
File Systems

File system = most common abstraction for persistence

Also provides

• Large-data storage with random access

• Data organization

• Mobility (e.g., CD ROM, NFS)

• Sharing & protection

• Communication

“File system” sometimes refers to the abstraction and sometimes
refers to a particular disk format. We mean the former.

1-3

File system Layers

application ... application

files bytes/records paths directories? links?

OS

names ids

driver

sectors tracks

device

...

driver

packets notifications

device

4-5

Files

Typically, a file is

• A sequence of bytes

• Metadata, including modification time,
permissions, and type

Typically, a file is accessed through a path

• Access results in a file descriptor or file handle

• Descriptor or handle sticks with a file, while the
path can change

6

Opening a File

application OS driver

open(path) → find(...) ... → ...

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

7

Common File System Operations

Data

• Create() • Open() • Read()

• Delete() • Close() • Write()

• Seek()

Naming

• Rename() • HardLink()

• SoftLink()

Metadata

• GetAttribute() • SetAttribute()

8

Create()

Unix:

int open(const char *path, int oflag, mode_t mode);

with O_CREAT
also opens

int mkdir(const char *path, mode_t mode);

Windows:

HANDLE CreateFile(LPCTSTR lpFileName,);
with CREATE_ALWAYS

also opens

HANDLE CreateDirectory(LPCTSTR lpPathName,);

see create.c

9

Delete()

Unix:

int unlink(const char *path);

int rmdir(const char *path);

Windows:

BOOL DeleteFile(LPCTSTR lpPathName);

BOOL RemoveDirectory(LPCTSTR lpPathName);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

Removes the path mapping, but doesn’t actually
delete until all references are closed
(see create.c)

10

Open()

Unix:

int open(const char *path, int oflag);

Windows:

HANDLE CreateFile(LPCTSTR lpFileName,);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

11

Close()

Unix:

int close(int filedes);

Windows:

BOOL CloseHandle(HANDLE hFile);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

Last copy of decriptor/handle ⇒ free
decriptor/handle
Last decriptor/handle ⇒ close file

see opens.c 12

Read()

Unix:

ssize_t read(int fildes, void *buf, size_t nbyte);

Windows:

BOOL ReadFile(HANDLE hFile, LPVOID lpBuf,);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

Updates descriptor/handle offset

13

Write()

Unix:

ssize_t write(int fildes, void *buf, size_t nbyte);

Windows:

BOOL WriteFile(HANDLE hFile, LPVOID lpBuf,);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

Updates descriptor/handle offset

14

Seek()

Unix:

off_t lseek(int fildes, off_t offset, int whence);

Windows:

DWORD SetFilePointer(HANDLE hFile, LONG lOff, ...);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

Updates descriptor/handle offset

see share.c

15

Rename()

Unix:

int rename(const char *old, const char *new);

Windows:

BOOL MoveFile(LPCTSTR lpOld, LPCTSTR lpNew);

⇒
No effect on open descriptors/handles

Atomic update when on the same device

16

HardLink()

Unix:

int link(const char *old, const char *new);

Windows:

BOOL CreateHardLink(LPCTSTR lpNew, LPCTSTR lpOld,
 ...);

⇒
No effect on open descriptors/handles

see share2.c

17

SoftLink()

Unix:

int symlink(const char *path, const char *new);

⇒
No effect on open descriptors/handles

18

GetAttribute()

Unix:

int fstat(int filedes, struct stat *buf);

Windows:

BOOL GetFileInformationByHandle(HANDLE hFile, ...);

File type, size, maybe permissions

19

SetAttribute()

Unix:

int fchmod(int fildes, mode_t mode);

int futimes(int fildes, struct timeval times[2]);

Windows:

BOOL SetFileInformationByHandle(HANDLE hFile, ...);

File type, size, maybe permissions

20

Unix Paths

• A path is a sequence of byte-strings elements, where / is
disallowed in an element

usr local bin pdf2ps

• A path is normally written as a single byte string using / as a
separator

Path starts with / ⇒ absolute
/usr/local/bin/pdf2ps

Path does not start with / ⇒ relative
bin/pdf2ps

• Each process has a working directory that prefixes relative
paths

21

Unix Paths

• A device is mounted at one or more path prefixes

$ /usr/bin/mount
/dev/sda2 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda5 on /usr/vice type ext3 (rw)
/dev/sda1 on /boot type ext3 (rw)
zfs:/server/home2/mflatt on /home/mflatt type nfs ...

22

Unix Paths

• OS communicates to driver in terms of IDs, known as
inodes and immediate names

A file is a kind of inode

A directory is a kind of inode

A hard link is when a directory points to a file’s inode

A soft link is an inode that contains another path,
automatically followed (usually) by the OS

• Case sensivity is managed by the driver

ext3 (Linux) is case-sensitive

HFS+ (Mac OS) is case-insensitive by default

23

Windows Paths

• A path combines a drive with a UTF-16 code unit sequence

• A path is normally written as a single string using a letter
name for a drive and \ as a separator, in which case <, >, : ,
" , / , \ , and | are disallowed in an element

C:\Program Files\PLT\DrScheme.exe

• A drive can also be \\ machine\ volume

• Except that special files names like aux refer to devices,
independent of the drive, path, or extension

• At some layers of the Windows API, various automatic
transformations are applied, such as converting / to \ and
dropping trailing spaces

C:/Program Files/PLT\DrScheme.exe

24

Windows Paths

• Path starts with drive and \ ⇒ absolute
C:\Program Files\PLT\DrScheme.exe

• Path does not start with drive or \ ⇒ relative
PLT\DrScheme.exe

• Path starts with drive but not \ ⇒ drive-relative
C:PLT\DrScheme.exe

• Path starts with \ ⇒ drive-absolute
\Program Files\PLT\DrScheme.exe

• Each process has a working drive and each drive per
process has a working directory

25

Windows Paths

• OS communicates to driver in terms of paths

Use the \\?\ prefix to specify driver path directly

\\?\c:\wE|Rd\<path>

• Case sensivity is managed by the OS

26

Paths

• Generally cannot get a cannonical path for a file

The path can change

May have multiple mount points

May have multiple links

• File descriptor/handle provides cannonical
references

e.g, get inode

Only works for open files

27

Locks

What if cooperating processes want to modify a file,
and only one process should modify the file at a
time?

• Advisory locks — provided by the OS to let
cooperating programs declare exclusive access

Unix, typically

• Mandatory locks — provided by the OS to let
programs (cooperative or not) gain exclusive
access

Windows

28

Lock() and Unlock()

Unix:

int flock(int fd, int operation);

Windows:

HANDLE CreateFile(LPCTSTR lpFileName,,
 DWORD dwShareMode,);

fd ← file ref
file

offset
lock

...

file
inode

...

← inode
block

...

see locks.c , locks2.c , locks2.c

29

Permissions

• Access-control list (ACL) determines for each
file which userid can perform which of a handful of
operations

Typical operations: read, write, execute,
append, delete, list

• Unix-style simplified mapping:

owner vs. group vs. everyone

read, write, execute

30

