
HW2 Solution

To be available at

~cs5460/hw2/hw2_soln.c

on the CADE filesystem

1

Last Time

Concurrency pitfalls

• Atomic operations depend on the processor

• Multiprocessors don’t even offer true globals
automatically

Solutions

• Processor-supplied operations, e.g.,
compare-and-swap

• OS-supplied locks, e.g., mutexes

2

Globals

When is a C global variable actually global?

When it’s consistently protected by a lock.

static int counter;
...

 lock();
 counter++;
 unlock();

3-4

Globals

static int a = 0;
static int b = 0;

a = 1;
b = 2;

if (a == 1) {
 ???
}

If the left thread reaches ???, is b necessarily 2?

No.

5-6

Globals

static int a = 0;
static int b = 0;

b = 2;
a = 1;

if (a == 1) {
 ???
}

If the left thread reaches ???, is b necessarily 2?

No.

⇒ use a lock around accesses of a and b
7-9

General Points about Shared Data and Concurency

1. Protect shared globals with a lock.

2. No, really, use a lock!

3. I’m not kidding about using locks.

10-12

Producer & Consumer

value = produce(); consume(value);

13

Producer & Consumer

lock();

unlock();
value = produce();

lock();

unlock();
consume(value);

24

Producer & Consumer

lock();

unlock();
value = produce();

lock();

unlock();

while (!value) {
 unlock(); lock();
}
consume(value);

35

Producer & Consumer

lock();

unlock();
value = produce();

lock();

unlock();

wait();
consume(value);

46

Producer & Consumer

lock();

unlock();
notify();
value = produce();

lock();

unlock();

wait();
consume(value);

57

Producer & Consumer

lock();

unlock();
notify();
value = produce();

lock();

unlock();

wait();
consume(value);

waiting temporarily releases the lock

68

Mutexes + Conditions

See prod_cons.c and prod_cons_2.c

The while plus pthread_cond_wait pattern
avoids a race on starting wait versus delivering

signal

69-70

Semaphores

A semaphore encapsulates the mutex + condition
pattern

• sema_wait()

a.k.a. P()

• sema_signal()

a.k.a. V(), sema_post()

71

Producer & Consumer with a Semaphore

value = produce();
sema_signal();

sema_wait();
consume(value);

Unlike conditions, a semaphore signal is retained
until waited on

72

Semaphores

See sema_prod_cons.c and
sema_prod_cons_2.c

73

Binary vs. Counting Semaphores

A binary semaphore holds a single signal

A counting semaphore holds multiple signals to
be consumed by multiple waits

74

Semaphores as Plain Locks

mutex_lock(m);

critical region
mutex_unlock(m);

semap_wait(s);

critical region
sema_signal(s);

75

Monitors

What happens if you get it backward?

sema_signal(s);

critical region
sema_wait(s);

A monitor is a language construct that helps avoid
such mistakes

synchronized {

 critical region
}

(see book for more details)

76-77

Multiple Data

Two different objects:

static thing_t a_obj;
static thing_t b_obj;

One lock or two?

• If a_obj and b_obj are always used together,
one lock is probably best.

• If a_obj and b_obj are often used
independently, then give them separate locks.

In the second case, you sometimes need both
locks...

78-80

Multiple Locks

sema_wait(A);
sema_wait(B);
swap(a_obj, b_obj);
sema_signal(B);
sema_signal(A);

sema_wait(B);
sema_wait(A);
swap(b_obj, a_obj);
sema_signal(A);
sema_signal(B);

To avoid deadlock when acquiring multple locks:

• Establish a total order on all locks

• Always acquire the locks in order

81-82

