diagnosing
the cause of poor performance, performance tuning, and capacity plan-
ning.

5
Dataflow Systems

The application domain for data-intensive analytics is moving towards
complex data-processing tasks such as statistical modeling, graph anal-
ysis, machine learning, and scientific computing. While MapReduce can
be used for these tasks, its restrictive programming and execution mod-
els pose problems from an ease of use as well as a performance perspec-
tive for many of these tasks. Consequently, recent Dataflow systems are
extending the MapReduce framework with a more generalized dataflow-
based execution model. In particular, Spark [200], Hyracks [42], and
Nephele [34] have been developed to generalize the MapReduce execu-
tion model by supporting new primitive operations in addition to Map
and Reduce. For example, in the case of Spark, data after every step
is stored as Resilient Distributed Datasets (RDDs) which can reside in
memory rather than be persisted to disk.

A number of systems in this category aim at replacing MapRe-
duce altogether with flexible dataflow-based execution models that can
express a wide range of data access and communication patterns. Var-
ious dataflow-based execution models have been proposed, including
directed acyclic graphs in Dryad [119], serving trees in Dremel [153],
and bulk synchronous parallel processing in Pregel [148].

62

5.1. Data Model and Interfaces 63

Figure 5.1: Typical dataflow software stacks along with the Hadoop stack.

Figure 5.1 summarizes some common dataflow software stacks com-
prised of various systems at the storage, execution, and query levels.
HDFS is the most popular storage layer shared by most stacks, while
the Cosmos Storage System [54] is used in the Dryad stack, and GFS
[96] and Bigtable [58] are used in the Google stack. Dryad is the ex-
ecution engine used predominantly by Microsoft with the higher-level
languages DryadLINQ [120] and SCOPE [204] completing the Dryad
stack. RDD, Spark, and Shark, developed at Berkeley’s AMP Lab, com-
plete the Berkeley Data Analytics Stack (BDAS) and have a strong
emphasis on utilizing the memory on the compute nodes. ASTERIX
and Stratosphere are both open-source platforms for large-scale data
analytics with similar execution engines and interfaces. Finally, the
Google stack contains more specialized systems including the original
MapReduce, Tenzing, Dremel, and Pregel.

5.1 Data Model and Interfaces

Dataflow systems typically work with flexible data models supporting
a wide range of data formats such as unstructured or semi-structured
text, binary sequence files, JSON, XML, nested structured text, and
relational data. The processing of data by the various systems in this
category follows a common theme and consists of (a) a set of compu-
tational vertices that define local processing on a partition of the data,

64 Dataflow Systems

and (b) a set of communication edges that define data transfers or
transformations between the vertices. The main difference among the
systems is how the vertices and edges are arranged for data processing:

• The Directed Acyclic Graph (DAG) pattern is the most popu-
lar one. Dryad, Spark, Hyracks, and Nephele are all DAG-based
dataflow systems.

• The restricted graph form of a tree is used by Dremel in order to
run aggregation queries over large datasets in near real time.

• The generalized graph form of a directed graph (i.e., with cycles)
is used by Pregel to support large-scale iterative processing.

The query interfaces exposed by the various dataflow systems can be
divided into three categories: (i) domain-specific languages that de-
clare a programming language API and are used by Dryad, Hyracks,
Nephele, and Pregel, (ii) functional programming interfaces that are
used by DryadLINQ and Spark, and (iii) declarative languages that re-
semble SQL and are used by SCOPE, Shark, AQL, Meteor, Tenzing,
and Dremel. Depending on their category, the various query interfaces
provide interesting tradeoffs between expressiveness, declarativity, and
optimizability. The lower-level, domain-specific languages exposed by
systems like Dryad and Nephele, exhibit the highest level of expressive-
ness but at the expense of programming simplicity and optimization op-
portunities. At the other end of the spectrum, declarative languages like
SCOPE have well-defined but constrained semantics that are amenable
to similar optimizations as in relational databases (discussed in §5.4).
Functional programming interfaces offered by DryadLINQ and Spark
have many declarative constructs but also have a strong emphasis on
user-defined functions, allowing the user to trade declarativity and op-
timizability for expressiveness.

Dryad’s domain-specific language, implemented via a C++ library,
is used to create and model a Dryad execution graph [197]. The graph
consists of computational vertices and edges written using standard
C++ constructs. Pregel [148] also exposes a C++ API for implement-
ing arbitrary graph algorithms over various graph representations. On

5.1. Data Model and Interfaces 65

the other hand, Hyracks [42] and Nephele [34] are implemented in Java
and thus expose a Java-based API. Similar to Dryad, Hyracks allows
users to express a computation as a DAG of data operators (vertices)
and connectors (edges). Operators process partitions of input data and
produce partitions of output data, while connectors repartition oper-
ator outputs to make the newly-produced partitions available at the
consuming operators.

Nephele uses the Parallelization Contracts (PACT) programming
model [11], a generalization of the well-known MapReduce program-
ming model. The PACT model extends MapReduce with more second-
order functions (namely, Map, Reduce, Match, CoGroup, and Cross),
as well as with “Output Contracts” that give guarantees about the be-
havior of a function. Complete PACT programs are workflows of user
functions, starting with one or more data sources and ending with one
or more data sinks.

DryadLINQ [120] is a hybrid of declarative and imperative lan-
guage layers that targets the Dryad run-time and uses the Language
INtegrated Query (LINQ) model [152]. DryadLINQ provides a set of
.NET constructs for programming with datasets. A DryadLINQ pro-
gram is a sequential program composed of LINQ expressions that
perform arbitrary side-effect-free transformations on datasets. While
DryadLINQ is implemented using .Net, Spark is implemented in Scala,
a statically-typed high-level programming language for the Java Virtual
Machine. Spark exposes a functional programming interface similar to
DryadLINQ in Scala, Python, and Java.

SCOPE (Structured Computations Optimized for Parallel Execu-
tion) [204], Shark [195], the ASTERIX Query Language (AQL) [35],
Meteor [138] and Tenzing [59] provide SQL-like declarative languages
on top of Dryad, Spark, Hyracks, Nephele, and Google’s MapReduce,
respectively. In particular, SCOPE supports writing a program using
traditional nested SQL expressions as well as a series of simple data
transformations, while Shark has chosen to be compatible with Apache
Hive using HiveQL. Meteor is an operator-oriented query language that
uses a JSON-like data model to support the analysis of unstructured
and semi-structured data. Dremel [153] also exposes a SQL-like inter-

66 Dataflow Systems

face with extra constructs to query nested data since its data model is
based on strongly-typed nested records. Each SQL statement in Dremel
(and the algebraic operators it translates to) takes as input one or mul-
tiple nested tables and the input schema, and produces a nested table
and its output schema.

5.2 Storage Layer

There are four distinct storage layers used among the various dataflow
systems for storing and accessing data. The most typical storage layer
is an independent distributed file system such as GFS or HDFS. The
second category includes distributed wide columnar stores like Bigtable
and HBase, which operate on top of GFS and HDFS respectively. The
third storage layer is an in-memory data storage layer that utilizes extra
memory on the compute nodes, while the last one is a nested columnar
storage layer.

Distributed File Systems: Most distributed file systems used in re-
cent large-scale data analytics systems were influenced by or derived
from the Google File System (GFS) [96]. In GFS, large files are broken
into small pieces that are replicated and distributed across the local
disks of the cluster nodes. The architecture of HDFS described in §4.2
is derived from the architecture of GFS.

The Pregel system can directly use GFS, whereas Hyracks, Nephele,
and Spark use HDFS. In addition to GFS, Pregel can also process data
stored in Bigtable. Dryad uses the Cosmos Storage System [54], an
append-only distributed file system also inspired by GFS. Dryad also
offers support for accessing files stored on the local NTFS file system
as well as tables stored in SQLServer databases running on the cluster
nodes [119].

The typical distributed file systems are optimized for large se-
quential reads and writes while serving single-writer, multiple-reader
workloads. Therefore, they work best for batch processing systems like
Hadoop, Hyracks, and Nephele. However, stores like GFS and HDFS
are not suitable for systems that require concurrent write operations
or applications that prefer a record-oriented abstraction of the data.

5.2. Storage Layer 67

Wide columnar stores (and key-value stores in general) were designed
as a layer on top of these distributed file systems to address the needs
of such applications.

Wide Columnar Stores: Wide columnar (or column-family) stores
employ a distributed, column-oriented data structure that accommo-
dates multiple attributes per key. The most prominent example of a
wide columnar store is Google’s Bigtable [58], a distributed, versioned,
column-oriented, key-value store that is well suited for sparse datasets.
Each Bigtable table is stored as a multidimensional sparse map, with
rows and columns, where each cell contains a timestamp and an as-
sociated arbitrary byte array. A cell value at a given row and column
is uniquely identified by the tuple <table, row, column-family:column,
timestamp>. All table accesses are based on the aforementioned pri-
mary key, while secondary indices are possible through additional index
tables.

HBase [95] is the open-source equivalent of Bigtable, and it is built
on top of HDFS supporting Hadoop MapReduce. Similar to Bigtable,
HBase features compression, in-memory operation, and Bloom filters on
a per-column basis. Accumulo [18] is also based on the Bigtable design
and is built on top of Hadoop, Zookeeper, and Thrift. Compared to
Bigtable and HBase, Accumulo features cell-based access control and
a server-side programming mechanism that can modify key-value pairs
at various points in the data management process.

Similar to HBase, Cassandra [20] also follows Bigtable’s data model
and implements tables as distributed multidimensional maps indexed
by a key. Both systems offer secondary indexes, use data replication
for fault tolerance both within and across data centers, and have sup-
port for Hadoop MapReduce. However, Cassandra has a vastly different
architecture: all nodes in the cluster have the some role and coordi-
nate their activities using a pure peer-to-peer communication protocol.
Hence, there is no single point of failure. Furthermore, Cassandra of-
fers a tunable level of consistency per operation, ranging from weak, to
eventual, to strong consistency. HBase, on the other hand, offers strong
consistency by design.

In-memory Data Storage: A Resilient Distributed Dataset (RDD) is

68 Dataflow Systems

a distributed shared memory abstraction that represents an immutable
collection of objects partitioned across a set of nodes [199]. Each RDD
is either a collection backed by an external storage system, such as a
file in HDFS, or a derived dataset created by applying various data-
parallel operators (e.g., map, group-by, hashjoin) to other RDDs. The
elements of an RDD need not exist in physical storage or reside in
memory explicitly; instead, an RDD can contain only the lineage infor-
mation necessary for computing the RDD elements starting from data
in reliable storage. This notion of lineage is crucial for achieving fault
tolerance in case a partition of an RDD is lost as well as managing how
much memory is used by RDDs. Currently, RDDs are used by Spark
with HDFS as the reliable back-end store.

Nested Columnar Storage: The demand for more interactive anal-
ysis of large datasets has led to the development of a new columnar
storage format on top of a distributed file system that targets nested
data. Dremel [153] uses this nested columnar data layout on top of
GFS and Bigtable. The data model is based on strongly-typed nested
records with a schema that forms a tree hierarchy, originating from
Protocol Buffers [167]. The key ideas behind the nested columnar for-
mat are: (i) a lossless representation of record structure by encoding
the structure directly into the columnar format, (ii) fast encoding of
column stripes by creating a tree of writers whose structure matches
the field hierarchy in the schema, and (iii) efficient record assembly by
utilizing finite state machines [153].

Several data serialization formats are now widely used for storing
and transferring data, irrespective of the storage layer used. Protocol
Buffers [167] are a method of serializing structured or semi-structured
data in a compact binary format. This framework includes an Inter-
face Definition Language (IDL) that describes the structure of the data
and a program that generates source code in various programming lan-
guages to represent the data from that description. Apache Thrift [6]
offers similar features to Protocol Buffers, with the addition of a con-
crete Remote Procedural Call (RPC) protocol stack to use with the de-
fined data and services. Apache Avro [19] is also an RPC and serializa-
tion framework developed initially within the Apache Hadoop project.

5.3. Execution Engine 69

Unlike Protocol Buffers and Thrift, Avro uses JSON for defining data
types and protocols, and hence does not require a code-generation pro-
gram. However, code generation is available in Avro for statically typed
languages as an optional optimization.

5.3 Execution Engine

The dataflow-based execution models are what distinguish dataflow
systems from MapReduce systems the most. Dryad, Spark, Hyracks,
and Nephele all execute directed acyclic graphs of data processing units.
Given the high degree of similarity among the execution engines of the
aforementioned systems, we have chosen to only elaborate on Dryad’s
execution engine. The remaining two execution models are the serving
trees used in Dremel and the bulk synchronous parallel processing used
in Pregel.

A Dryad job is a Directed Acyclic Graph (DAG) where each vertex
defines the operations that are to be performed on the data and each
edge represents the flow of data between the connected vertices. Ver-
tices can have an arbitrary number of input and output edges. At exe-
cution time, vertices become processes communicating with each other
through data channels (edges) used to transport a finite sequence of
data records. The physical implementation of the channel abstraction
is realized by shared memory, TCP pipes, or disk files. The inputs to
a Dryad job are typically stored as partitioned files in the distributed
file system. Each input partition is represented as a source vertex in
the job graph and any processing vertex that is connected to a source
vertex reads the entire partition sequentially through its input channel.

Figure 5.2 shows the Dryad system architecture. The execution of a
Dryad job is orchestrated by a centralized Job Manager. The primary
function of the Job Manager is to construct the run-time DAG from its
logical representation and execute it in the cluster. The Job Manager
is also responsible for scheduling the vertices on the processing nodes
when all the inputs are ready, monitoring progress, and re-executing
vertices upon failure. A Dryad cluster has a Name Server that enumer-
ates all the available compute nodes and exposes their location within

70 Dataflow Systems

Figure 5.2: Dryad system architecture.

the network so that scheduling decisions can take better account of lo-
cality. There is a Processing Daemon running on each cluster node that
is responsible for creating processes on behalf of the Job Manager. Each
process corresponds to a vertex in the graph. The Processing Daemon
acts as a proxy so that the Job Manager can communicate with the
remote vertices and monitor the state and progress of the computation.

Dremel [153]—with corresponding open-source systems, Cloudera
Impala [65] and Apache Drill [21]—uses the concept of a multi-level
serving tree borrowed from distributed search engines [70] to execute
queries. When a root server receives an incoming query, it will rewrite
the query into appropriate subqueries based on metadata information,
and then route the subqueries down to the next level in the serving
tree. Each serving level performs a similar rewriting and re-routing.
Eventually, the subqueries will reach the leaf servers, which commu-
nicate with the storage layer or access the data from local disk. On
the way up, the intermediate servers perform a parallel aggregation of
partial results until the result of the query is assembled back in the
root server.

Many practical applications involve iterative computations and

5.4. Query Optimization 71

graph processing. While MapReduce and general dataflow systems can
be used for such applications, they are not ideal for iterative and graph
algorithms that often better fit a message passing model. For this rea-
son, Pregel [148] introduced a new execution model inspired by the
Bulk Synchronous Parallel model [190]. A typical Pregel computation
consists of: (i) initializing the graph from the input, (ii) performing a
sequence of iterations separated by global synchronization points un-
til the algorithm terminates, and (iii) writing the output. Similar to
dataflow systems, each vertex executes the same user-defined function
that expresses the logic of a given algorithm. Within each iteration, a
vertex can modify its state or that of its outgoing edges, receive mes-
sages sent to it in the previous iteration, send messages to other vertices
(to be received in the next iteration), or even mutate the topology of
the graph.

5.4 Query Optimization

Dataflow systems combine benefits from both traditional parallel
databases and MapReduce execution engines to deliver scalability and
performance through various optimization techniques. Static rule-based
optimization is fairly common in most systems that expose higher level
interfaces, like DryadLINQ, SCOPE, and AQL. Lower-level systems
like Dryad and Spark offer mechanisms for dynamic optimization, while
some systems (e.g., SCOPE) support cost-based optimization.

Static Rule-based Optimization: Many of the traditional query
rewrite optimization rules from database systems—removing unneces-
sary columns, pushing down selection predicates, and pre-aggregating
when possible—are applicable to systems offering SQL-like interfaces.
SCOPE, DryadLINQ, and AQL have their own rule-based optimiz-
ers for applying such rules to the query plan, optimizing locality, and
improving performance [42, 197, 204]. DryadLINQ also allows users
to specify various annotations that are treated as manual hints and
are used to guide optimizations that the system is unable to perform
automatically. For example, annotations can be used to declare a user-
defined function as associative or commutative, enabling optimizations

72 Dataflow Systems

such as eager aggregation [120]. Finally, Nephele uses certain declar-
ative aspects of the second-order functions of the PACT programs to
guide a series of transformation and optimization rules for generating
an efficient parallel dataflow plan [34].

Dynamic Run-time Optimization: Both Dryad and Spark sup-
port dynamic optimizations for mutating the execution graph based
on run-time information such as statistics of the dataset processed. In
particular, Dryad supports a callback mechanism that can be used to
implement various run-time optimization policies [119]. For example,
after a set of vertices produces an intermediate data set to be consumed
by the next set of vertices, Dryad can dynamically choose the degree
of parallelism (i.e., change the number of vertices while preserving the
graph topology) based on the amount of generated data. Another dy-
namic optimization supported by Dryad is the addition of vertices to
create deeper aggregation trees. The new layer of vertices will process
subsets of the data that are close in network topology (e.g., on the
same node or rack) to perform partial aggregation and thus reduce the
overall network traffic between racks [197].

Shark supports dynamic query optimization in a distributed setting
via offering support for partial DAG execution (PDE); a technique that
allows dynamic alteration of query plans based on data statistics col-
lected at run-time [195]. Shark uses PDE to select the best join strategy
at run-time based on the exact sizes of the join’s input as well as to
determine the degree of parallelism for operators and mitigate skew.

Cost-based Query Optimization: The SCOPE optimizer is a
transformation-based optimizer inspired by the Cascades framework
[98] that translates input scripts into efficient execution plans. Hence,
it can apply many of the traditional optimization rules from database
systems such as column pruning and filter predicate push down. In
addition to traditional optimization techniques, the SCOPE optimizer
reasons about partitioning, grouping, and sorting properties in a single
uniform framework, and seamlessly generates and optimizes both serial
and parallel query plans [205]. The SCOPE optimizer considers such
alternative plans from a large plan space, and chooses the plan with
the lowest estimated cost based on data statistics and an internal cost

5.5. Scheduling 73

model. The cost model of the optimizer is similar to the analytical cost
models used in classic parallel database systems.

5.5 Scheduling

The primary goal of scheduling in dataflow systems is identical to the
goal in MapReduce systems, namely, schedule tasks on nodes so that
high data locality can be obtained. All dataflow systems contain a
scheduling component that implements one or more scheduling tech-
niques for placing vertices close to their input data, rerunning failed
vertices, and performing straggler mitigation.

Dryad offers an interesting choice between two scheduling ap-
proaches. On one hand, a Job Manager can contain its own internal
scheduler that chooses which node each vertex should be executed on.
This decision is based on the network topology exposed by the cluster’s
Name Server. One the other hand, the Job Manager can send its list of
ready vertices and their constraints to a centralized scheduler that op-
timizes placement across multiple jobs running concurrently [119]. The
Dryad Scheduler will then decide which physical resources to schedule
work on and how to route data between computations. Note that the
channel type can affect scheduling. In particular, TCP requires both
vertices to run at the same time, while shared-memory requires both
vertices to run in the same process. Finally, the Scheduler has grouping
heuristics to ensure that each vertex has no more than a set number of
inputs, or a set volume of input data to process. These heuristics help
avoid overloading the vertex as well as the I/O system [204].

The schedulers in the other dataflow systems described in this chap-
ter are more similar to the MapReduce schedulers. Spark, in particular,
uses a FIFO scheduler with delay scheduling [198], even though other
schedulers can be used [200]. Dremel’s Query Dispatcher is in charge
of scheduling and will also take into consideration priorities for each
query as well as try to balance the load across the cluster [153]. Pregel
offers support for preemptive scheduling and will sometimes kill vertex
instances or move them to different nodes based on the overall cluster
utilization [148].

74 Dataflow Systems

5.6 Resource Management

The support for dynamic query optimization in some dataflow sys-
tems, like Dryad and Spark, has the potential to greatly improve the
overall resource utilization of the cluster. An application, for example,
can discover the size and placement of data at run-time, and modify
the graph as the computation progresses to make efficient use of the
available resources [119].

Dryad also offers techniques for improving resource utilization on
individual nodes. Even though most vertices contain purely sequen-
tial code, Dryad supports an event-based programming style that uses
asynchronous interfaces and a shared thread pool to run multiple ver-
tices within the same process. The run-time automatically distinguishes
between vertices which can use a thread pool and those that require a
dedicated thread; therefore, encapsulated graphs that contain hundreds
of asynchronous vertices are executed efficiently on a shared thread pool
[197].

Spark also uses multi-threading to run multiple vertices within
the same JVM process [200]. However, the main difference of Spark
from Dryad is that it uses a memory abstraction—called Resilient Dis-
tributed Datasets—to explicitly store data in memory.

Hadoop NextGen (or YARN) is a new framework for cluster re-
source management and was discussed in detail in §4.6. Mesos [111] is a
similar platform for sharing cluster resources between multiple different
frameworks (like MapReduce and MPI). Mesos consists of aMaster that
manages the Slave daemons running on each cluster node as well as the
cluster resources. Each framework consists of a Scheduler for making
scheduling decisions and an Executor for running the framework’s tasks
on each cluster node. The Master and Slave in Mesos are equivalent to
YARN’s ResourceManager and NodeManager respectively, while the
Scheduler in Mesos is similar to YARN’s ApplicationMaster.

The main difference between YARN and Mesos lies within their
resource models. In YARN, the ApplicationMaster requests containers
with a given specification and locality preferences, and the ResourceM-
anager grants the requests as resources become available. On the other
hand, the Master in Mesos decides how many resources to offer to each

5.7. Fault Tolerance 75

framework, and the framework’s Scheduler decides which of the offered
resources to use and how. Currently, Mesos supports control for CPU
(in terms of number of cores) and memory. For example, the Master
can offer 2 CPU cores and 4GB of memory on node N to a framework,
and the framework’s Scheduler can decide that it will use 1 CPU core
and 1GB of memory for running task X, and 1 CPU core and 3GB of
memory for running task Y. The Scheduler also has the option of reject-
ing a particular resource offer in anticipation of an offer for resources
on a different cluster node.

5.7 Fault Tolerance

The fault-tolerance features offered by the dataflow systems are very
similar to the ones offered by MapReduce systems in that vertices get
re-executed in case of a failure. The channel type in Dryad, however,
can affect the number of vertices to get re-executed. If files are used,
then only the failed vertex gets re-executed. If TCP or shared-memory
is used, then the set of all vertices involved in the communication will
have to get re-executed. Spark, which handles data in memory, achieves
fault tolerance through the notion of lineage in its Resilient Distributed
Datasets (RDD). If a partition of an RDD is lost, then the RDD has
enough information about how it was derived from other RDDs to be
able to rebuild just that partition [200].

In Dremel, the Query Dispatcher (the entity responsible for schedul-
ing) provides fault tolerance when one server becomes much slower than
others or a data replica becomes unreachable by taking advantage of the
specialized aggregation tree topology [153]. Fault tolerance in Pregel is
achieved through checkpointing [148]. At the beginning of each itera-
tion, the state of each vertex is persisted to storage. Upon failure, a
master coordinator reassigns graph partitions to the currently available
set of workers, which reload their corresponding partition state from
the most recently available checkpoint.

76 Dataflow Systems

5.8 System Administration

The current state of system administration in dataflow systems is sim-
ilar to the state of system administration in MapReduce systems as
discussed in §4.8. However, from an architectural perspective, dataflow
systems have more similarities to parallel database systems compared
to the similarities between MapReduce systems and parallel database
systems. Thus, it is conceivable that DBAs for parallel database sys-
tems have an easier time adapting their skills to administer dataflow
systems compared to MapReduce systems.

6
Conclusions

A major part of the challenge in data analytics today comes from the
sheer volume of data available for processing. Data volumes that many
companies want to process in timely and cost-efficient ways have grown
steadily from the multi-gigabyte range to terabytes and now to many
petabytes. The data storage and processing techniques that we pre-
sented in this monograph were aimed at handling such large datasets.
This challenge of dealing with very large datasets has been termed the
volume challenge. There are two other related challenges, namely, those
of velocity and variety [82].

The velocity challenge refers to the short response-time require-
ments for collecting, storing, and processing data. Most of the systems
that we covered in this monograph are batch systems. For latency-
sensitive applications, such as identifying potential fraud and recom-
mending personalized content, batch data processing is insufficient. The
data may need to be processed as it streams into the system in order
to extract the maximum utility from the data. There is an increasing
appetite towards getting query results faster.

The variety challenge refers to the growing list of data types—
relational, time series, text, graphs, audio, video, images, genetic

77

78 Conclusions

codes—as well as the growing list of analysis techniques on such data.
New insights are found while analyzing more than one of these data
types together. The storage and processing techniques that we have
seen in this monograph (especially in Chapters 2 and 3) are predom-
inantly aimed at handling data that can be represented using a rela-
tional model (rows and columns) and processed by query plan operators
like filters, joins, and aggregation. However, the new and emerging data
types cannot be captured easily in a relational data model, or analyzed
easily by software that depends on running operators like filters, joins,
and aggregation. Instead, the new and emerging data types need a va-
riety of analytical techniques such as linear algebra, statistical machine
learning, text search, signal processing, natural language processing,
and iterative graph processing.

These challenges are shaping the new research trends in massively
parallel data processing. We will conclude the monograph with a sum-
mary of the recent research trends aimed at addressing these challenges.

6.1 Mixed Systems

The need to reduce the gap between the generation of data and the
generation of analytics results over this data has led to systems that
can support both OLTP and OLAP workloads in a single system. On
one hand, scalable distributed storage systems that provide various
degrees of transactional capabilities are being developed. Support for
transactions enables these systems to serve as the data store for on-
line services while making the data available concurrently in the same
system for analytics. The most prominent example here is Google’s
Bigtable system which is a distributed, versioned, and column-oriented
system that stores multi-dimensional and sorted datasets [58]. Bigtable
provides atomicity at the level of individual tuples.

Bigtable has motivated popular open-source implementations like
Accumulo [18], HBase [23], and Cassandra [131] (recall §5.2), as well
as follow-up systems from Google such as Megastore [31] and Spanner
[69]. Megastore and Spanner provide more fine-grained transactional
support compared to Bigtable without sacrificing performance require-

6.1. Mixed Systems 79

ments in any significant way. Megastore supports ACID transactions
at the level of user-specified groups of tuples called entity groups, and
looser consistency across entity groups. Spanner supports transactions
at a global scale across data centers.

Traditionally, parallel databases have used different systems to sup-
port OLTP and OLAP [88, 101, 125]. OLTP workloads are character-
ized by a mix of reads and writes to a few tuples at a time, typically
through index structures like B-Trees. OLAP workloads are character-
ized by bulk updates and large sequential scans that read only a few
columns at a time. However, newer database workloads are increas-
ingly a mix of the traditional OLTP and OLAP workloads. For ex-
ample, “available-to-promise” applications require OLTP-style queries
while aggregating stock levels in real-time using OLAP-style queries to
determine if an order can be fulfilled [101]. A recent benchmark tries to
capture the current trend in database systems towards scenarios with
mixed workloads [66].

Systems like HYRISE, HyPer, and SAP HANA aim to support
OLTP and OLAP in a single system [88, 101, 125]. One of the challenges
these systems face is that data layouts that are good for OLTP may not
be good for OLAP, and vice versa. For example, HYRISE partitions
tables into vertical groups of varying widths depending on how the
columns of the tables are accessed. Smaller column groups are preferred
for OLAP-style data access while wider column groups are preferred
for OLTP-style data access (to reduce cache misses when performing
single row retrievals). Being an in-memory system, HYRISE identifies
the best column grouping based on a detailed cost model of cache
performance in mixed OLAP/OLTP settings [101].

HyPer complements columnar data layouts with sophisticated
main-memory indexing structures based on hashing, balanced search
trees (e.g., red-black trees), and radix trees [125]. Hash indexes enable
exact match (e.g., primary key) accesses that are the most common in
transactional processing, while the tree-structured indexes are essential
for small-range queries that are also encountered here.

80 Conclusions

Figure 6.1: Overview of SAP HANA’s architecture.

6.2 Memory-based Systems

Given the steadily increasing memory sizes in commodity servers, a
number of memory-based systems are being developed such as SAP
HANA. Figure 6.1 gives an overview of the general SAP HANA ar-
chitecture [88]. A set of in-memory processing engines forms the core
of this architecture. Relational data resides in tables in column or row
layout in the combined column and row engine, and can be converted
from one layout to the other to allow query expressions with tables in
both layouts. Graph data (e.g., XML, JSON) and text data reside in
the graph engine and the text engine respectively; more engines are
possible due to the extensible architecture.

All engines in SAP HANA keep all data in main memory as long
as there is enough space available. All data structures are optimized
for cache-efficiency instead of being optimized for organization in tra-
ditional disk blocks. Furthermore, the engines compress the data using
a variety of compression schemes. When the limit of available main
memory is reached, entire data objects, e.g., tables or partitions, are

6.3. Stream Processing Systems 81

unloaded from main memory under the control of application semantics
and reloaded into main memory when they are required again. While
virtually all data is kept in main memory by the processing engines for
performance reasons, data is stored by the persistence layer for backup
and recovery in case of a system restart after an explicit shutdown or
a failure [88].

Memory-based extensions and improvements on current systems
have also been proposed. M3R (Main Memory MapReduce) [175] is
a framework that extends Hadoop for running MapReduce jobs in
memory. M3R caches input and output data in memory, performs in-
memory shuffling, and always maps the same partition to the same
location across all jobs in a sequence in order to allow for the re-use of
already built memory structures. PowerDrill [102] is a column-oriented
datastore similar to Dremel, but it relies on having as much data in
memory as possible. PowerDrill uses two dictionaries as basic data
structures for representing a data column and employs several opti-
mizations for keeping the memory footprint of these structures small.

6.3 Stream Processing Systems

Timely analysis of activity and operational data is critical for com-
panies to stay competitive. Activity data from a company’s Web-site
contains page and content views, searches, as well as advertisements
shown and clicked. This data is analyzed for purposes like behavioral
targeting, where personalized content is shown based on a user’s past
activity, and showing advertisements or recommendations based on the
activity of her social friends [56]. Operational data includes monitoring
data collected from Web applications (e.g., request latency) and cluster
resources (e.g., CPU usage). Proactive analysis of operational data is
used to ensure that Web applications continue to meet all service-level
requirements.

The vast majority of analysis over activity and operational data
involves continuous queries. A continuous query Q is a query that is
issued once over data D that is constantly updated. Q runs contin-
uously over D and lets users get new results as D changes, without

82 Conclusions

having to issue the same query repeatedly. Continuous queries arise
naturally over activity and operational data because of two reasons: (i)
the data is generated continuously in the form of append-only streams;
(ii) the data has a time component such that recent data is usually
more relevant than older data.

The growing interest in continuous queries is reflected by the engi-
neering resources that companies have recently been investing in build-
ing continuous query execution platforms. Yahoo! released S4 in 2010,
Twitter released Storm in 2011, and Walmart Labs released Muppet in
2012 [132, 156, 182]. Also prominent are recent efforts to add contin-
uous querying capabilities to the popular Hadoop platform for batch
analytics. Examples include the Oozie workflow manager, MapReduce
Online, and Facebook’s real-time analytics system [44, 67, 161]. These
platforms add to older research projects like Aurora [3], Borealis [1],
NiagaraCQ [62], STREAM [28], and TelegraphCQ [57], as well as com-
mercial systems like Esper [86], Infosphere Streams [38], StreamBase
[183], and Truviso [91].

Some of the features of streaming systems have been added to the
categories of systems discussed in the monograph. One example is in-
cremental processing where a query over data D is processed quickly
based on minimal additional processing done on top of a previous exe-
cution of the same query on a previous snapshot of D [87, 150, 154, 158].
NOVA is a workflow manager that supports incremental processing of
continuously arriving data. NOVA is implemented on top of Pig and
Hadoop without any modifications to these systems [158]. REX is a par-
allel query processing platform that supports recursive queries based
on incremental refinement of results [154].

Another example is the use of techniques like one-pass process-
ing and sampling to return quick, but approximate, answers for long-
running queries over large datasets. For example, BlinkDB is a query
processing framework for running queries interactively on large volumes
of data [7]. BlinkDB uses pre-computed samples of data to enable quick
retrieval of approximate query results. Dynamic MapReduce jobs that
can terminate early after producing a query result sample are pro-
posed in [100]. The EARL system produces query results quickly with

6.4. Graph Processing Systems 83

reliable accuracy estimates [135]. EARL uses uniform sampling and
works iteratively to compute larger samples until the given accuracy
level is reached (estimated through bootstrapping). MapReduce Online
[67] can also generate approximate answers to MapReduce jobs using
online aggregation [106] rather than sampling. In MapReduce Online,
data produced by the Map tasks is pipelined directly to the Reduce
tasks, allowing the latter to generate and refine an approximation of
the final answer during the course of job execution.

6.4 Graph Processing Systems

For a growing number of applications, the data takes the form of graphs
that connect many millions of nodes. The growing need for managing
graph-shaped data comes from applications such as: (a) identifying in-
fluential people and trends propagating through a social-networking
community, (b) tracking patterns of how diseases spread, and (c) find-
ing and fixing bottlenecks in computer networks.

The analysis needs of such applications not only include processing
the attribute values of the nodes in the graph, but also analyzing the
way in which these nodes are connected. The relational data model
can be a hindrance in representing graph data as well as expressing
analysis tasks over this data especially when the data is distributed
and has some complex structure. Graph databases—which use graph
structures with nodes, edges, and their properties to represent and store
data—are being developed to support such applications [141, 148, 194].

There are many techniques for how to store and process graphs.
The effectiveness of these techniques depend on the amount of data—
the number of nodes, edges, along with the size of data associated
with them—and the types of analysis tasks, e.g., search and pattern-
matching versus more complex analytics tasks such as finding strongly
connected components, maximal independent sets, and shortest paths.

Many graph databases such as Pregel [148] use the Bulk Syn-
chronous Parallel (BSP) computing model (recall §5.3). Like the map
and reduce functions in MapReduce, Pregel has primitives that let
neighboring nodes send and receive messages to one another, or change

84 Conclusions

the state of a node (based on the state of neighboring nodes). Graph
algorithms are specified as a sequence of iterations built from such
primitives. GraphLab uses similar primitives (called PowerGraph) but
allows for asynchronous iterative computations [141]. GraphX runs on
Spark and introduces a new abstraction called Resilient Distributed
Graph (RDG). Graph algorithms are specified as a sequence of trans-
formations on RDGs, where a transformation can affect nodes, edges,
or both, and yields a new RDG [194].

Techniques have also been proposed to support the iterative and re-
cursive computational needs of graph analysis in the categories of sys-
tems that we have considered in this monograph. For example, HaLoop
and Twister are designed to support iterative algorithms in MapReduce
systems [47, 83]. HaLoop employs specialized scheduling techniques
and the use of caching between each iteration, whereas Twister relies
on a publish/subscribe mechanism to handle all communication and
data transfers. PrIter, a distributed framework for iterative workloads,
enables faster convergence of iterative tasks by providing support for
prioritized iteration [202]. Efficient techniques to run recursive algo-
rithms needed in machine-learning tasks are supported by the Hyracks
dataflow system [171].

6.5 Array Databases

For many applications involving time-series analysis, image or video
analysis, climate modeling, and scientific simulation, the data is best
represented as arrays. An array represents a homogeneous collection of
data items sitting on a regular grid of one, two, or more dimensions.
While array storage and processing can be simulated in the relational
data model and SQL, this process is usually cumbersome and inefficient
[203]. Array databases make arrays first-class citizens in the database
so that flexible, scalable storage and processing of array-based data can
be performed.

SciDB is a recent effort to build an array database [180]. SciQL
is an array query language being added to the MonetDB system [126].
Both systems treat arrays at the same level at which relational database

6.5. Array Databases 85

systems treat tables, instead of the array-valued attribute type specified
by the ISO SQL standard. Due to the massive array sizes and complex
array-based queries observed in scientific and engineering applications,
these systems employ a variety of techniques to optimize array storage
and processing.

References

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çet-
intemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner,
Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime Tatbul, Ying
Xing, and Stanley B. Zdonik. The Design of the Borealis Stream Pro-
cessing Engine. In Proc. of the 3rd Biennial Conf. on Innovative Data
Systems Research, 2005.

[2] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column
Oriented Database Systems. Proc. of the VLDB Endowment, 2(2):1664–
1665, 2009.

[3] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. Aurora: A New Model and Architecture for Data Stream
Management. The VLDB Journal, 12(2):120–139, 2003.

[4] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Mad-
den. Materialization Strategies in a Column-Oriented DBMS. In Proc.
of the 23rd IEEE Intl. Conf. on Data Engineering, pages 466–475. IEEE,
2007.

[5] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Alexander
Rasin, and Avi Silberschatz. HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Workloads. Proc.
of the VLDB Endowment, 2(1):922–933, 2009.

[6] Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. Thrift: Scal-
able Cross-Language Services Implementation, 2007. http://thrift.
apache.org/static/files/thrift-20070401.pdf.

86

http://thrift.apache.org/static/files/thrift-20070401.pdf
http://thrift.apache.org/static/files/thrift-20070401.pdf

References 87

[7] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. BlinkDB: Queries with Bounded Er-
rors and Bounded Response Times on Very Large Data. In Proc. of the
8th European Conf. on Computer Systems, pages 29–42. ACM, 2013.

[8] Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic Physical
Design Tuning: Workload as a Sequence. In Proc. of the 2006 ACM
SIGMOD Intl. Conf. on Management of Data, pages 683–694. ACM,
2006.

[9] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. Integrating Verti-
cal and Horizontal Partitioning into Automated Physical Database De-
sign. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management
of Data, pages 359–370. ACM, 2004.

[10] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and Marios Sk-
ounakis. Weaving Relations for Cache Performance. The VLDB Jour-
nal, 1:169–180, 2001.

[11] Alexander Alexandrov, Max Heimel, Volker Markl, Dominic Battré,
Fabian Hueske, Erik Nijkamp, Stephan Ewen, Odej Kao, and Daniel
Warneke. Massively Parallel Data Analysis with PACTs on Nephele.
Proc. of the VLDB Endowment, 3(1-2):1625–1628, 2010.

[12] Amazon RedShift, 2013. http://aws.amazon.com/redshift/.
[13] Amazon Simple Storage Service (S3), 2013. http://aws.amazon.com/

s3/.
[14] Apache Hadoop, 2012. http://hadoop.apache.org/.
[15] Apache Hadoop Capacity Scheduler, 2013. http://hadoop.apache.

org/docs/r1.1.2/capacity_scheduler.html.
[16] Apache Hadoop Fair Scheduler, 2013. http://hadoop.apache.org/

docs/r1.1.2/fair_scheduler.html.
[17] Apache Hadoop on Demand, 2013. http://hadoop.apache.org/docs/

stable/hod_scheduler.html.
[18] Apache Accumulo, 2013. http://accumulo.apache.org/.
[19] Apache Avro, 2013. http://avro.apache.org/.
[20] Apache Cassandra, 2013. http://cassandra.apache.org/.
[21] Apache Drill, 2013. http://incubator.apache.org/drill/.
[22] Apache Hadoop NextGen MapReduce (YARN), 2013. http://hadoop.

apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.
html.

http://aws.amazon.com/redshift/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r1.1.2/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.1.2/capacity_scheduler.html
http://hadoop.apache.org/docs/r1.1.2/fair_scheduler.html
http://hadoop.apache.org/docs/r1.1.2/fair_scheduler.html
http://hadoop.apache.org/docs/stable/hod_scheduler.html
http://hadoop.apache.org/docs/stable/hod_scheduler.html
http://accumulo.apache.org/
http://avro.apache.org/
http://cassandra.apache.org/
http://incubator.apache.org/drill/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

88 References

[23] Apache HBase, 2013. http://hbase.apache.org/.
[24] Apache HCatalog, 2013. http://incubator.apache.org/hcatalog/.
[25] Aster Data nCluster, 2012. http://www.asterdata.com/product/

ncluster_cloud.php.
[26] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,

J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones,
J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson.
System R: Relational Approach to Database Management. ACM Trans.
on Database Systems (TODS), 1(2):97–137, 1976.

[27] Shivnath Babu. Towards Automatic Optimization of MapReduce Pro-
grams. In Proc. of the 1st Symp. on Cloud Computing, pages 137–142.
ACM, 2010.

[28] Shivnath Babu and Jennifer Widom. Continuous Queries over Data
Streams. ACM SIGMOD Record, 30(3):109–120, 2001.

[29] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. An Analy-
sis of Data Corruption in the Storage Stack. ACM Trans. on Storage
(TOS), 4(3):8, 2008.

[30] Kamil Bajda-Pawlikowski, Daniel J Abadi, Avi Silberschatz, and Erik
Paulson. Efficient Processing of Data Warehousing Queries in a Split
Execution Environment. In Proc. of the 2011 ACM SIGMOD Intl. Conf.
on Management of Data, pages 1165–1176. ACM, 2011.

[31] Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey Khorlin,
James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. Megastore: Providing Scalable, Highly Available Storage for
Interactive Services. In Proc. of the 5th Biennial Conf. on Innovative
Data Systems Research, pages 223–234, 2011.

[32] Ronald Barber, Peter Bendel, Marco Czech, Oliver Draese, Frederick
Ho, Namik Hrle, Stratos Idreos, Min-Soo Kim, Oliver Koeth, Jae-Gil
Lee, Tianchao Tim Li, Guy M. Lohman, Konstantinos Morfonios, René
Müller, Keshava Murthy, Ippokratis Pandis, Lin Qiao, Vijayshankar Ra-
man, Richard Sidle, Knut Stolze, and Sandor Szabo. Business Analytics
in (a) Blink. IEEE Data Engineering Bulletin, 35(1):9–14, 2012.

[33] C. K. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran, S. Padman-
abhan, G. P. Copeland, and W. G. Wilson. DB2 Parallel Edition. IBM
Systems Journal, 34(2):292–322, 1995.

http://hbase.apache.org/
http://incubator.apache.org/hcatalog/
http://www.asterdata.com/product/ncluster_cloud.php
http://www.asterdata.com/product/ncluster_cloud.php

References 89

[34] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker
Markl, and Daniel Warneke. Nephele/PACTs: A Programming Model
and Execution Framework for Web-scale Analytical Processing. In Proc.
of the 1st Symp. on Cloud Computing, pages 119–130. ACM, 2010.

[35] Alexander Behm, Vinayak R Borkar, Michael J Carey, Raman Grover,
Chen Li, Nicola Onose, Rares Vernica, Alin Deutsch, Yannis Papakon-
stantinou, and Vassilis J Tsotras. ASTERIX: Towards a Scalable,
Semistructured Data Platform for Evolving-world Models. Distributed
and Parallel Databases, 29(3):185–216, 2011.

[36] K. Beyer, V. Ercegovac, and E. Shekita. Jaql: A JSON query language.
http://www.jaql.org.

[37] Kevin S Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mo-
hamed Eltabakh, Carl-Christian Kanne, Fatma Ozcan, and Eugene J
Shekita. Jaql: A Scripting Language for Large Scale Semistructured
Data Analysis. Proc. of the VLDB Endowment, 4(12):1272–1283, 2011.

[38] Alain Biem, Eric Bouillet, Hanhua Feng, Anand Ranganathan, Anton
Riabov, Olivier Verscheure, Haris Koutsopoulos, and Carlos Moran.
IBM Infosphere Streams for Scalable, Real-time, Intelligent Transporta-
tion Services. In Proc. of the 2010 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 1093–1104. ACM, 2010.

[39] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery
Processor Powered by a Relational Engine. In Proc. of the 2006 ACM
SIGMOD Intl. Conf. on Management of Data, pages 479–490. ACM,
2006.

[40] Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. of the 2nd Biennial Conf.
on Innovative Data Systems Research, pages 225–237, 2005.

[41] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping Bubba, a Highly
Parallel Database System. IEEE Trans. on Knowledge and Data Engi-
neering, 2(1):4–24, 2002.

[42] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and
Rares Vernica. Hyracks: A Flexible and Extensible Foundation for Data-
intensive Computing. In Proc. of the 27th IEEE Intl. Conf. on Data
Engineering, pages 1151–1162. IEEE, 2011.

[43] Andrea J. Borr. Transaction Monitoring in ENCOMPASS: Reliable
Distributed Transaction Processing. In Proc. of the 7th Intl. Conf. on
Very Large Data Bases, pages 155–165, 1981.

http://www.jaql.org

90 References

[44] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo
Schmidt, and Amitanand S. Aiyer. Apache Hadoop Goes Realtime at
Facebook. In Proc. of the 2011 ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 1071–1080. ACM, 2011.

[45] Bobby-Joe Breitkreutz, Chris Stark, Mike Tyers, et al. Osprey: A Net-
work Visualization System. Genome Biol, 4(3):R22, 2003.

[46] Kurt P. Brown, Manish Mehta, Michael J. Carey, and Miron Livny.
Towards Automated Performance Tuning for Complex Workloads. In
Proc. of the 20th Intl. Conf. on Very Large Data Bases, pages 72–84.
VLDB Endowment, 1994.

[47] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael Ernst.
HaLoop: Efficient Iterative Data Processing on Large Clusters. Proc. of
the VLDB Endowment, 3(1-2):285–296, 2010.

[48] Ron Buck. The Oracle Media Server for nCUBE Massively Parallel
Systems. In Proc. of the 8th Intl. Parallel Processing Symposium, pages
670–673. IEEE, 1994.

[49] Michael J. Cafarella and Christopher Ré. Manimal: Relational Opti-
mization for Data-Intensive Programs. In Proc. of the 13th Intl. Work-
shop on the Web and Databases, pages 10:1–10:6. ACM, 2010.

[50] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild
Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng
Wu, Huseyin Simitci, et al. Windows Azure Storage: A Highly Avail-
able Cloud Storage Service with Strong Consistency. In Proc. of the 23rd
ACM Symp. on Operating Systems Principles, pages 143–157. ACM,
2011.

[51] Michael J. Carey, Miron Livny, and Hongjun Lu. Dynamic Task Allo-
cation in a Distributed Database System. In Proc. of the 5th Intl. Conf.
on Distributed Computing Systems, pages 282–291. IEEE, 1985.

[52] Cascading, 2011. http://www.cascading.org/.
[53] Stefano Ceri, Mauro Negri, and Giuseppe Pelagatti. Horizontal Data

Partitioning in Database Design. In Proc. of the 1982 ACM SIGMOD
Intl. Conf. on Management of Data, pages 128–136, 1982.

[54] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren
Shakib, Simon Weaver, and Jingren Zhou. SCOPE: Easy and Efficient
Parallel Processing of Massive Data Sets. Proc. of the VLDB Endow-
ment, 1(2):1265–1276, 2008.

http://www.cascading.org/

References 91

[55] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. Flume-
Java: Easy, Efficient Data-parallel Pipelines. In Proc. of the 2010 ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, pages 363–375, 2010.

[56] Badrish Chandramouli, Jonathan Goldstein, and Songyun Duan. Tem-
poral Analytics on Big Data for Web Advertising. In Proc. of the 28th
IEEE Intl. Conf. on Data Engineering, pages 90–101. IEEE, 2012.

[57] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R Madden, Fred Reiss, and Mehul A Shah. TelegraphCQ: Con-
tinuous Dataflow Processing. In Proc. of the 2003 ACM SIGMOD Intl.
Conf. on Management of Data, pages 668–668. ACM, 2003.

[58] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable: A Distributed Storage System for Struc-
tured Data. ACM Trans. on Computer Systems, 26(2):4, 2008.

[59] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal,
Prathyusha Aragonda, Vera Lychagina, Younghee Kwon, and Michael
Wong. Tenzing: A SQL Implementation on the MapReduce Framework.
Proc. of the VLDB Endowment, 4(12):1318–1327, 2011.

[60] Surajit Chaudhuri, Arnd Christian König, and Vivek R. Narasayya.
SQLCM: A Continuous Monitoring Framework for Relational Database
Engines. In Proc. of the 20th IEEE Intl. Conf. on Data Engineering,
pages 473–484, 2004.

[61] Chandra Chekuri, Waqar Hasan, and Rajeev Motwani. Scheduling
Problems in Parallel Query Optimization. In Proc. of the 14th ACM
Symp. on Principles of Database Systems, pages 255–265. ACM, 1995.

[62] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Nia-
garaCQ: A Scalable Continuous Query System for Internet Databases.
In Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of
Data, pages 379–390. ACM, 2000.

[63] Ming-Syan Chen and Philip S. Yu. Interleaving a Join Sequence with
Semijoins in Distributed Query Processing. IEEE Trans. on Parallel
Distributed Systems, 3(5):611–621, 1992.

[64] Songting Chen. Cheetah: A High Performance, Custom DataWarehouse
on Top of MapReduce. Proc. of the VLDB Endowment, 3(2):1459–1468,
2010.

92 References

[65] Cloudera Impala, 2013. http://www.cloudera.com/content/
cloudera/en/products/cdh/impala.html.

[66] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kem-
per, Stefan Krompass, Harumi A. Kuno, Raghunath Othayoth Nambiar,
Thomas Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric
Simon, and Florian Waas. The Mixed Workload CH-benCHmark. In
Proc. of the 4th Intl. Workshop on Testing Database Systems. ACM,
2011.

[67] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. MapReduce Online. In Proc.
of the 7th USENIX Symp. on Networked Systems Design and Imple-
mentation, volume 10. USENIX Association, 2010.

[68] George P. Copeland and Setrag Khoshafian. A Decomposition Storage
Model. In Proc. of the 1985 ACM SIGMOD Intl. Conf. on Management
of Data, pages 268–279, 1985.

[69] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David
Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. Spanner: Google’s Globally-distributed Database. In
Proc. of the 10th USENIX Symp. on Operating Systems Design and
Implementation, page 1. USENIX Association, 2012.

[70] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines:
Information Retrieval in Practice. Addison-Wesley Reading, 2010.

[71] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Au-
tomating the Database Schema Evolution Process. The VLDB Journal,
22(1):73–98, 2013.

[72] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proc. of the 6th USENIX Symp. on Op-
erating Systems Design and Implementation, pages 137–149. USENIX
Association, 2004.

[73] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM, 51(1):107–113,
2008.

[74] Amol Deshpande and Lisa Hellerstein. Flow Algorithms for Parallel
Query Optimization. In Proc. of the 24th IEEE Intl. Conf. on Data
Engineering, pages 754–763. IEEE, 2008.

http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products/cdh/impala.html

References 93

[75] David J DeWitt, Shahram Ghandeharizadeh, Donovan A. Schneider,
Allan Bricker, H-I Hsiao, and Rick Rasmussen. The Gamma Database
Machine Project. IEEE Trans. on Knowledge and Data Engineering,
2(1):44–62, 1990.

[76] David J. DeWitt and Jim Gray. Parallel Database Systems: The Future
of High Performance Database Systems. Communications of the ACM,
35(6):85–98, 1992.

[77] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Se-
shadri. Practical Skew Handling in Parallel Joins. In Proc. of the 18th
Intl. Conf. on Very Large Data Bases, pages 27–40. VLDB Endowment,
1992.

[78] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,
and Graham Wood. Automatic Performance Diagnosis and Tuning in
Oracle. In Proc. of the 3rd Biennial Conf. on Innovative Data Systems
Research, pages 84–94, 2005.

[79] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient Big Data
Processing in Hadoop MapReduce. Proc. of the VLDB Endowment,
5(12):2014–2015, 2012.

[80] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin,
Vinay Setty, and Jörg Schad. Hadoop++: Making a Yellow Elephant
Run Like a Cheetah. Proc. of the VLDB Endowment, 3(1-2):515–529,
2010.

[81] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Stefan Richter, Stefan Schuh,
Alekh Jindal, and Jörg Schad. Only Aggressive Elephants are Fast
Elephants. Proc. of the VLDB Endowment, 5(11):1591–1602, 2012.

[82] 3-D Data Management: Controlling Data Volume, Velocity and Variety,
2013. Doug Laney, Research Note, META Group, February 2001.

[83] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-
Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: A Runtime for Iterative
MapReduce. In Proc. of the 19th Intl. Symposium on High Performance
Distributed Computing, pages 810–818. ACM, 2010.

[84] Mohamed Y Eltabakh, Yuanyuan Tian, Fatma Özcan, Rainer Gemulla,
Aljoscha Krettek, and John McPherson. CoHadoop: Flexible Data
Placement and its Exploitation in Hadoop. Proc. of the VLDB En-
dowment, 4(9):575–585, 2011.

94 References

[85] Susanne Englert, Jim Gray, Terrye Kocher, and Praful Shah. A Bench-
mark of NonStop SQL Release 2 Demonstrating Near-Linear Speedup
and Scaleup on Large Databases. In Proc. of the 1990 ACM SIGMET-
RICS Intl. Conf. on Measurement and Modeling of Computer Systems,
pages 245–246. ACM, 1990.

[86] Esper, 2013. http://esper.codehaus.org/.
[87] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl.

Spinning Fast Iterative Data Flows. Proc. of the VLDB Endowment,
5(11):1268–1279, 2012.

[88] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo
Müller, Hannes Rauhe, and Jonathan Dees. The SAP HANADatabase –
An Architecture Overview. IEEE Data Engineering Bulletin, 35(1):28–
33, 2012.

[89] Avrilia Floratou, Jignesh M Patel, Eugene J Shekita, and Sandeep
Tata. Column-oriented Storage Techniques for MapReduce. Proc. of
the VLDB Endowment, 4(7):419–429, 2011.

[90] Avrilia Floratou, Nikhil Teletia, David J DeWitt, Jignesh M Patel, and
Donghui Zhang. Can the Elephants Handle the NoSQL Onslaught?
Proc. of the VLDB Endowment, 5(12):1712–1723, 2012.

[91] Michael J Franklin, Sailesh Krishnamurthy, Neil Conway, Alan Li, Alex
Russakovsky, and Neil Thombre. Continuous Analytics: Rethinking
Query Processing in a Network-Effect World. In Proc. of the 4th Bien-
nial Conf. on Innovative Data Systems Research. Citeseer, 2009.

[92] Eric Friedman, Peter Pawlowski, and John Cieslewicz.
SQL/MapReduce: A Practical Approach to Self-Describing, Poly-
morphic, and Parallelizable User-Defined Functions. Proc. of the
VLDB Endowment, 2(2):1402–1413, 2009.

[93] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy. Query Opti-
mization for Parallel Execution. In Proc. of the 1992 ACM SIGMOD
Intl. Conf. on Management of Data, pages 9–18. ACM, 1992.

[94] Alan F. Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath,
Shravan M. Narayanamurthy, Christopher Olston, Benjamin Reed,
Santhosh Srinivasan, and Utkarsh Srivastava. Building a High-Level
Dataflow System on top of Map-Reduce: The Pig Experience. Proc. of
the VLDB Endowment, 2(2):1414–1425, 2009.

[95] Lars George. HBase: The Definitive Guide. O’Reilly Media, 2011.

http://esper.codehaus.org/

References 95

[96] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
File System. ACM SIGOPS Operating Systems Review, 37(5):29–43,
2003.

[97] Goetz Graefe. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. on Knowledge and Data Engineering, 6(1):120–
135, 1994.

[98] Goetz Graefe. The Cascades Framework for Query Optimization. IEEE
Data Engineering Bulletin, 18(3):19–29, 1995.

[99] Greenplum, 2012. http://www.greenplum.com.
[100] Raman Grover and Michael J. Carey. Extending Map-Reduce for Effi-

cient Predicate-Based Sampling. In Proc. of the 28th IEEE Intl. Conf.
on Data Engineering, pages 486–497. IEEE, 2012.

[101] Martin Grund, Philippe Cudré-Mauroux, Jens Krüger, Samuel Madden,
and Hasso Plattner. An overview of HYRISE - a Main Memory Hybrid
Storage Engine. IEEE Data Engineering Bulletin, 35(1):52–57, 2012.

[102] Alexander Hall, Olaf Bachmann, Robert Büssow, Silviu Gănceanu, and
Marc Nunkesser. Processing a Trillion Cells per Mouse Click. Proc. of
the VLDB Endowment, 5(11):1436–1446, 2012.

[103] Wook-Shin Han, Jack Ng, Volker Markl, Holger Kache, and Mokhtar
Kandil. Progressive Optimization in a Shared-nothing Parallel
Database. In Proc. of the 2007 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 809–820. ACM, 2007.

[104] Waqar Hasan and Rajeev Motwani. Coloring Away Communication in
Parallel Query Optimization. In Proc. of the 21st Intl. Conf. on Very
Large Data Bases, pages 239–250. VLDB Endowment, 1995.

[105] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong
Zhang, and Zhiwei Xu. RCFile: A Fast and Space-efficient Data Place-
ment Structure in MapReduce-based Warehouse Systems. In Proc. of
the 27th IEEE Intl. Conf. on Data Engineering, pages 1199–1208. IEEE,
2011.

[106] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. Online Aggre-
gation. In Proc. of the 1997 ACM SIGMOD Intl. Conf. on Management
of Data, pages 171–182. ACM, 1997.

[107] Herodotos Herodotou and Shivnath Babu. Xplus: A SQL-Tuning-Aware
Query Optimizer. Proc. of the VLDB Endowment, 3(1-2):1149–1160,
2010.

http://www.greenplum.com

96 References

[108] Herodotos Herodotou, Nedyalko Borisov, and Shivnath Babu. Query
Optimization Techniques for Partitioned Tables. In Proc. of the 2011
ACM SIGMOD Intl. Conf. on Management of Data, pages 49–60. ACM,
2011.

[109] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No One (Cluster)
Size Fits All: Automatic Cluster Sizing for Data-intensive Analytics. In
Proc. of the 2nd Symp. on Cloud Computing. ACM, 2011.

[110] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang
Dong, Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A Self-tuning
System for Big Data Analytics. In Proc. of the 5th Biennial Conf. on
Innovative Data Systems Research, 2011.

[111] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos:
A Platform for Fine-grained Resource Sharing in the Data Center. In
Proc. of the 8th USENIX Symp. on Networked Systems Design and Im-
plementation. USENIX Association, 2011.

[112] Jeffrey A. Hoffer and Dennis G. Severance. The Use of Cluster Analysis
in Physical Data Base Design. In Proc. of the 1st Intl. Conf. on Very
Large Data Bases, pages 69–86. ACM, 1975.

[113] Wei Hong and Michael Stonebraker. Optimization of Parallel Query
Execution Plans in XPRS. Distributed and Parallel Databases, 1(1):9–
32, 1993.

[114] Hui-I Hsiao and David J. DeWitt. Chained Declustering: A New Avail-
ability Strategy for Multiprocessor Database Machines. In Proc. of the
6th IEEE Intl. Conf. on Data Engineering, pages 456–465, 1990.

[115] IBM Corporation2. Partitioned Tables, 2007. http://publib.
boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.
luw.admin.partition.doc/doc/c0021560.html.

[116] IBM Netezza Data Warehouse Appliances, 2012. http://www-01.ibm.
com/software/data/netezza/.

[117] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd
Mullender, and Martin L. Kersten. MonetDB: Two Decades of Research
in Column-oriented Database Architectures. IEEE Data Engineering
Bulletin, 35(1):40–45, 2012.

[118] Infobright, 2013. http://www.infobright.com/.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://www-01.ibm.com/software/data/netezza/
http://www-01.ibm.com/software/data/netezza/
http://www.infobright.com/

References 97

[119] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks. ACM SIGOPS Operating Systems Review, 41(3):59–
72, 2007.

[120] Michael Isard and Yuan Yu. Distributed Data-Parallel Computing Us-
ing a High-Level Programming Language. In Proc. of the 2009 ACM
SIGMOD Intl. Conf. on Management of Data, pages 987–994. ACM,
2009.

[121] Ming-Yee Iu and Willy Zwaenepoel. HadoopToSQL: A MapReduce
Query Optimizer. In Proc. of the 5th European Conf. on Computer
Systems, pages 251–264. ACM, 2010.

[122] Alekh Jindal, Jorge-Arnulfo Quian-Ruiz, and Jens Dittrich. Trojan Data
Layouts: Right Shoes for a Running Elephant. In Proc. of the 2nd Symp.
on Cloud Computing. ACM, 2011.

[123] Tim Kaldewey, Eugene J Shekita, and Sandeep Tata. Clydesdale: Struc-
tured Data Processing on MapReduce. In Proc. of the 15th Intl. Conf.
on Extending Database Technology, pages 15–25. ACM, 2012.

[124] Kamal Kc and Kemafor Anyanwu. Scheduling Hadoop Jobs to Meet
Deadlines. In Proc. of the 2nd IEEE Intl. Conf. on Cloud Computing
Technology and Science, pages 388–392. IEEE, 2010.

[125] Alfons Kemper, Thomas Neumann, Florian Funke, Viktor Leis, and
Henrik Mühe. HyPer: Adapting Columnar Main-Memory Data Manage-
ment for Transactional AND Query Processing. IEEE Data Engineering
Bulletin, 35(1):46–51, 2012.

[126] Martin L. Kersten, Ying Zhang, Milena Ivanova, and Niels Nes. SciQL, a
Query Language for Science Applications. In Proc. of the EDBT/ICDT
Workshop on Array Databases, pages 1–12. ACM, 2011.

[127] Kosmos Distributed Filesystem, 2013. http://code.google.com/p/
kosmosfs/.

[128] Donald Kossmann. The State of the Art in Distributed Query Process-
ing. ACM Computing Surveys (CSUR), 32(4):422–469, 2000.

[129] Stefan Krompass, Umeshwar Dayal, Harumi A. Kuno, and Alfons Kem-
per. Dynamic Workload Management for Very Large Data Warehouses:
Juggling Feathers and Bowling Balls. In Proc. of the 33rd Intl. Conf.
on Very Large Data Bases, pages 1105–1115. VLDB Endowment, 2007.

http://code.google.com/p/kosmosfs/
http://code.google.com/p/kosmosfs/

98 References

[130] Stefan Krompass, Harumi A. Kuno, Janet L. Wiener, Kevin Wilkinson,
Umeshwar Dayal, and Alfons Kemper. Managing Long-running Queries.
In Proc. of the 13th Intl. Conf. on Extending Database Technology, pages
132–143. ACM, 2009.

[131] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. Operating Systems Review, 44(2):35–40,
2010.

[132] Wang Lam, Lu Liu, STS Prasad, Anand Rajaraman, Zoheb Vacheri,
and AnHai Doan. Muppet: MapReduce-Style Processing of Fast Data.
Proc. of the VLDB Endowment, 5(12):1814–1825, 2012.

[133] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben
Vandiver, Lyric Doshi, and Chuck Bear. The Vertica Analytic Database:
C-store 7 Years Later. Proc. of the VLDB Endowment, 5(12):1790–1801,
2012.

[134] Rosana S. G. Lanzelotte, Patrick Valduriez, and Mohamed Zaït. On the
Effectiveness of Optimization Search Strategies for Parallel Execution
Spaces. In Proc. of the 19th Intl. Conf. on Very Large Data Bases, pages
493–504. Morgan Kaufmann Publishers Inc., 1993.

[135] Nikolay Laptev, Kai Zeng, and Carlo Zaniolo. Early Accurate Results
for Advanced Analytics on MapReduce. Proc. of the VLDB Endowment,
5(10):1028–1039, 2012.

[136] Kyong-Ha Lee, Yoon-Joon Lee, Hyunsik Choi, Yon Dohn Chung, and
Bongki Moon. Parallel Data Processing with MapReduce: a Survey.
ACM SIGMOD Record, 40(4):11–20, 2011.

[137] Rubao Lee, Tian Luo, Yin Huai, Fusheng Wang, Yongqiang He, and
Xiaodong Zhang. YSmart: Yet Another SQL-to-MapReduce Translator.
In Proc. of the 31st Intl. Conf. on Distributed Computing Systems, pages
25–36. IEEE, 2011.

[138] Marcus Leich, Jochen Adamek, Moritz Schubotz, Arvid Heise, Astrid
Rheinländer, and Volker Markl. Applying Stratosphere for Big Data
Analytics. In Proc. of the 15th USENIX Annual Technical Conference,
pages 507–510, 2013.

[139] Harold Lim, Herodotos Herodotou, and Shivnath Babu. Stubby: A
Transformation-based Optimizer for MapReduce Workflows. Proc. of
the VLDB Endowment, 5(11):1196–1207, 2012.

References 99

[140] Yuting Lin, Divyakant Agrawal, Chun Chen, Beng Chin Ooi, and Sai
Wu. Llama: Leveraging Columnar Storage for Scalable Join Processing
in the MapReduce Framework. In Proc. of the 2011 ACM SIGMOD
Intl. Conf. on Management of Data, pages 961–972. ACM, 2011.

[141] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos
Guestrin, and Joseph M. Hellerstein. Distributed GraphLab: A Frame-
work for Machine Learning in the Cloud. Proc. of the VLDB Endow-
ment, 5(8):716–727, 2012.

[142] Hongjun Lu. Query Processing in Parallel Relational Database Systems.
IEEE Computer Society Press, 1st edition, 1994.

[143] Hongjun Lu, Ming-Chien Shan, and Kian-Lee Tan. Optimization of
Multi-Way Join Queries for Parallel Execution. In Proc. of the 17th Intl.
Conf. on Very Large Data Bases, pages 549–560. VLDB Endowment,
1991.

[144] Hongjun Lu and Kian-Lee Tan. Dynamic and Load-balanced Task-
Oriented Datbase Query Processing in Parallel Systems. In Proc. of
the 3rd Intl. Conf. on Extending Database Technology, pages 357–372.
ACM, 1992.

[145] Hongjun Lu and Kian-Lee Tan. Load Balanced Join Processing in
Shared-Nothing Systems. Journal of Parallel and Distributed Comput-
ing, 23(3):382–398, 1994.

[146] Soren Macbeth. Why YieldBot Chose Cascalog over Pig for Hadoop
Processing, 2011. http://tech.backtype.com/52456836.

[147] Roger MacNicol and Blaine French. Sybase IQ Multiplex-designed for
Analytics. In Proc. of the 30th Intl. Conf. on Very Large Data Bases,
pages 1227–1230. VLDB Endowment, 2004.

[148] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System
for Large-scale Graph Processing. In Proc. of the 2010 ACM SIGMOD
Intl. Conf. on Management of Data, pages 135–146. ACM, 2010.

[149] MapR File System, 2013. http://www.mapr.com/products/
apache-hadoop.

[150] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. Differential Dataflow. In Proc. of the 6th Biennial Conf. on
Innovative Data Systems Research, 2013.

[151] Manish Mehta and David J. DeWitt. Data Placement in Shared-
Nothing Parallel Database Systems. The VLDB Journal, 6(1):53–72,
1997.

http://tech.backtype.com/52456836
http://www.mapr.com/products/apache-hadoop
http://www.mapr.com/products/apache-hadoop

100 References

[152] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling
Object, Relations and XML in the .NET Framework. In Proc. of the
2006 ACM SIGMOD Intl. Conf. on Management of Data, pages 706–
706. ACM, 2006.

[153] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: Inter-
active Analysis of Web-Scale Datasets. Proc. of the VLDB Endowment,
3(1):330–339, 2010.

[154] Svilen R Mihaylov, Zachary G Ives, and Sudipto Guha. REX: Recursive,
Delta-based Data-centric Computation. Proc. of the VLDB Endowment,
5(11):1280–1291, 2012.

[155] Tony Morales. Oracle Database VLDB and Partitioning Guide 11g Re-
lease 1 (11.1). Oracle Corporation, 2007. http://docs.oracle.com/
cd/B28359_01/server.111/b32024.pdf.

[156] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4:
Distributed Stream Computing Platform. In Proc. of the 2010 IEEE
Intl. Conf. on Data Mining Workshops. IEEE, 2010.

[157] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kol-
lios, and Nick Koudas. MRShare: Sharing Across Multiple Queries in
MapReduce. Proc. of the VLDB Endowment, 3(1):494–505, 2010.

[158] Christopher Olston, Greg Chiou, Laukik Chitnis, Francis Liu, Yiping
Han, Mattias Larsson, Andreas Neumann, Vellanki B. N. Rao, Vi-
jayanand Sankarasubramanian, Siddharth Seth, Chao Tian, Topher Zi-
Cornell, and Xiaodan Wang. Nova: Continuous Pig/Hadoop Workflows.
In Proc. of the 2011 ACM SIGMOD Intl. Conf. on Management of Data,
pages 1081–1090. ACM, 2011.

[159] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar,
and Andrew Tomkins. Pig Latin: A Not-So-Foreign Language for Data
Processing. In Proc. of the 2008 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 1099–1110. ACM, 2008.

[160] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J.
O’Neil. The Log-Structured Merge-Tree (LSM-Tree). Acta Informatica,
33(4):351–385, 1996.

[161] Oozie: Workflow Engine for Hadoop, 2010. http://yahoo.github.
com/oozie/.

[162] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram
Rao, and Jim Kelly. The Quantcast File System. Proc. of the VLDB
Endowment, 6(11), 2013.

http://docs.oracle.com/cd/B28359_01/server.111/b32024.pdf
http://docs.oracle.com/cd/B28359_01/server.111/b32024.pdf
http://yahoo.github.com/oozie/
http://yahoo.github.com/oozie/

References 101

[163] HweeHwa Pang, Michael J. Carey, and Miron Livny. Multiclass Query
Scheduling in Real-Time Database Systems. IEEE Trans. on Knowledge
and Data Engineering, 7(4):533–551, 1995.

[164] ParAccel Analytic Platform, 2013. http://www.paraccel.com/.
[165] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In Proc. of the 1985
ACM SIGMOD Intl. Conf. on Management of Data, pages 109–116,
1988.

[166] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David
DeWitt, Samuel Madden, and Michael Stonebraker. A Comparison of
Approaches to Large-Scale Data Analysis. In Proc. of the 2009 ACM
SIGMOD Intl. Conf. on Management of Data, pages 165–178. ACM,
2009.

[167] Protocol Buffers Developer Guide, 2012. https://developers.google.
com/protocol-buffers/docs/overview.

[168] B Thirumala Rao and LSS Reddy. Survey on Improved Scheduling in
Hadoop MapReduce in Cloud Environments. Intl. Journal of Computer
Applications, 34(9):29–33, 2011.

[169] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy M. Lohman. Au-
tomating Physical Database Design in a Parallel Database. In Proc.
of the 2002 ACM SIGMOD Intl. Conf. on Management of Data, pages
558–569, 2002.

[170] Sriram Rao, Raghu Ramakrishnan, Adam Silberstein, Mike Ovsian-
nikov, and Damian Reeves. Sailfish: A Framework for Large Scale Data
Processing. In Proc. of the 3rd Symp. on Cloud Computing, page 4.
ACM, 2012.

[171] Joshua Rosen, Neoklis Polyzotis, Vinayak R. Borkar, Yingyi Bu,
Michael J. Carey, Markus Weimer, Tyson Condie, and Raghu Ramakr-
ishnan. Iterative MapReduce for Large Scale Machine Learning. Com-
puting Research Repository (CoRR), abs/1303.3517, 2013.

[172] Thomas Sandholm and Kevin Lai. Dynamic Proportional Share
Scheduling in Hadoop. In Proc. of the 15th IEEE Intl. Conf. on Data
Mining, pages 110–131. Springer, 2010.

[173] Patricia G. Selinger, Morton M Astrahan, Donald D. Chamberlin, Ray-
mond A Lorie, and Thomas G. Price. Access Path Selection in a Rela-
tional Database Management System. In Proc. of the 1979 ACM SIG-
MOD Intl. Conf. on Management of Data, pages 23–34. ACM, 1979.

http://www.paraccel.com/
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

102 References

[174] Kyuseok Shim. MapReduce Algorithms for Big Data Analysis. Proc. of
the VLDB Endowment, 5(12):2016–2017, 2012.

[175] Avraham Shinnar, David Cunningham, Vijay Saraswat, and Benjamin
Herta. M3R: Increased Performance for In-memory Hadoop Jobs. Proc.
of the VLDB Endowment, 5(12):1736–1747, 2012.

[176] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proc. of the 26th
IEEE Symp. on Mass Storage Systems and Technologies, pages 1–10.
IEEE, 2010.

[177] SQL Server Parallel Data Warehouse, 2012. http://www.
microsoft.com/en-us/sqlserver/solutions-technologies/
data-warehousing/pdw.aspx.

[178] Garrick Staples. TORQUE Resource Manager. In Proc. of the 20th
ACM Intl. Conf. on Supercomputing, page 8. ACM, 2006.

[179] Michael Stillger, Myra Spiliopoulou, and Johann Christoph Freytag.
Parallel Query Optimization: Exploiting Bushy and Pipeline Paral-
lelisms with Genetic Programs. Citeseer, 1996.

[180] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman.
The Architecture of SciDB. In Proc. of the 23rd Intl. Conf. on Scientific
and Statistical Database Management, pages 1–16. IEEE, 2011.

[181] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,
Elizabeth O’Neil, et al. C-Store: A Column-oriented DBMS. In Proc. of
the 31st Intl. Conf. on Very Large Data Bases, pages 553–564. VLDB
Endowment, 2005.

[182] Storm, 2013. http://storm-project.net/.
[183] StreamBase, 2013. http://www.streambase.com/.
[184] Michal Switakowski, Peter A. Boncz, and Marcin Zukowski. From Co-

operative Scans to Predictive Buffer Management. Proc. of the VLDB
Endowment, 5(12):1759–1770, 2012.

[185] Sybase, Inc. Performance and Tuning: Optimizer and Abstract Plans,
2003. http://infocenter.sybase.com/help/topic/com.sybase.
dc20023_1251/pdf/optimizer.pdf.

[186] Ron Talmage. Partitioned Table and Index Strategies Using SQL Server
2008. Microsoft, 2009. http://msdn.microsoft.com/en-us/library/
dd578580.aspx.

http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://storm-project.net/
http://www.streambase.com/
http://infocenter.sybase.com/help/topic/com.sybase.dc20023_1251/pdf/optimizer.pdf
http://infocenter.sybase.com/help/topic/com.sybase.dc20023_1251/pdf/optimizer.pdf
http://msdn.microsoft.com/en-us/library/dd578580.aspx
http://msdn.microsoft.com/en-us/library/dd578580.aspx

References 103

[187] Kian-Lee Tan and Hongjun Lu. On Resource Scheduling of Multi-Join
Queries. Information Processing Letters, 48(4):189–195, 1993.

[188] Teradata, 2012. http://www.teradata.com.
[189] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive: A Warehousing Solution over a Map-Reduce Framework.
Proc. of the VLDB Endowment, 2(2):1626–1629, 2009.

[190] Leslie G Valiant. A Bridging Model for Parallel Computation. Com-
munications of the ACM, 33(8):103–111, 1990.

[191] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and
Carlos Maltzahn. Ceph: A Scalable, High-performance Distributed File
System. In Proc. of the 7th USENIX Symp. on Operating Systems De-
sign and Implementation, pages 307–320. USENIX Association, 2006.

[192] Tom White. Hadoop: The Definitive Guide. Yahoo! Press, 2010.
[193] Sai Wu, Feng Li, Sharad Mehrotra, and Beng Chin Ooi. Query Opti-

mization for Massively Parallel Data Processing. In Proc. of the 2nd
Symp. on Cloud Computing. ACM, 2011.

[194] Reynold Xin, Joseph Gonzalez, and Michael Franklin. GraphX: A Re-
silient Distributed Graph System on Spark. In Proc. of the ACM SIG-
MOD GRADES Workshop. ACM, 2013.

[195] Reynold Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott
Shenker, and Ion Stoica. Shark: SQL and Rich Analytics at Scale. Tech-
nical Report UCB/EECS-2012-214, University of California, Berkeley,
2012.

[196] Mark Yong, Nitin Garegrat, and Shiwali Mohan. Towards a Resource
Aware Scheduler in Hadoop. In Proc. of the 2009 IEEE Intl. Conf. on
Web Services, pages 102–109. IEEE, 2009.

[197] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed Ag-
gregation for Data-parallel Computing: Interfaces and Implementations.
In Proc. of the 22nd ACM Symp. on Operating Systems Principles, pages
247–260. ACM, 2009.

[198] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay Scheduling: A Simple Tech-
nique for Achieving Locality and Fairness in Cluster Scheduling. In
Proc. of the 5th European Conf. on Computer Systems, pages 265–278.
ACM, 2010.

http://www.teradata.com

104 References

[199] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, and
Ion Stoica. Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing. In Proc. of the 9th USENIX
Symp. on Networked Systems Design and Implementation, pages 2–2.
USENIX Association, 2012.

[200] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster Computing with Working Sets.
In Proc. of the 2nd USENIX Conf. on Hot Topics in Cloud Computing.
USENIX Association, 2010.

[201] Bernhard Zeller and Alfons Kemper. Experience Report: Exploiting
Advanced Database Optimization Features for Large-Scale SAP R/3
Installations. In Proc. of the 28st Intl. Conf. on Very Large Data Bases,
pages 894–905. VLDB Endowment, 2002.

[202] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. PrIter: A
Distributed Framework for Prioritized Iterative Computations. In Proc.
of the 2nd Symp. on Cloud Computing, pages 13:1–13:14. ACM, 2011.

[203] Yi Zhang, Herodotos Herodotou, and Jun Yang. RIOT: I/O-Efficient
Numerical Computing without SQL. In Proc. of the 4th Biennial Conf.
on Innovative Data Systems Research, 2009.

[204] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ron-
nie Chaiken, and Darren Shakib. SCOPE: Parallel Databases Meet
MapReduce. The VLDB Journal, 21(5):611–636, 2012.

[205] Jingren Zhou, Per-Åke Larson, and Ronnie Chaiken. Incorporating Par-
titioning and Parallel Plans into the SCOPE Optimizer. In Proc. of the
26th IEEE Intl. Conf. on Data Engineering, pages 1060–1071. IEEE,
2010.

[206] M Zukowski and P Boncz. VectorWise: Beyond Column Stores. IEEE
Data Engineering Bulletin, 35(1):21–27, 2012.

[207] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Co-
operative Scans: Dynamic Bandwidth Sharing in a DBMS. In Proc. of
the 33rd Intl. Conf. on Very Large Data Bases, pages 723–734. VLDB
Endowment, 2007.

	Introduction
	Requirements of Large-scale Data Analytics
	Categorization of Systems
	Categorization of System Features
	Related Work

	Classic Parallel Database Systems
	Data Model and Interfaces
	Storage Layer
	Execution Engine
	Query Optimization
	Scheduling
	Resource Management
	Fault Tolerance
	System Administration

	Columnar Database Systems
	Data Model and Interfaces
	Storage Layer
	Execution Engine
	Query Optimization
	Scheduling
	Resource Management
	Fault Tolerance
	System Administration

	MapReduce Systems
	Data Model and Interfaces
	Storage Layer
	Execution Engine
	Query Optimization
	Scheduling
	Resource Management
	Fault Tolerance
	System Administration

	Dataflow Systems
	Data Model and Interfaces
	Storage Layer
	Execution Engine
	Query Optimization
	Scheduling
	Resource Management
	Fault Tolerance
	System Administration

	Conclusions
	Mixed Systems
	Memory-based Systems
	Stream Processing Systems
	Graph Processing Systems
	Array Databases

	References

