
Processes without Partitions

Matthew Flatt
University of Utah

Adam Wick
University of Utah

Robert Bruce Findler
Northwestern University

1

Programming in Heaven

λ

2

Programming in Heaven

λ

101010
010101

3

Programming in Heaven

λ

language run-time

101010
010101

4

Multi-Programming

λ λ

101010
010101

5

Multi-Programming

λ λ

101010
010101

6

Multi-Programming

λ λ

101010
010101

1010101010

7

Multi-Programming in Heaven

λ λ

101010
010101

8

Multi-Programming in Heaven

λ ((x) ...)λ λ

101010
010101

9

Multi-Programming in Heaven

λ ((x) ...)λ λ

language as OS

Process Examples

Process Examples

Process Examples

Process Examples

Process Examples

λ
DrScheme user's program

λ

Run DrScheme

Languages with Termination

Pilot [Redell80] SPIN [Bershad95]

JKernel [Hawblitzel98] Alta [Tullman99]

KaffeOS [Back00] JSR-121 [Soper03]

.NET application domains ...

λ λ

−

Languages with Termination

PLT Scheme

λ λ

Motivation and Approach

Processes in PLT Scheme

• Threads
• Parameters
• Eventspaces
• Custodians

Memory Accounting

Threads

Concurrent execution

(require "spin-display.scm") eval

(define (spin)
 (rotate-a-little)
 (sleep 0.1)
 (spin))

(define spinner (thread spin)) eval

(kill-thread spinner) eval

Parameters (a.k.a. Fluid Variables)

Thread-local state

(printf "Hello\n")
(fprintf (current-output-port) "Hola\n")
(fprintf (current-error-port) "Goodbye\n")
(error "Ciao") eval

(parameterize ((current-error-port (current-output-port)))
 (error "Au Revoir")) eval

(parameterize ((current-error-port (current-output-port)))
 (thread
 (lambda ()
 (error " ")))) eval

Eventspaces

Concurrent GUIs

(thread (lambda () (message-box "One" "Hi")))
(thread (lambda () (message-box "Two" "Bye"))) eval

(thread (lambda () (message-box "One" "Hi")))
(parameterize ((current-eventspace (make-eventspace)))
 (thread (lambda () (message-box "Two" "Bye")))) eval

Custodians

Termination and clean-up

(define c (make-custodian))
(parameterize ((current-custodian c))
 ...) eval

(custodian-shutdown-all c) eval

Etc.

• Security Guards

Resource access control

• Namespaces

Global bindings

• Will Executors

Timing of finalizations

• Inspectors

Debugging access

Building a Programming Environment

SchemeEsq, a mini DrScheme [ICFP 99]

GUI - Frame

(define frame
 (new frame%
 [label "SchemeEsq"]
 [width 400] [height 175]))

(send frame show #t)

eval

GUI - Reset Button

(new button%
 [label "Reset"]
 [parent frame]
 [callback (lambda (b e) (reset-program))])

eval

GUI - Interaction Area

(define repl-display-canvas
 (new editor-canvas%
 [parent frame]))

eval

GUI - Interaction Buffer

(define esq-text%
 (class text% ... (evaluate str) ...))

(define repl-editor (new esq-text%))
(send repl-display-canvas set-editor repl-editor)

eval

Evaluator

(define (evaluate expr-str)
 (thread
 (lambda ()
 (print (eval (read (open-input-string expr-str))))
 (newline)
 (send repl-editor new-prompt))))

eval

Evaluator Output

(define user-output-port
 (make-output-port ... repl-editor ...))

(define (evaluate expr-str)
 (parameterize ((current-output-port user-output-port))
 (thread
 (lambda ()
 ...))))

eval

Evaluating GUIs

(define user-eventspace (make-eventspace))

(define (evaluate expr-str)
 (parameterize ((current-output-port user-output-port)
 (current-eventspace user-eventspace))
 (thread
 (lambda ()
 ...)))

eval

Custodian for Evaluation

(define user-custodian (make-custodian))

(define user-eventspace
 (parameterize ((current-custodian user-custodian))
 (make-eventspace)))

(define (evaluate expr-str)
 (parameterize ((current-output-port user-output-port)
 (current-eventspace user-eventspace)
 (current-custodian user-custodian))
 (thread
 (lambda ()
 ...))))

eval

Reset Evaluation

(define (reset-program)
 (custodian-shutdown-all user-custodian)

 (set! user-custodian (make-custodian))
 (parameterize ((current-custodian user-custodian))
 (set! user-eventspace (make-eventspace)))
 (send repl-editor reset))

eval

Motivation and Approach

Processes in PLT Scheme

Memory Accounting

• Without partitions [ISMM 04]

Resource Consumption

λ
DrScheme user's program

λ

Resource Consumption

λ
DrScheme user's program

λ

Resource Consumption

λ
DrScheme user's program

λ

Resource Consumption

λ
DrScheme user's program

λ

Resource Consumption

λ
DrScheme user's programλ

Resource Consumption

λ
DrScheme user's programλ

Resource Accounting

• Conventional OS: process memory use = size of partition

λ λ

Accounting is easy

Trading data is difficult

Resource Accounting

• Language as OS: process memory use = size of owned data

λ λ

Trading data is easy

Accounting appears difficult: sharing, real-time tracking

Resource Accounting

Our strategy: compute accounting charges during GC

λ λ

See also [Price03]

Basic Accounting

λ = custodian A

λ = custodian B

thread 1

thread 2

thread 3

x

y

z

q

r

s

Basic Accounting

λ = custodian A

λ = custodian B

thread 1

thread 2

thread 3

x

A

y

A

z

B

q

A

r

A

s

B

Basic Accounting

λ = custodian A

λ = custodian B

thread 1

thread 2

thread 3

x

A

y

A

z

B, A

q

A

r

A

s

B, A

Sharing

λ = custodian A

λ = custodian B

thread 1

thread 2

x

y

z

Sharing

λ = custodian A

λ = custodian B

thread 1

thread 2

x

A

y

B

z

A or B

Sharing: Charge the Parent

λ = custodian A

λ = custodian B

thread 1

thread 2

x

A

y

B

z

B, A

Threads, Custodians, and Weak References

λ = custodian A

λ = custodian B

thread 1

thread 2

x

Threads, Custodians, and Weak References

λ = custodian A

λ = custodian B

thread 1

thread 2

x

B

Threads, Custodians, and Weak References

λ = custodian A

λ = custodian B

thread 1

thread 2

x

B

Threads, Custodians, and Weak References

λ = custodian A

λ = custodian B

thread 1

thread 2

x

B

Why Charge the Parent?

λ = custodian A

λ = custodian B

thread 1

thread 2

x

A

y

B

z

B, A

• Parent is responsible for children

• Children refer to parent, so if the parent refers to children data
directly, any child is charged for all children

−

Initial Experience: DrScheme

Bad Loop Normal Normal

Initial Experience: DrScheme

Bad Loop Normal Shut Down

DrScheme Bug

λ = DrScheme

λ = User1

λ = User2

thread 0

thread 1

thread 2

x

y

z

DrScheme Repair

λ = DrScheme

λ = User1

λ = User2

thread 0

thread 1

thread 2

x

y

z

DrScheme Repair

λ = DrScheme

λ = User1

λ = User2

thread 0

thread 1

thread 2

x

y

z

Changed 5 references:
• Weakened 2
• Removed 2
• Moved 1 into child

Current Experience: DrScheme

Bad Loop Normal Normal

Current Experience: DrScheme

Shut Down Normal Normal

Accounting without Partitions

Useful accounting

• Doesn't need partitions

• Does need hierarchy

Conclusion

λ λ

But don’t partition data:
closures
objects
continuations
...

