
Distributed Computing

Using multiple sites to solve a problem

1

Distributed Computing

Using multiple sites to solve a problem

Network filesystem

2

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

3

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game

4

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game Collaborative spreadsheet

5

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game Collaborative spreadsheet

E-commerce site

6

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game Collaborative spreadsheet

E-commerce site Scientific simulation

7

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game Collaborative spreadsheet

E-commerce site Scientific simulation

Monitoring a volcano

8

Distributed Computing

Using multiple sites to solve a problem

Network filesystem Cloud computing

Multi-player game Collaborative spreadsheet

E-commerce site Scientific simulation

Monitoring a volcano Searching for aliens

9

Distributed Computing

Different applications ⇒ different levels of
transparency:

• Hardware as a service: use of multiple computer
is automatic for each application

• Volcano-monitoring sensors: distribution and
communication explicit in the application

Different applications ⇒ same core problems:

• Synchronization

• Possibility of failure (site or communication)

10-11

Happens Before

<wizard image> <knight image> <dragon image>

15

Virtual Clocks

<wizard image> <knight image> <dragon image>

mumbling sleeping

muttering breathing fire

sheilding

16

Virtual Clocks

<wizard image> <knight image> <dragon image>

mumbling sleeping

muttering

sheilding breathing fire

17

Virtual Clocks

<wizard image> <knight image> <dragon image>

mumbling sleeping

muttering

sheilding

breathing fire

18

Virtual Clocks

<wizard image> <knight image> <dragon image>

mumbling @ 0 sleeping @ 0

muttering @ 1

sheilding @ 2

breathing fire @ 1

19

Virtual Clocks

<wizard image> <knight image> <dragon image>

mumbling @ 0 sleeping @ 0

muttering @ 1

sheilding @ 2

breathing fire @ 3

20

Mutual Exclusion and Locks

21

Centralized Lock

One site manages a given lock

Advantages:

• Simple to implement

• Easy to make fair

Disadvantages:

• Lock manager might fail

22-26

Distributed Lock

Ask everyone else’s permission for lock

Advantages:

Disadvantages:

• Lots of communication

• One failure prevents use of lock

27-30

Majority Lock

Ask permission from more than 50% for lock

Advantages:

• Handles failure of sites well

• Less communication than asking everyone

Disadvantages:

• Still lots of communication

31-35

Token Ring

Wait for permission, then pass it on afterward

Advantages:

• Relatively little communication

• Clearly fair

• Makes sense when permission is needed often

Disadvantages:

• Have to set up ring

• Single failure breaks the ring

• Extra work when permission is needed rarely

36-40

Elections

In case sites need to pick a new coordinator (e.g.,
for a lock)

• Bully algorithm

• Ring algorithm

41

Bully Algorithm

Rank all sites

• If a process i doesn’t hear back from a
coordinator:

Send an elect message to every j > i

No responses? Then i considers itself elected
and notifies everyone

Got response? Wait for notify from new
coodinator...

• If a process i receives an elect message, treat it
like not hearing from the coordinator

42

Bully Algorithm

1
4

2
4

3
4

4
4

43

Bully Algorithm

1
4

2
4

3
4

44

Bully Algorithm

2
4

3
4

45

Bully Algorithm

2

wait on 4

4
3

4

46

Bully Algorithm

2

elect 2!

4
3

4

47

Bully Algorithm

2

elect 2?

4
3

elect 3!

4

48

Bully Algorithm

2

elect 2?

4
3

inaug 3

4

49

Bully Algorithm

2
3

3
3

50

Bully Algorithm

1 2
3

3
3

51

Bully Algorithm

1

elect 1!

2
3

3
3

52

Bully Algorithm

1

elect 1?

2

elect 2!

3
3

3

53

Bully Algorithm

1

elect 1?

2

elect 2?

3
3

elect 3!

3

54

Bully Algorithm

1
3

2
3

3
3

55

Bully Algorithm

1
3

2
3

3
3

4

56

Bully Algorithm

1
3

2
3

3
3

4

elect 4!

57

Bully Algorithm

1
3

2
3

3
3

4

inaug 4

58

Bully Algorithm

1
4

2
4

3
4

4
4

59

Ring Algorithm

When communication is always to the next live site

• If a process i doesn’t hear back from a
coordinator:

Send an elect message to neighbor

Accumulate elect messages to learn about
live sites

Get own elect ⇒ all sites known

60

Ring Algorithm

1
4

2
4

3
4

4
4

61

Ring Algorithm

1
4

2
4

3
4

62

Ring Algorithm

2
4

3
4

63

Ring Algorithm

2

wait on 4

4
3

4

64

Ring Algorithm

2

[2,...]
elect(2)

4
3

4

65

Ring Algorithm

2

[2]

4
3

[2,3,...]
elect(3)
elect(2)

4

66

Ring Algorithm

2

[2,3,...]
elect(3)

4
3

[2,3,...]
elect(2)

4

67

Ring Algorithm

2

[2,3]
elect(3)

4
3

[2,3,...]

4

68

Ring Algorithm

2

[2,3]

4
3

[2,3]

4

69

Ring Algorithm

2
3

3
3

70

Multi-Site Atomicity

71

Multi-Site Atomicity

<buyer image> <seller image>

<bank image>

72

Two-Phase Commit

<buyer image>

T1:

<seller image>

<bank image>

73

Two-Phase Commit

<buyer image>

T1:

<seller image>

T1:

<bank image>

T1:

74

Two-Phase Commit

<buyer image>

T1:

<seller image>

T1:

<bank image>

T1:
transfer money

75

Two-Phase Commit

<buyer image>

T1:

<seller image>

T1:
give keys

<bank image>

T1:
transfer money

76

Two-Phase Commit

<buyer image>

T1:
take keys

<seller image>

T1:
give keys

<bank image>

T1:
transfer money

77

Two-Phase Commit

<buyer image>

T1:
take keys

<seller image>

T1:
give keys

78

Two-Phase Commit

<buyer image>

T1:
take keys

<seller image>

T1:
give keys

<bank image>

T1:
transfer money

79

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>

<seller image>

T1:
give keys

<bank image>

T1:
transfer money

80

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>

<seller image>

T1:
give keys
<ready>

<bank image>

T1:
transfer money

81

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>

<seller image>

T1:
give keys
<ready>

82

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<fail>

<seller image>

T1:
give keys
<ready>

83

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<fail>

<seller image>

T1:
give keys
<ready>
<fail>

84

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>

<seller image>

T1:
give keys
<ready>

<bank image>

T1:
transfer money

85

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>

<seller image>

T1:
give keys
<ready>

<bank image>

T1:
transfer money
<ready>

86

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<commit>

<seller image>

T1:
give keys
<ready>

<bank image>

T1:
transfer money
<ready>

87

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<commit>

<seller image>

T1:
give keys
<ready>
<commit>

<bank image>

T1:
transfer money
<ready>

88

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<commit>

<seller image>

T1:
give keys
<ready>
<commit>

T1:
transfer money
<ready>

89

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<commit>

<seller image>

T1:
give keys
<ready>
<commit>

<bank image>

T1:
transfer money
<ready>

90

Two-Phase Commit

<buyer image>

T1:
take keys
<prepare>
<commit>

<seller image>

T1:
give keys
<ready>
<commit>

<bank image>

T1:
transfer money
<ready>
<commit>

91

Things You Can’t Do

• Two-way common knowledge

e.g., buyers commit only if they know that the
bank received the message to finalize the
transaction

• Handle too many byzantine failures

Can use voting to detect when up to 1/3 of the
sites are faulty, but not when more are faulty

92

