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Distributed Computing

Different applications ⇒  different levels of
transparency:

• Hardware as a service: use of multiple computer
is automatic for each application

• Volcano-monitoring sensors: distribution and
communication explicit in the application

Different applications ⇒  same core problems:

• Synchronization

• Possibility of failure (site or communication)
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Mutual Exclusion and Locks
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Centralized Lock

One site manages a given lock

Advantages:

• Simple to implement

• Easy to make fair

Disadvantages:

• Lock manager might fail
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Distributed Lock

Ask everyone else’s permission for lock

Advantages:

Disadvantages:

• Lots of communication

• One failure prevents use of lock
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Majority Lock

Ask permission from more than 50% for lock

Advantages:

• Handles failure of sites well

• Less communication than asking everyone

Disadvantages:

• Still lots of communication
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Token Ring

Wait for permission, then pass it on afterward

Advantages:

• Relatively little communication

• Clearly fair

• Makes sense when permission is needed often

Disadvantages:

• Have to set up ring

• Single failure breaks the ring

• Extra work when permission is needed rarely
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Elections

In case sites need to pick a new coordinator (e.g.,
for a lock)

• Bully algorithm

• Ring algorithm
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Bully Algorithm

Rank all sites

• If a process i doesn’t hear back from a
coordinator:

Send an elect message to every j > i

No responses? Then i considers itself elected
and notifies everyone

Got response? Wait for notify from new
coodinator...

• If a process i receives an elect message, treat it
like not hearing from the coordinator
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Ring Algorithm

When communication is always to the next live site

• If a process i doesn’t hear back from a
coordinator:

Send an elect message to neighbor

Accumulate elect messages to learn about
live sites

Get own elect ⇒  all sites known

60



Ring Algorithm

1
4

2
4

3
4

4
4

61



Ring Algorithm

1
4

2
4

3
4

62



Ring Algorithm

2
4

3
4

63



Ring Algorithm

2

wait on 4

4
3

4

64



Ring Algorithm

2

[2,...]
elect(2)

4
3

4

65



Ring Algorithm

2

[2]

4
3

[2,3,...]
elect(3)
elect(2)

4

66



Ring Algorithm

2

[2,3,...]
elect(3)

4
3

[2,3,...]
elect(2)

4

67



Ring Algorithm

2

[2,3]
elect(3)

4
3

[2,3,...]

4

68



Ring Algorithm

2

[2,3]

4
3

[2,3]

4

69



Ring Algorithm

2
3

3
3

70



Multi-Site Atomicity
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Things You Can’t Do

• Two-way common knowledge

e.g., buyers commit only if they know that the
bank received the message to finalize the
transaction

• Handle too many byzantine failures

Can use voting to detect when up to 1/3 of the
sites are faulty, but not when more are faulty

92


