
Sample Mid-Term Exam 1

CS 5460/6460, Fall 2009

September 24

Name:

Instructions: This is a sample mid-term that is shorter (the real one will have 4 questions) and easier than
the real one, but with the same style of questions. You will have 1 hour and 20 minutes to complete the real
one, which is an open-book, open-note, closed-computer exam.

Here is a little program that is compiled as inc to be used in some of the questions:

#include <unistd.h>

int main() {
char buf[1];
read(0, buf, 1); buf[0]++; write(1, buf, 1);
return 0;

}

1) The following program was meant to print “2” to stdout:

#include <unistd.h>

int main (int argc, char **argv, char **envp) {
int xfds[2], yfds[2];
char *argv2[2] = { "inc", NULL };

pipe(xfds);
pipe(yfds);

write(xfds[1], "0", 1);
if (!fork()) {
dup2(xfds[0], 0);
dup2(yfds[1], 1);
execve("inc", argv2, envp);

}
if (!fork()) {
dup2(yfds[0], 0);
execve("inc", argv2, envp);

}
return 0;

}

Sometimes it works right, but sometimes the program exits before printing anything, even though none
of the system or library calls fail. How can it be fixed?

1

2) What are the possible outputs of the following program? You can assume that none of the system or
library calls fail.

#include <unistd.h>
#include <sys/wait.h>

int main (int argc, char **argv, char **envp) {
int fds[2], status;
char buf[1], *argv2[1] = { NULL };
pid_t pid;

pipe(fds);

if (!fork()) {
dup2(fds[0], 0);
execve("inc", argv2, envp);

}
if (!fork()) {
dup2(fds[0], 0);
execve("inc", argv2, envp);

}
write(fds[1], "01", 2);

return 0;
}

You can just list the possible outputs, but if you explain your reasoning, the explanation could be
worth partial credit even if you list the wrong outputs.

3) In a program that contains the declarations

struct clown_t {
int shoe_size;
int cream_pies;

};
static struct clown_t *binky;

the original programmer had written

binky->cream_pies++;

in a procedure that is used in multiple threads. Another programmer later “repaired” the statement
to ensure that multiple threads don’t try to read the binky variable at the same time:

struct clown_t *b;

lock();
b = binky;
unlock();

b->cream_pies++;

Although no two threads no use the binky variable at the same time, explain what is wrong with the
repair and how to fix it.

2

