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1 Denotations

So far in class, we have studied operational semantics in depth. In operational semantics, we define a
language by describing the way that it behaves. In a sense, no attempt is made to attach a “meaning” to
terms, outside the way that they are evaluated. For example, the symbol ’elephant doesn’t mean anything
in particular within the language; it’s up to a programmer to mentally associate meaning to the symbol
while defining a program useful for zookeeppers. Similarly, the definition of a sort function has no inherent
meaning in the operational view outside of a particular program. Nevertheless, the programmer knows that
sort manipulates lists in a useful way: it makes animals in a list easier for a zookeeper to find.

In denotational semantics, we define a language by assigning a mathematical meaning to functions;
i.e., we say that each expression denotes a particular mathematical object. We might say, for example, that
a sort implementation denotes the mathematical sort function, which has certain properties independent of
the programming language used to implement it.

In other words, operational semantics defines evaluation by

sourceExpression1 −→ sourceExpression2

whereas denotational semantics defines evaluation by

sourceExpression1
means→ mathematicalEntity1 = mathematicalEntity2

means← sourceExpression2

One advantage of the denotational approach is that we can exploit existing theories by mapping source
expressions to mathematical objects in the theory.

The denotation of expressions in a language is typically defined using a structurally-recursive definition
over expressions. By convention, if e is a source expression, then [[e]] means “the denotation of e”, or “the
mathematical object represented by e”.

As an example, consider a simple language of arithmetic expressions, a:

a = d0e | d1e | d2e | . . .
| (a+ a)
| (a− a)

Naturally, the intended meaning of the expression d1e is the mathematical number one, and the intended
meaning of the expression d1e+d7e is the mathematical number eight. We can formalize this meaning through
the following denotational definitions:

[[d0e]] = 0
[[d1e]] = 1

. . .
[[a1 + a2]] = [[a1]] + [[a2]]
[[a1 − a2]] = [[a1]]− [[a2]] if [[a1]] > [[a2]]
[[a1 − a2]] = 0 if [[a1]] ≤ [[a2]]

In the above definitions, digits, +, −, >, and = appearing outside [[ ]] are mathematical numbers, operators,
and relations (the ones that we’ve known and used for years). From this definition, it’s clear that the meaning
of the expression (d1e + d2e + d3e)− d4e is two.

We might have defined the semantics instead as
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[[d0e]] = 2
[[d1e]] = 4

. . .
[[a1 + a2]] = 0
[[a1 − a2]] = [[a1]] + [[a2]]

This perverse definition of the language may not be especially useful. But it highlights the difference between
source terms, such as d1e and d2e + d5e, and the denotations we can choose to assign to them. From now on
we’ll work for the earlier, more useful definition.

2 Functions

If our source language contains lambda abstractions, such as λx.x, then we can assign a denotation abstrac-
tions by mapping them to mathematical functions. In other words, we will agree that λx.x really means the
identity function. Furthermore, we would like to say that λy.(λx.x)y also means the identity function, and
is just another name for it.

In mathematics, a function is equivalent to a set that pairs inputs and outputs. Thus, the identity
function over natural numbers is

{〈0, 0〉, 〈1, 1〉, 〈2, 2〉, . . .}

If I is the identity function over numbers, then we read the notation I(0) as finding the pair in the set whose
first part is 0, then extracting the second part of the set. The constraint that the set represents a function
ensures that only one element of the set will start with 0.

To allow our language to represent such functions, we extend the arithmetic language with variables,
abstractions, and applications:

a = . . .
| x
| (a a)
| (λx.a)

At first glance, the introduction of variables is troubling. What, for example, is the denotation of the
expression x+ d4e?

One possibility is to say that x+ d4e has no denotation, since x is unbound. But this choice would break
our natural recursive technique for assigning denotations to expressions.

Another approach, and the one that we will take here, is to fundamentally change our denotational
mapping. Instead of mapping digits (e.g., d1e) to mathematical numbers (e.g., one), we will map them to
mathematical functions that take an environment and produce a number. So the denotation of d1e will be
a function that takes an environment and produces 1. Equivalently, the denotation of d1e will be a set of
pairs, where each pair maps an environment to 1:

[[d1e]] = {〈e, 1〉 | ∀e}

where e ranges over functions from variable names to values of some type that is given implicitly. Note that
this view of types is different from our view of types as syntactic restrictions on programs! In this view,
a type corresponds to a set of mathematical objects. (Mathematical objects based on set theory must be
typed, otherwise the theory is not well-founded.)

The denotation of x can now be a function that takes an environment and returns the binding of x in
the environment. Similarly, the denotation of x + d4e will be the function that takes an environment and
returns four more than the value associated with x in the environment.

[[d0e]] = {〈e, 0〉 | ∀e}
[[d1e]] = {〈e, 1〉 | ∀e}

. . .
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[[a1 + a2]] = {〈e, [[a1]]e+ [[a2]]e〉 | ∀e}
[[a1 − a2]] = {〈e, [[a1]]e	 [[a2]]e〉 | ∀e}

where n	m = n−m if n > m
and n	m = 0 if n ≤ m

[[(λx.a)]] = {〈e, f〉 | ∀e, f = {〈v, [[a]]e′〉 | ∀v, e′ = e[v ← x]}}
[[(a1 a2)]] = {〈e, ([[a1]]e)([[a2]]e)〉 | ∀e}

[[x]] = {〈e, v〉 | ∀e, v = e(x)}

As with environments, in the definition of (λx.a) we assume that a type is implicitly given for x, and the ∀v
on the right-hand side means ∀v in the specified type.

We can simplify the notation in our semantics, somewhat. Keeping in mind that mathematical functions
are sets, we can use λ notation to describe mathematical functions. (Thus, λ will appear both in source and
mathematical worlds, just like 1 is used in both worlds.) The above semantics, with the revised notation is

[[d0e]] = λe.0
[[d1e]] = λe.1

. . .
[[a1 + a2]] = λe.[[a1]]e+ [[a2]]e
[[a1 − a2]] = λe.[[a1]]e	 [[a2]]e

where n	m = n−m if n > m
and n	m = 0 if n ≤ m

[[(λx.a)]] = λe.λv.[[a]]e′ where e′ = e[v ← x]
[[(a1 a2)]] = λe.([[a1]]e)([[a2]]e)

[[x]] = λe.e(x)

3 Errors and Continuation Semantics

Now that we have both numbers and functions, some expressions have no denotation. For example, (d2e +
(λx.x)) has no denotation by the above rules. Put another way, [[ ]] is a partial function.

One way to make [[ ]] a complete function is by adding a special error object into our mathematical set of
denotations. Then, we redefine the semantics of our language as follows:

[[d0e]] = λe.0
[[d1e]] = λe.1

. . .
[[a1 + a2]] = λe.[[a1]]e⊕ [[a2]]e

where n⊕m = n+m if n and m are numbers
and n⊕m = error otherwise

[[a1 − a2]] = λe.[[a1]]e	 [[a2]]e
where n	m = n−m if n and m are numbers where n > m
and n	m = 0 if n and m are numbers where n ≤ m
and n	m = error otherwise

[[(λx.a)]] = λe.λv.[[a]]e′ where e′ = e[v ← x]
[[(a1 a2)]] = λe.([[a1]]e)� ([[a2]]e)

where f � v = f(v) if f is a function
and f � v = error otherwise

[[x]] = λe.e� x
where e� x = e(x) if x ∈ dom(e)
and e� x = error otherwise

This semantics has a problem that we’ve seen before: errors may be ignored, due to the lack of value
restrictions in our language. For example, with the above definitions, the denotation of (λy.d1e)(d2e+(λx.x))
is one, even though the denotation of (d2e + (λx.x)) is error.

We can make the order of evaluation explicit, and therefore capture errors correctly, by using an explicit
continuation function. This form of language definition is called a continuation semantics.
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The basic idea behind continuation semantics has an analogue in explaining order of evaluation and errors
in functional languages. For example, the program

(define (g y) (* y y))
(define (f x y) (+ (g x) (g y)))
(f 1 2)

can be re-written

(define (g y k) (k (* y y)))
(define (f x y k)

(g x (lambda (xv)
(g y (lambda (yv)

(k (+ xv yv)))))))
(f 1 2 (lambda (v) v))

Each function has been converted, so that instead of simply returning a value to its context, it always passes
the value to a continuation function. Furthermore, instead of writing nested function calls, the continuation
is always made explicit: inside f, g is first applied to x, and once a result is obtained, g is applied to y.
Finally, after a value is obtained for (g y), the sum can be passed to the continuation given to f. At the
very top level, f is called with a continuation that simply returns the result.

The importance of the transformation is that all function calls are tail calls; no context is ever accumulated
during a call. This property allows g to return an ’error token to the top-level call, without an exception
system or cooperation from f:

(define (g y k) ’error)
(define (f x y k)

(g x (lambda (xv)
(g y (lambda (yv)

(k (+ xv yv)))))))
(f 1 2 (lambda (v) v))

In the above revision, g does not call the continuation function, but instead returns ’error directly. Con-
sequently, the application of g to y in f will never occur, and the final result will be ’error.

To use this idea in our denotational semantics, we must one again change the denotation of simple
constant expressions like d1e. Now, the denotation of d1e will be a function that takes an environment and a
continuation, and applies the continuation (which is a mathematical function) to the mathematical value 1.

[[d0e]] = λeλk.k(0)
[[d1e]] = λeλk.k(1)

. . .
[[a1 + a2]] = λeλk.[[a1]]e(λv1.[[a2]]e(λv2.v1 ⊕k v2))

where n⊕k m = k(n+m) if n and m are numbers
and n⊕k m = error+ otherwise

[[a1 − a2]] = λeλk.[[a1]]e(λv1.[[a2]]e(λv2.v1 	k v2))
where n	k m = k(n−m) if n and m are numbers where n > m
and n	k m = k(0) if n and m are numbers where n ≤ m
and n	k m = error− otherwise

[[(λx.a)]] = λe.λk.k(λv.[[a]]e′) where e′ = e[v ← x]
[[(a1 a2)]] = λeλk.[[a1]]e(λv1.[[a2]]e(λv2.v1 �k v2))

where f �k v = f(v)(k) if f is a function
and f �k v = errora otherwise

[[x]] = λe.λk.e�k x
where e�k x = k(e(x)) if x ∈ dom(e)
and e�k x = errorv otherwise

Note that we can also distinguish between different errors now, with an imposed order of evaluation.
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4 Exercise

Produce a continuation denotational semantics for the following language:

a = 0
| (add1 a)
| (mkaddr a)
| (a a)

Informally, the intended semantics is as follows:

• 0 is zero.

• (add1 a) adds one to a.

• (mkaddr a) creates an adder that adds a to a given number.

• (a1 a2) applies the adder a1 to the number a2.

• Using add1 on a non-number produces error1.

• Using mkaddr on a non-number produces errorm.

• Applying a non-adder produces errora.

• Applying an adder to a non-number produces error+.
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