
PC Architecture

1

PC Port Addresses

2

Programmed I/O (PIO) with Polling

• Use OUT instruction to make a device request

• Loop using IN until the result comes back

Port usually has at least 4 registers:

• Status — written by device, read by CPU

• Control — written by CPU, read by device

• Data-in — data sent from the device to the CPU

• Data-out — data sent from the CPU to the device

3

Devices

A From the docs for a PS/2 mouse interface controller:

Read status register. If Data Pending bit is set, read
data register, store the value (it may be required by
handler software). Repeat until Data Pending bit is not
set for more than 2ms, or more than 16 bytes have
been read. Also check Active bit during this procedure:
If no data is pending, check active. If active is not set,
proceed with initialize, if active is set, timeout after
32ms. Always read pending data in this procedure!
Quick end of this procedure: If chip is not active, data is
not pending, and both PS2DAT and PS2CLK are set,
the bus is idle. Proceed with initialize in this case.

4

Using Interrupts

5

Interrupt Vector

6

PC Architecture

7

Direct-Memory Access (DMA)

8

Implementing I/O

9

Application Interface

• A file descriptor can be

A file

A pipe

A network connection

Other device: a terminal, /dev/null

• read() and write() work on all of them

• lseek() works on some of them

see byte.c, block.c

10

Buffering vs. Interleaving

• Buffering allows more data per request

• Buffering can interfere with interactivity

Interactivity ≈ scheduling flexibility

see block2.c

11

I/O Patterns

• blocking waits until I/O is available

• non-blocking returns, maybe did I/O

• asynchronous returns, I/O done meanwhile

see nonblock.c, nonblock2.c, thread.c

see as_client.c, server.c

12

Select

For non-blocking I/O, select() waits for I/O

• No timeout: waits until I/O available from one
device

• Zero timeout: polls devices

see nonblock.c, server2.c

13

Synchronous vs. Asynchronous

14

Asynchronous I/O

How do you know when asynchronous I/O has
completed?

• Poll

• Callback

see async.c, async2.c

15

Summary

• I/O is slow

Need to overlap computation and I/O

Need to balance buffering and interactivity

• Blocking, non-blocking, and asynchronous modes

Blocking: use threads to overlap

Non-blocking: need poll/wait operation like
select()

Asynchronous: either poll/wait or callback

16

