
Allocating Memory

Where does malloc  get memory?

See mmap.c

1-2



Picking Virtual Addresses

See mmap2.c  and mmap3.c

3



Freeing Pages

See munmap.c

4



Pages and Processes

See mmap+fork.c  and mmap+fork2.c

5



Copy-on-Write

 Before write:

6



Copy-on-Write

 After write:

7



Pages and Protection

See mprotect.c

8



Windows Notes

• mmap()  ⇒  VirtualAlloc()

but allocation granularity can be more than a
page

• munmap()  ⇒  VirtualFree()

but only pages allocated by a single
VirtualAlloc()  call

• mprotect()  ⇒  VirtualProtect()

9



Paging

Try this at home:

#include <stdlib.h>
#include <assert.h>
#define MB 512 /* adjust to match your machine */
#define SIZE (1024*1024*MB)

int main (void) {
  int i;
  char *c = (char *) malloc (SIZE);
  assert (c);
  
  for (i=0; i<SIZE; i++) c[i] = 0;
  for (i=0; i<SIZE; i++) c[i] = 0;
  for (i=0; i<SIZE; i++) c[i] = 0;
  
  return 0;
}

10



Paging

Paging means moving the data in virtual pages to
secondary storage (to the physical frames can be
reused)

11



Loading Pages

• When the process starts: The virtual address
space must no larger than the physical memory

• Demand paging: OS loads a page the first time it
is referenced, and may remove a page from
memory to make room for the new page.

• Overlays: Application programmer indicates
when to load and remove pages (painful and
error-prone)

• Pre-paging: OS guesses which pages the
process will need and pre-loads them into
memory; corect guesses allow more overlap of
CPU and I/O (but difficult to get right due to
branches in code)

12



Demand Paging

For each page, the page table either says:

• Page is in memory, and here is the frame number

• Page is on disk, and here is the block number

The valid bit is used to distinguish between these
cases

13



Demand Paging

14



Page Faults

A page fault is a virtual address is referenced and
its data is on disk instead of memory

15



Handling Page Faults

16



Handling Page Faults

Are we in an interrupt handler?
• Yes — panic!
• No — Faulting address in current process space?

Yes — Access type matches permissions?
- Yes — Demand-paging stuff: allocate a new

frame, add it to the page table, ...
- No — SIGSEGV

No — In user mode?
- Yes — SIGSEGV

- No — Address allowed to fault?
. Yes — error code or SIGSEGV

. No — panic!

Adapted from Understanding the Linux Kernel by Bovet and
Cesati. Real code is more complicated; this is one of the grungier
parts of an OS.

17



Handling Page Faults

Hardware helps by saving the faulting instruction &
CPU state

What about instructions with side-effects? (CISC)

mov a, (r10)+

which moves a into the address contained in
register 10 and increments register 10

Solution:  unwind side effects

Watch out for block-transfer instructions where the
source and destination overlap

18



Page Faults and TLB Miss

• Page fault: page not in memory

• TLB miss: virtual → physical mapping not cached

TLB hit ⇒  no page fault

TLB miss ⇒  maybe a page fault, maybe not

Hardware may or may not update TLB automatically

19



Making Demand Paging Efficient

Working set: the set of pages a process will access
in the near future

To work well, the working set of a process must fit in
memory and must stay there

20



Locality

Theoretically, a process could access a new page
(or more!) of memory with each instruction

Fortunately, processes typically exhibit locality of
reference

• Spatial locality: when data is accessed, nearby
data is likely to be accessed

• Temporal locality: when data is accessed, it is
likely to be accessed again

The 90/10 rule: a program spends 90% of its time
using 10% of its data

21



Performance

• mem is cost of accessing memory

• pf is the cost of handling a page fault

• p is the probability of a page fault (0 ≤  p ≤ 1)

Assume no cache: every instruction accesses memory

Effective access time = (1- p) ×  mem +  p ×  pf

If memory access time is 60 nanoseconds while it takes 6
milliseconds to handle a page fault:

Effective access time = (1- p) × 60 +  p × 6,000,000

If we want the effective access time to be only 10% slower than
memory access time, what value must  p have?

22



Swap Space

Where do evicted pages go?

• If page has code, forget it and re-load from
program image

• Otherwise, write the page to designated
swap space on the disk

So, a page can be

• in memory

• on disk

• in swap space

23



Summary

Benefits of demand paging:
• Virtual address space >> physical address space
• Processes can run without being fully loaded into memory
• Processes start faster, because they only need to load a few

pages (for code and data) to start running
• Processes share memory more effectively, reducing the cost

of context switches

Virtual memory is
• Separation of virtual and physical address

spaces—commonly implemented with pages
• Decoupling of size of virtual address space from size of

physical address space—commonly implemented using
demand paging

See the book for information on segmentation
24


