Quiz

- What type is inferred for ? in the following expression?

$$
\begin{aligned}
& \{\text { with }\{\mathrm{f}:(? \rightarrow \text { ?) }\{\text { fun }\{x: ?\} \text { x }\} \\
& \{f 10\}\}
\end{aligned}
$$

- Answer: num

Quiz

- What type is inferred for ? in the following expression?

```
{with {f : (? -> ?) {fun {x : ?} x}}
    {f {fun {x : num} x}}}
```

- Answer: (num \rightarrow num)

Quiz

- What type is inferred for ? in the following expression?

```
{with {f : (? -> ?) {fun {x : ?} x}}
    {if0 ...
        {f 10}
        {{f {fun {x : num} x}} 8}}}
```

- Answer: None; no single τ works - but it's a perfectly good program for any ... or type num

Polymorphism

- We'd like a way to write a type that the caller chooses:
\{with \{f: ?
[tyfun [alpha]
\{fun \{x : alpha\} x\}]\}
\{if0 ...

```
    {[@ f num] 10}
```

 \{\{[@ f (num -> num)] \{fun \(\{x\) : num\} x\(\}\}\) 8\}\}\}
 This f is polymorphic

- The tyfun form parameterizes over a type
- The @ form picks a type

Polymorphic Types

What is the type of this expression?

```
[tyfun [alpha]
    {fun {x : alpha} x}]
```

It should be something like (alpha \rightarrow alpha), but it needs a specific type before it can be used as a function

Polymorphic Types

What is the type of this expression?

```
[tyfun [alpha]
    [tyfun [beta]
        {fun {x : alpha} x}]]
```

It should be something like (alpha \rightarrow alpha), but picking alpha gives something that still needs another type

New type form: $\forall<t y i d>.<t y e x p>$

$$
\begin{gathered}
\text { Valpha.(alpha } \rightarrow \text { alpha) } \\
\forall \text { alpha. }
\end{gathered}
$$

TPFAE Grammar

```
<TPFAE> ::= <num>
    | {+ <TPFAE> <TPFAE>}
    | {-<TPFAE> <TPFAE>}
    <id>
    | {fun {<id> : <tyexp>} <TPFAE>}
    | {<TPFAE> <TPFAE>}
    | {if0 <TPFAE> <TPFAE> <TPFAE>}
    | [tyfun [<tyid>] <TPFAE>]
    | [@ <TPFAE> <tyexp>]
<tyexp> ::= num
    | (<tyexp> -> <tyexp>)
    | (forall <tyid> <tyexp>)
    | <tyid>
```


TPFAE Type Checking

Polymorphism and Type Definitions

If we mix tyfun with withtype, then we can write

```
{with {f : (forall alpha (alpha -> num))
    [tyfun [alpha]
    {fun {v : alpha}
                            {withtype {list {empty num}
                                {cons (alpha * list)}}
    {rec {len : (list -> num)
        {fun {l : list}
    {cases list l
                            {empty {n} 0}
                        {cons {fxr}
                                    {+ 1 {len {snd fxr}}}}}}}
            {len {cons {pair v
                        {cons {pair v
                                    {empty 0}}}}}}}}}}}}
    {+ {[@ f num] 10}
    {[@ f (num -> num)] {fun {x : num} x}}}}
```

This is a kind of polymorphic list definition
Problem: everything must be under a tyfun

Polymorphism and Type Definitions

Solution: build tyfun-like abstraction into withtype

```
{withtype {{alpha list} {empty num}
                            {cons (alpha * {alpha list})}}
    {rec {len : (forall alpha ({alpha list} -> num))
        [tyfun [alpha]
        {fun {l : {alpha list}}
        {cases {alpha list} l
        {empty {n} 0}
        {cons {fxr}
        {+ 1 {len {snd fxr}}}}}}}}}
{+ {[@ len num] {[@ cons num] {pair 1 {[@ empty num] 0}}}}
    {[@ len (num -> num)] {[@ empty (num -> num)] 0}}}}}
```


Polymorphism and Inference

```
{with {f : (forall alpha (alpha -> alpha))
    [tyfun [alpha]
    {fun {x : alpha}
        x}]}
    {[@ f (num -> num)] {fun {y : num} y}}}
```

The type application [@ f (num \rightarrow num)] is obvious, since we can get the type of \{fun $\{y: n u m\} y\}$

With polymorphism, type inference is usually combined with type-application inference:

```
{with {f : (forall alpha (alpha -> alpha))
    [tyfun [alpha]
        {fun {x : alpha}
        x}]}
    {f {fun {y : num} y}}}
```


Polymorphism and Inference

```
{with {f : ?
    {fun {x : ?}
    x} }
    {f {fun {y: num} {f 10}}}}
```

How about inferring a tyfun around the value of f ?

Yes, with some caveats...

Polymorphism and Inference

Does the following expression have a type?

$$
\{\text { fun }\{x: ?\}\{x \quad x\}\}
$$

Yes, if we infer forall types and type applications:

```
{fun {x : (forall alpha (alpha -> alpha))}
    {[@ x (num -> num)] [@ x num]}}
```

Inferring types like this is arbitrarily difficult (i.e., undecidable), so type systems generally don't

Let-Based Polymorphism

Inference constraint: only infer a polymorphic type (and insert tyfun) for ther right-hand side of a with or rec binding

- This works:

```
{with {f : ?
    {fun {x : ?}
        x}}
    {f {fun {y : num} {f 10}}}}
```

- This doesn't:

$$
\{\text { fun }\{x: ?\}\{x \times\}\}
$$

Note: makes with a core form
Implementation: check right-hand side, add a forall and tyfun for each unconstrained new type variable

Polymorphism and Inference and Type Definitions

All three together make a practical programming system:

```
{withtype {{alpha list} {empty num}
                                    {cons (alpha * {alpha list})}}
{rec {len : ?
            {fun {l : {alpha list}}
                                {cases {alpha list} l
                        {empty {n} 0}
                                {cons {fxr}
                                {+ 1 {len {snd fxr}}}}}}}}}
{+ {len {cons {pair 1 {empty 0}}}}
    {len {cons {pair {fun {x : num} x} {empty 0}}}}}}}
```

Caml example:

```
type 'a tree \(=\) Leaf of 'a
    | Fork of 'a tree * 'a tree
```


Polymorphism and Values

A polymorphic function is not quite a function:

- A function is applied to a value to get a new value
- A polymorphic function is applied to a type to get a function

What happens if you write the following?

```
{with {f : ? {fun {v : ?}
        {fun {g: ?}
        {g v}}}}
    {with {g: ? {fun {x : ?} x}}
        {{f g} 10}}}
```

A type application must be used at the function call, not in \mathbf{f} :

$$
\{\{[@ \text { [@ f num] num] 10\} [@ g num]\} }
$$

Polymorphism and Values

A polymorphic function is not quite a function:

- A function is applied to a value to get a new value
- A polymorphic function is applied to a type to get a function

What happens if you write the following?

```
{with {f : ? {fun {v : ?}
        {fun {g : (forall alpha (alpha -> alpha))}
        {g v}}}}
    {with {g: ? {fun {x : ?} x}}
    {{f 10} g}}}
```

One type application must be used inside f :

```
[tyfun {beta} {fun {v : beta}
    {fun {g: (forall alpha (alpha -> alpha))}
    {[@ g beta] v}}}]
```


Polymorphism and Values

An argument that is a polymorphic value can be used in multiple ways:

```
{fun {g : (forall alpha (alpha -> alpha))}
    {if {g false}
        {g 0}
        {g 1}}}
```

but due to inference constraints,

```
{fun {g : ?}
    {if {g false}
    {g 0}
    {g 1}}}
```

would be rejected!

Polymorphism and Values

ML prohibits polymorphic values, so that

```
{fun {g : (forall alpha (alpha -> alpha))}
    {if {g false}
    {g 0}
    {g 1}}}
```

is not allowed

- Consistent with inference
- Every forall appears at the beginning of a type, so
(forall alpha (forall beta (alpha -> beta)))
can be abbreviated
(alpha -> beta)
without loss of information

