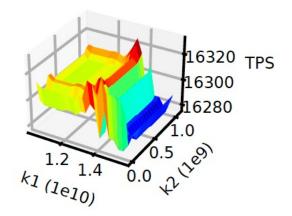
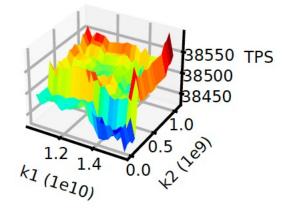


Towards Dynamic and Safe Configuration Tuning for Cloud Databases

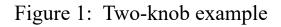
Xinyi Zhang Hong Wu, Li Yang, Jian Tan, Feifei Li, Bin Cui

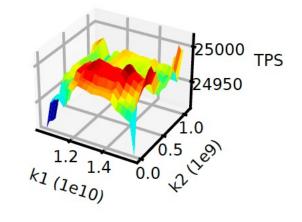


25/75 read/write workload



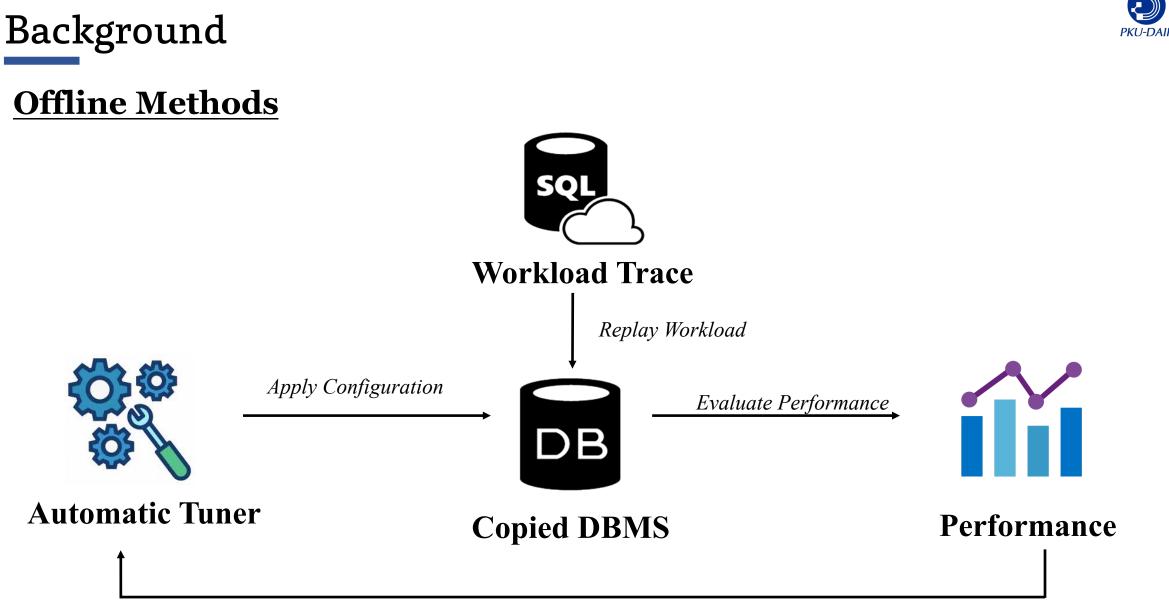
read-only workload





75/25 read/write workload

k1 denotes sort_buffer_pool_size and k2 denotes max_heap_table_size



Update Model

Offline methods fail to adapt to dynamic environment.

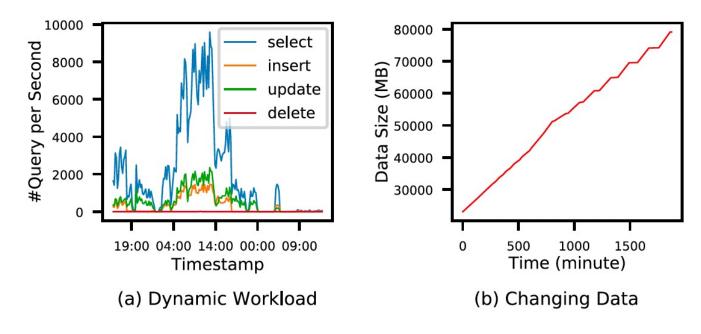
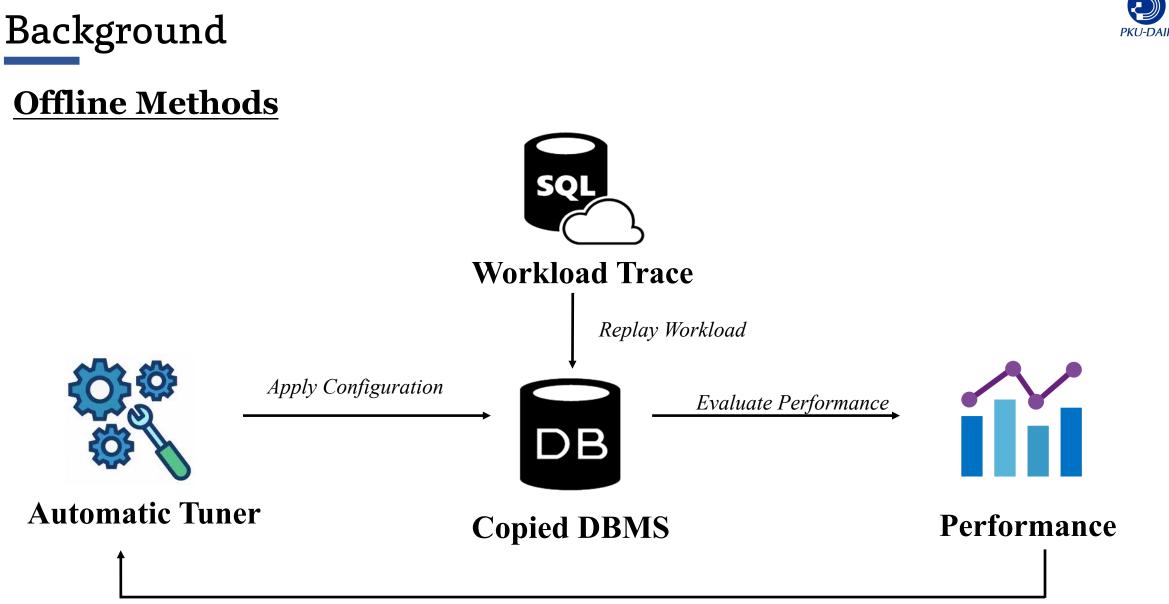
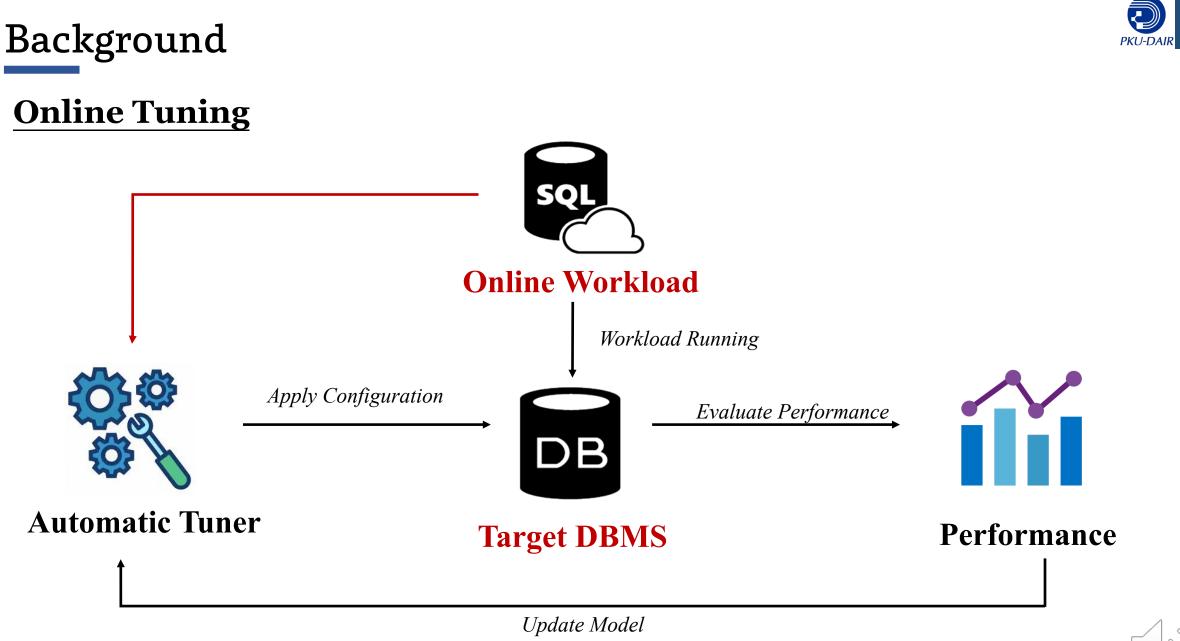


Figure 3: Dynamic environment in the cloud.



Update Model



Preliminaries

Preliminaries

Challenges for Online Tuning

Dynamicity

The tuner is capable of responding to the dynamic environment (e.g., workload and its underlying data) adaptively.

Safety

The tuner should recommend configurations that do not downgrade the database performance during the tuning process.

Preliminaries

Problem Statement

Dynamicity

At each iteration t, the tuner receives context ct and outputs a configuration θt to maximize the database performance f.

Safety

We additionally need to ensure that, for each tuning iteration t, $f(\theta t, ct) \ge \tau$ holds, where $\tau \in \mathbb{R}$ is a specific safety threshold.

 $\arg \max_{\theta t} f(\theta t, ct)$
s.t. $f(\theta t, ct) \ge \tau$

Methodology

OnlineTune: A Safe and Dynamic Online Tuner

➤ Contextual performance modeling

➤ Safe configuration recommendation

OnlineTune: A Safe and Dynamic Online Tuner

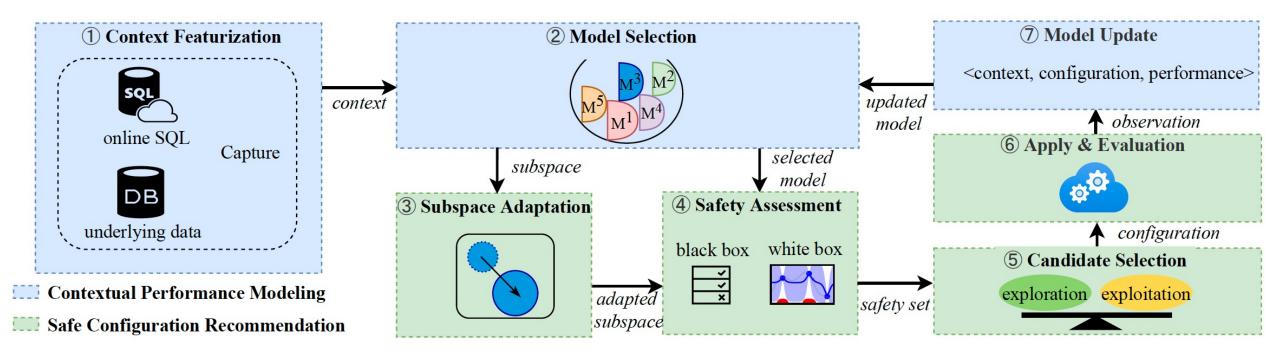


Figure 5: OnlineTune Workflow

Methodology

Context Featurization

- ≻ Workload
 - Query arrival rate
 - Query composition

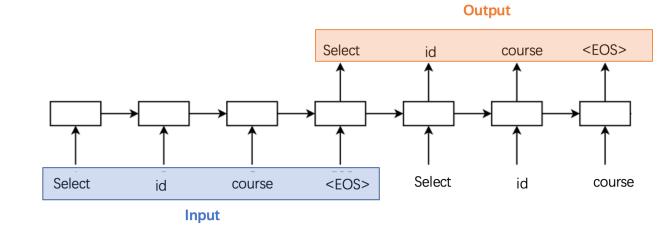


Figure 6: LSTM auto-encoder network

≻ Data

- Estimate of rows to be examined by queries
- The percentage of rows filtered by table conditions in queries
- Whether an index is used.

Safe Configuration Recommendation

➤ Inspired by the trust region optimization, OnlineTune reduce the optimization over the whole configuration space into a sequence of subspace optimizations.

➤ OnlineTune maintains a subspace for each surrogate model, restricts its optimization in the subspace, and gradually adapts the subspace.

Methodology

Subspace Adaption

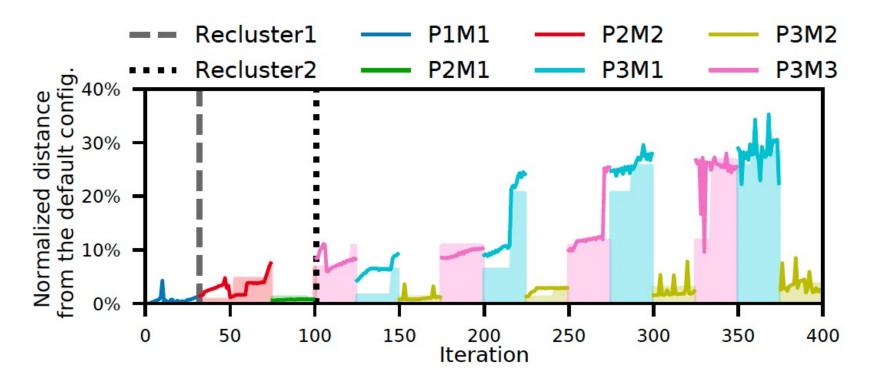


Figure 6: Visualization of subspace adaptation.

Safety Assessment

- \succ Black-box knowledge
 - $\mu(\theta, c) \beta \sigma(\theta, c) > \tau$
- ➤ White-box knowledge (heuristics rules)
 - Examples
 - The total buffer size can not exceed the physical memory capacity of the deployed machine.
 - Increasing the join buffer size if #joins without indexes per day is larger than 250.
 - The value of maximum thread concurrency should be larger than half of the number of virtual CPUs.

Candidate Selection

➤ We adopt Upper Confidence Bound (UCB) constrained to the safety set as a sampling criterion.

➤ To expand the safe subspace explicitly, OnlineTune also selects the safe configurations at the boundary of the safety set.

More in our paper...

Performance Modeling with Contexts

➤ Extends the Gaussian Process to support dynamic environments.

Bounding The Complexity of Gaussian Process

➤ Propose a clustering and model selection strategy.

Setting

<u>Setup</u>

- ≻ Version 5.7 of MySQL RDS on a cloud instance with 8 vCPU and 16GB RAM.
- ≻ We tune 40 dynamic configuration knobs.
- ➤ We use the DBA default configuration as the initial safety set and its performance as the safety threshold.

Metrics

- Cumulative performance during tuning
- Safety: the number of unsafe configuration recommendations (#Unsafe) and the number of system failures (#Failure).

Baselines

- \succ <u>DBA Default</u> is the configuration provided by experienced DBAs.
- ➢ <u>BO</u> is a Bayesian Optimization approach, widely used in database configuration tuning.
- ➤ <u>DDPG</u> is a reinforcement learning agent which is used to tune the database configuration.
- > <u>QTune</u> is a query-aware tuner that supports workload-level tuning.
- <u>ResTune</u> adopts constrained Bayesian Optimization to maximize the performance with safety constraints.
- <u>MysqlTuner</u> is a white-box tuning tool that examines DBMS metrics and uses static heuristics to suggest configurations

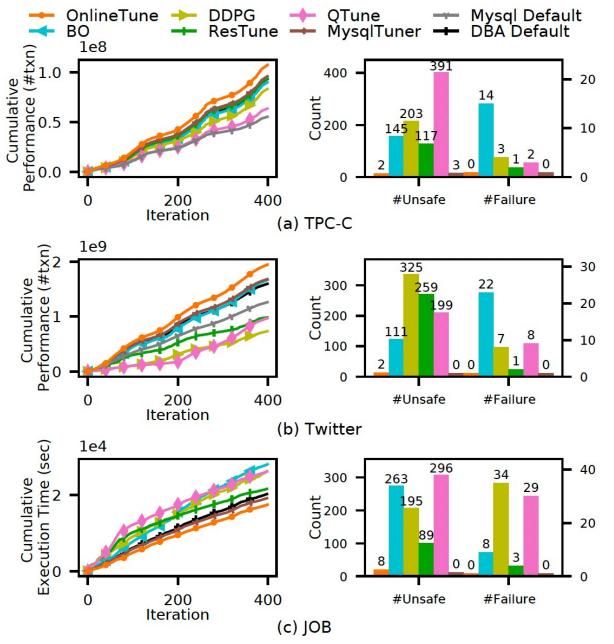


Figure 7: *Cumulative performance and safety statistics when tuning dynamic workloads*

Takeaway:

- OnlineTune finds the workload-specific configuration
 - OnlineTune achieves **16.2%** ~**21.9%** improvement on cumulative performance than the DBA default.
 - OnlineTune achieves **14.4%~165.3%** improvement on cumulative performance than existing offline approaches.
- OnlineTune reliably respects the safety requirement when tuning the online database.
 - OnlineTune reduces **91.0%~99.5%** unsafe recommendations, compared to the offline methods.

Iterative Performance on OLTP-OLAP circle

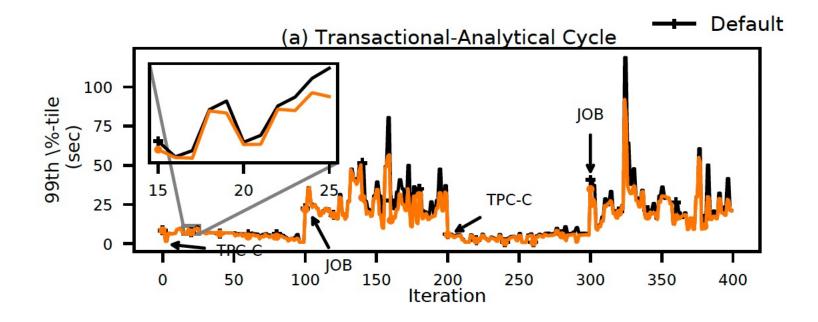


Figure 8: Iterative Performance on OLTP-OLAP circle

Ablation Study on Safe Exploration

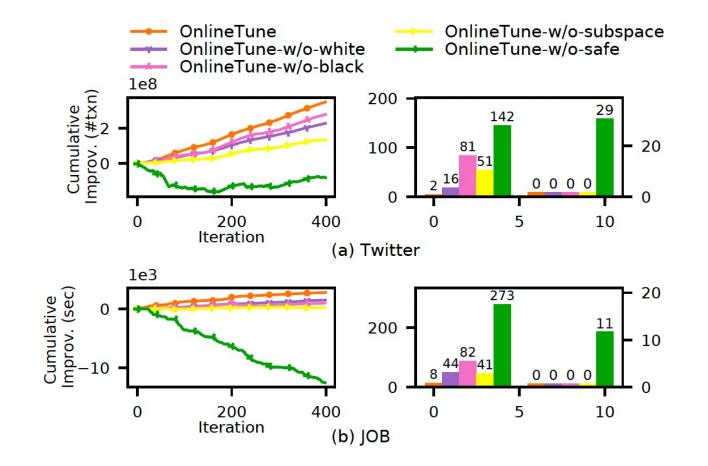


Figure 8: Ablation study on safe exploration.

Conclusion

- ➤ We introduce OnlineTune, an online tuning system that is aware of the dynamic environments and optimizes the database safely.
- OnlineTune featurizes the dynamic environmental factors as context feature and leverages Contextual Bayesian Optimization to optimize the context-configuration joint space.
- ➤ We propose a safe exploration strategy, greatly enhancing the safety of online tuning.
- Compared with the state-of-the-art methods, OnlineTune achieves 14.4%~165.3% improvement on cumulative performance while reducing 91.0%~99.5% unsafe configuration recommendations.

Thanks for Listening!

zhang_xinyi@pku.edu.cn

