
CS 5460/6460
Operating Systems

Fall 2009

Instructor: Matthew Flatt

Lecturer: Kevin Tew

TAs: Bigyan Mukherjee, Amrish Kapoor

1

Reminders

• Join the Mailing List!

• Make sure you can log into the CADE machines

2

Modern Operating System Functionality

• Concurrency - doing many things at the same time
(I/0, processing, multiple programs, etc.)

 Several users work at the same time as if
each has a private machine

 Threads (unit of OS control) - one thread
on the CPU at a time, but many threads active
concurrently

 Virtualization different OS or multiple
copies of the same OS running on a single
system

• Namespacing - separation or isolation

3

Modern Operating System Functionality cont.

• I/O devices - let the CPU work while an I/O device
is working (especially a device like a slow terminal.)

• Memory management - OS coordinates allocation
of memory and moving data between disk and main
memory.

• Files - OS coordinates how space is used for files,
in order to find files and to store multiple files

• Distributed systems & networks - allow a group of
workstations to work together on distributed
hardware

4

Some Operating System Principles

• OS as juggler: providing the illusion of a dedicated
machine with infinite memory and CPU.

• OS as government: protecting users from each
other, allocating resources efficiently and fairly, and
providing secure and safe communication.

• OS as complex system: keeping OS design and
implementation as simple as possible is the key to
getting the OS to work.

• OS as history teacher: learning from past to predict
the future, i.e., OS design tradeoffs change with
technology.

5

6

Generic Computer Architecture

• CPU - the processor that performs the actual
computation

• I/O devices - terminal, disks, video board, printer,
etc.

• Memory - RAM containing data and programs used
by the CPU

• System bus - the communication medium between
the CPU, memory, and peripherals

7

OS Provides a High-Level Version of Hardware:

• CPU → Processes, Threads

• Main Memory → Address spaces

• Disk → Hierarchical Filesystem

• Devices → Virtual devices

8

Example Concepts

Services Processes
Threads CPU Scheduling
I/O Redirection Pipes
Concurrency Synchronization
Deadlock Memory Management
Paging Segmentation
Virtual Memor Page Replacement
File Systems I/O Systems
Distributed Systems Networks
RPC Distributed Filesystems
Security Embedded Systems

9

Architectural Features Motivated by OS Services

OS Service Hardware Support
Protection Kernel/User mode

Protected Instructions
Base and Limit Registers

Virtual memory Translation look-aside buffers
System calls Trap instructions and trap vectors
Asynchronous I/O Interrupts
CPU scheduling and accounting Timer interrupts
Interprocessor communication Interprocessor interrupts
Synchronization Atomic instructions

10

Protection

11

From who?

12

ANY CODE
that violates the OS security policy

faulty or malicious

local or remote

13

Restricted Instructions

Some instructions are restricted to use only by the OS

From user-mode you cannot:
• access I/O devices directly

• access out-of-bounds memory

• use instructions that manipulate the state of memory protection
(page table pointers, TLB load, etc.)

• set the mode bits that determine user or kernel mode

• disable and enable interrupts

• halt the machine

but in kernel mode, the OS can do all these things.

14

Kernel mode vs. User mode:

The architecture must support at least kernel and user mode.
• A status bit in a protected processor register

indicates the mode.
• Protected instructions can only be executed in

kernel mode.
• User programs get access to protected

functionality through system calls
Important: OS must never permit arbitrary code to
be executed in kernel mode

15

Syscall Kernel Trap

16

Crossing Protection Boundaries

Users make a system call to an OS procedure to execute privileged instructions (e.g., I/O)

A System Call:

• Program puts system call parameters in registers.

• Program executes a trap:
Minimal processor state (PC, PSW) pushed on the stack.
CPU vectors (jumps) to the trap handler in the OS kernel.

• The trap handler uses the parameter to the system call to jump to the appropriate
handler (fork, exec, open, etc.).

• The architecture must permit the OS to verify the caller’s parameters.

• The architecture must also provide a way to return to user mode when finished.

17

Unix System Calls

Familiar examples: open, close, read, write, select, fork, exec, sleep
Esoteric: brk, setsid, unlink, waitpid

Arguments tend to be:

• pointers to blocks of memory (strings, file buffers, socket buffers)

• integer constants (buffer size, file offset, permission mask, delay
time)

• names
file descriptor: small int naming a file (process-relative)
pid: small int naming a process
path: string naming a location in the filesystem

Often, return value of -1 indicates an error.

• See man pages for exceptions

• As a programmer, always always check return codes

18

Unix System Calls

Principle: Dialogue between user-mode and kernel
should be semantically simple.

Why?

19

Unix System Calls

Principle: Dialogue between user-mode and kernel
should be semantically simple.

Why?

• Simple interfaces are easier to work with (from
both sides)

• Simple interfaces can sometimes be implemented
correctly (complex ones almost never can)

• Simple interfaces tend to be broadly useful
• Simple interfaces tend to have efficient

implementations)

20

Example: A System Call in Linux

You write:

static char buf[] = "hello\n";
int main (void)
{
 write (1, buf, 6);
}

21

Example: A System Call in Linux

You write:

static char buf[] = "hello\n";
int main (void)
{
 write (1, buf, 6);
}

main() contains:

movl $0x1,(%esp,1)
movl $0x80a034c,0x4(%esp,1)
movl $0x6,0x8(%esp,1)
call 804cd40 <__libc_write>

22

Example: A System Call in Linux

You write:

static char buf[] = "hello\n";
int main (void)
{
 write (1, buf, 6);
}

main() contains:

movl $0x1,(%esp,1)
movl $0x80a034c,0x4(%esp,1)
movl $0x6,0x8(%esp,1)
call 804cd40 <__libc_write>

libc write() is:

mov 0x10(%esp,1),%edx
mov 0xc(%esp,1),%ecx
mov 0x8(%esp,1),%ebx
mov $0x4,%eax
int $0x80
cmp $0xfffff001,%eax
jae 804d550 <__syscall_error>
ret

23

Example: A System Call in Linux

You write:

static char buf[] = "hello\n";
int main (void)
{
 write (1, buf, 6);
}

main() contains:

movl $0x1,(%esp,1)
movl $0x80a034c,0x4(%esp,1)
movl $0x6,0x8(%esp,1)
call 804cd40 <__libc_write>

libc write() is:

mov 0x10(%esp,1),%edx
mov 0xc(%esp,1),%ecx
mov 0x8(%esp,1),%ebx
mov $0x4,%eax
int $0x80
cmp $0xfffff001,%eax
jae 804d550 <__syscall_error>
ret

Question: Why load "4" into eax?
Note: For this class you will need to read assembly code at this level

24

Memory Protection

• Architecture must provide support so the OS can
protect user programs from each other, and
protect the OS from user programs.

• Architecture may or may not protect User programs from the OS.

• The simplest technique is to use base and limit registers.

• Base and limit registers are loaded by the OS before starting a
program.

• The CPU checks each user reference (instruction and data
addresses), ensuring it falls between the base and limit register
values.

• Virtual memory and segmented memory have additional
requirements and more complex solutions.

25

Virtual Memory

• Virtual memory allows users to run programs
without loading the entire program in memory at
once.

• Instead, pieces of the program are loaded as they
are needed.

• The OS must keep track of which pieces are in
which parts of physical memory and which pieces
are on disk.

• In order for pieces of the program to be located
and loaded without causing a major disruption to
the program, the hardware provides a translation
lookaside buffer to speed the lookup.

26

Traps

Architecture must detect special conditions:

• page fault

• write to a read-only page

• bad address trap

• floating point exception

• privileged instruction trap

• system call

• etc...

27

Traps

We call these traps.

When the processor detects these conditions, it must

• save state on trap (PC, stack, etc.), so that the process may
be restarted after the trap is serviced, and then

• The CPU transfers control to the appropriate trap handler (OS
routine) via a memory-mapped trap vector.

The CPU indexes the trap vector with the trap number,
then jumps to the address given in the vector, and
starts to execute at that address.
When the handler completes, the OS resumes the
execution of the process that caused the trap.

28

Traps

Modern OS use Virtual Memory traps for many
functions: debugging, distributed VM, garbage
collection, copy-on-write, etc.

Question: Why are traps so useful?

29

Traps

Modern OS use Virtual Memory traps for many
functions: debugging, distributed VM, garbage
collection, copy-on-write, etc.

Question: Why are traps so useful?

Because they are efficient. Instead of using
software to test for a condition, special-purpose
logic in the processor does the work without slowing
down your application.

30

31

32

