
CS 5460/6460
Operating Systems

Fall 2009

Instructor: Matthew Flatt

Lecturer: Kevin Tew

TAs: Bigyan Mukherjee, Amrish Kapoor

1

Reminders

• HW1 Due: Tuesday, September 8th, 2009 9:40am

Submit a single C file using handin on a CADE
machine: handin cs5460 hw1 <file>

• Join the Mailing List!

• Make sure you can log into the CADE machines

2

OS Structures & Services Today

OS Components:
• Processes
• Synchronization
• Memory & Secondary Storage Management
• File Systems
• I/O Systems
• Distributed Systems

3

Three example OS organizations

• Monolithic kernel

• Microkernel

• Exokernel

4

From the Architecture to the OS to the User

Hardware Example OS Services User Abstraction
Processor Process management, Scheduling, Traps,

Protection, Billing, Synchronization
Process

Memory Management, Protection, Virtual memory Address space
I/O devices Concurrency with CPU, Interrupt handling Terminal, Mouse, Printer, (System Calls)
File system Management, Persistence Files
Distributed systems Network security Distributed file system RPC system calls, Transparent file sharing

5

Processes

• The OS manages a variety of activities:

User programs

Batch jobs and command scripts

System programs: printers, spoolers, name
servers, file servers, network listeners, etc.

• Each of these activities is encapsulated in a
process.

• A process includes the execution context (PC,
registers, VM, resources, etc.) and all the other
information the activity needs to run.

6

Processes

A process is not a program. A process is one
instance of a program in execution. Many
processes can be running the same program.
Processes are independent entities.

• The OS creates, deletes, suspends, and resumes
processes.

• The OS schedules and manages processes.

• The OS manages inter-process communication
and synchronization.

• The OS allocates resources to processes.

All activity on a computer is either in the OS or in a
process.

7

Synchronization Example:

Main memory
• Cooperating processes on a single account:

ATM transaction
balance computation
monthly interest computation and addition

8

Synchronization Example:

Main memory
• Cooperating processes on a single account:

ATM transaction
balance computation
monthly interest computation and addition

Question:
All of the processes are trying to access the same account simultaneously.
What can happen?

9

Memory & Secondary Storage Management

Main memory
• is the direct access storage for the CPU.

• Processes must be stored in main memory to execute.

• The OS must:
allocate memory space for processes,
recover all process memory upon termination,
maintain the mappings from virtual to physical memory (page
tables),
keep track of memory pages that are swapped to disk,
decide when to refuse a request for more memory from a
process (allocation policies).

10

File System

Secondary storage devices (disks) are too crude to use directly for
long term storage.

• The file system provides logical objects and operations on these
objects (files).

• A file is the long-term storage entity: a named collection of
persistent information that can be read or written. (“Persistent”
means available across reboots.)

• File systems support directories which contain the names of files
and other directories along with additional information about the
files and directories (e.g., when they were created and last
modified).

11

File System

The File System provides file management, a standard interface to

• create and delete files and directories

• manipulate (read, write, extend, rename, copy, protect) files and
directories

• other services: filesystem-based security (permissions), backups,
quotas, etc.

The File System must efficiently map files and directories onto disk
blocks (the unit of secondary storage).

12

Secondary Storage (disk)

Secondary Storage is
• the persistent memory, i.e., it survives system reboots and crashes

(we hope).

• Low-level OS routines are typically responsible for low-level disk
functions, such as scheduling of disk operations, head movement,
and error handling.

• These routines may also be responsible for managing the disk
space (for example, keeping track of the free space).

• The line between managing the disk space and the file system is
very fuzzy, these routines are sometimes in the file system.

Example: A program executable is stored in a file on
disk. To execute a program, the OS must load the
program from disk into memory.

13

I/O Systems

The I/O system supports communication with
external devices: terminal, keyboard, printer,
mouse, ...

The I/O system
• Supports buffering and spooling of I/O

These help compensate for the speed differential between
processors and I/O devices.

• Provides a general device driver interface, hiding the differences
among devices

 In Unix many devices look like files.

• Provides device driver implementations specific to individual
devices.

Typically the majority of OS code is in device drivers.

14

Distributed Services

A distributed system is a collection of processors
that do not share memory or a clock.

• To use non-local resources in a distributed system, processes must
communicate over a network,

• The OS must provide additional mechanisms for dealing with
failures and deadlock that are not encountered in a centralized
system.

The OS can support a distributed file system on a distributed system.

• Users, servers, and storage devices are all dispersed among the
various sites.

• The OS must carry out its file services across the network and
manage multiple, independent storage devices.

15

Putting Services in Context

The point of the OS is to provide services. This does not mean that all services go
in the OS because there are other ways to provide services:

• Subroutine library

Examples: printf, graphics library, numerical library
Advantages: very efficient and flexible
Disadvantages: sharing between processes and machines is harder, library
can’t be protected from user, somewhat language dependent

• OS kernel

Examples: TCP/IP, interprocess communication, file access
Advantages: efficient, secure, language independent. can provide
coordination between clients
Disadvantages: adds complexity and overhead

• Process

Examples: print server, web server, logging facility
Advantages: can be cleanly terminated independently of clients, can
provide coordination between clients
Disadvantages: good performance is more difficult

Networks and programming languages also provide services.

16

Where to put each service?

Ideally, each service is implemented in the best possible way where
“best” is some combination of:

• Most efficient

• Easiest to implement

• Most flexible

• Most reliable

• Most secure

• Most portable

• How it used to be done

There are always tradeoffs! For example:
• Putting the windowing system in the kernel is more efficient

(Windows) but putting it in a process is more flexible and more
reliable (Unix and X)

• Putting network support in a library is more efficient than in the
kernel (for very fast network interfaces) but this makes it difficult for
multiple processes to share the interface

17

OS Organization Influences Service Placement

• Monolithic kernel: more services implemented in the OS kernel

• Microkernel: more services implemented in processes

• Exokernel: more services implemented in libraries

18

Monolithic Kernel

19

Monolithic Kernel

The kernel is the protected part of the OS that runs
in kernel mode, protecting the critical OS data
structures and device registers from user programs.

There is a lot of debate about what functionality
should go into the kernel – this is just one possible
organization, used by original Unix OS (Windows
2000 and XP are not that different).

20

Microkernel

21

Microkernel

Goal is to minimize what goes in the kernel
(mechanism, no policy),implementing as much of
the OS in User-Level processes as possible.
This resuls in

• better reliability, easier extension and customization

• mediocre performance (unfortunately)

First Microkernel was Hydra (CMU ’70). Current
systems include Chorus (France) and Mach (CMU).

22

Monolithic vs Microkernel

23

Exookernel

24

Exookernel

Goal is to minimize what goes in the kernel,
implementing as much of the OS as possible in
library code.
This resuls in

• easier customization

• potentially very high performance

Examples are MIT Exokernels. These are research
systems and not commonly used. This approach
seems tricky to implement; it may not catch on.

25

Summary

Big Design Issue: How do we make the OS
efficient, reliable, and extensible?

Difficult because there is considerable leeway in
how services are implemented!

General OS Philosophy: OS design involves a
constant tradeoff between simplicity and
performance. As a general rule, strive for simplicity
except when you have a strong reason to believe
that you need to make a particular component
complicated to achieve acceptable performance
(strong reason = simulation or evaluation study)

26

