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Backgrounds

« The amount of data grows at an unprecedented rate

» Lower-latency media can account for the lion’s
share of the total cost for OLTP databases

» Reducing the storage cost on cloud databases has

become one of the primary challenges for cloud
vendors
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Figure 1: Cost to host a database instance for 1 year using dif-
ferent storage media on Alibaba Cloud ECS ecs.hfgé6.8xlarge
instance with 2 TiB storage [1]; Enhanced SSD (ESSD) storage
cost can be more than 2X the cost of CPU and memory



Backgrounds

« LSM-tree introduces multiple layers for heterogeneous storages

« Compaction strategy severely impacts the system performance of LSM-tree

* Relay 3-day representative workload of Alibaba e-commerce business

« LOandL1on ESSD, L2 on HDD
« 99t |atency on heterogenous storages is 7 times longer than homogeneous storage

 SA-LSM is almost close to the performance using homogeneous storage

« Heterogeneous storages are cost efficient but only effective if cold and hot data can be well

separated
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Backgrounds

« LSM- tree with heterogeneous storages
« Storage cost vs. system performance
« Computation cost vs. algorithm precision
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X Homogenous storage (slow storage)
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Storage cost
Granularity Separation algorithm | Promotion | Demotion | Trigger time | Integration with DB kernel

RocksDB [19] SSTable Random No Yes Compaction Coupled
Mutant [59] SSTable Exponential smoothing Yes Yes Compaction Coupled
PrismDB [46] Record LRU Yes Yes Compaction Coupled
SA-LSM Record Survival analysis No Yes Active trigger Decoupled

Promotion is the process of moving data from lower layers to higher layers; demotion represents the opposite direction.




Backgrounds

» The popularities of the data records tend to decrease over time
» Track 50K data records and investigate their popularities over time in 90 days
» The overall popularity decreases to less than 1% after 50 days and remains at a low level
afterwards

» The distribution of lifetime is long-tailed, simply using a fixed time threshold is difficult to
separate the cold and hot data

» Lifetime: the interval between the creation time and the last access time point

Access frequency for logistics workload

Record lifetime distribution for logistics workload
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Backgrounds

 Survival Analysis

« Commonly used in clinical studies, where the time-to-event prediction is usually on

the occurrence of a naturally observed end point of interest
« e.g., relapse or death for patients

« Some data points do not occur within the observation window (censored data)

 Survival function: S(t)=Pr(T = t)
« Gives the probability that an object of interest will survive pass time t
« T is a nonnegative random variable denoting the time to the event of interest

 Models

» Cox, RSF, deep learning based methods, ...

Survival function 1

0.6

Proportion surviving
more than 2 months is
\0.37

Months



Challenges

« Granularity to separate hot and cold data
« Dynamic and complex access pattern in an SSTable

« Simply compacting the whole data on an SSTable can incur unexpected accesses to
the cold tiers

Workload order _ Workload logistics
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Challenges

 Censored data due to an limited observation window

* |naccuracy and bias could be incurred in the prediction without properly handling these
censored events

* Non-intrusive algorithm service deployment
« Avoid resource contentions with query processing

« Targeting workloads (Archival Write and Point Read Intensive (AW PI))

« The popularities of the data records often keep decreasing over time
» The access patterns of records can be obtained from the SQL log



Contributions

» We revisit the current design of LSM-tree for heterogeneous storages.

» We propose SA-LSM, based on survival analysis, to identify the cold data
as a time-to-event prediction problem with censored data.

* We implement a light weight communication protocol between the SA-
LSM external service and the database kernel. We implement SA-LSM for
X-Engine, a commercial-strength open-source LSM-tree storage



Cast Cold Data Identification as a Survival Analysis problem

» Obijective: rank the records using the predicted access events

» Two-step sampling for pivot selection to avoid bias

» A sequence of access time points {T'y, T», - - -, Tk } within the observation window for data
record i.
« Select an index uniformly from [1, 2, - - -, k] without replacement as ¢

« Sample a time point uniformly at random on [T¢-4,T] as P

« Random pivots split the observation window into two phases for each data record

N7 . - . -
,*_ insertion access {b pivot time

| «——— Feature Generation Phase — i«—— Labeling Phase —>

4

VAR S7) i —>

interval !
T, T, T, Ty P; Ts Tg , T,

N

! < Observation window T



Cast Cold Data Identification as a Survival Analysis problem

« Label generation

« t-event. A t-event of a data record i is the first access at time Tv after the pivot time P such that
the interval T, — T -1 between this access and its immediate previous one is less than 7. The
corresponding event time e; is defined tobe T, — P.

 e.9., Te- P;forpivot P;if Ts—Ts>tand Tg—T5<Tt

 Define the label (y; , §; ) for an event of data record i
* ¢, is a binary event indicator
» y; is the label time equal to the minimum of the event time and the interval length of the labeling

phase
~={ insertion access d; pivot time
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Cast Cold Data Identification as a Survival Analysis problem

» Feature selection
» Access features
« Last access interval (the interval between the pivot and the previous access)

» Look backward to consecutively select another ¢ (e.g., 7) number of access intervals
» Time difference between the insertion time and pivot time, etc.

 Semantic features

« Total numbers of UPDATE and SELECT operations per day as well as the individual numbers on each
of the columns

« Survival model
« Random Survival Forest model (RSF)



SA-LSM in Practice

* Proactive vs. Passive Compactions

« Passive compaction is triggered by the predefined size threshold of L4
» Proactive compaction adjust the size of the LSM- tree L, layer tailored to individual workloads

based on the algorithm results

 Survival probability curves of read-world workloads imply a dedicated survival model for each

workload to capture its unique characteristics
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SA-LSM in Practice

* The workflow of SA-LSM
« Use a DDL to enable proactive compaction for a individual table
» The external service checks the information_schema for meta data
» Fetches the log data, trains survival models and identify the keys for the cold data

» Transfers the results and trigger compaction
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Experiments

e Testbed

* Intel Xeon Platinum 8163 2.5 GHz 20-core CPUs
« 88 GB Samsung DDR4-2666 main memory

« Linux 5.10.23

» Hot storage: Alibaba Cloud ESSD (L, L4)

« Cold storage: RAID 0 consisting of 8 HDDs (L,)

. Workloads

Preload 20 days’ traces of the data records

« Manually trigger compactions between L and L,
based on different algorithms

* Replay the next three days’ traces to benchmark the
system performance

 The block cache is set to 30% of the total data size

#traces #records r/w ratio #samples censored %
AUCTION 95 million 754 k 3.7 4,081 k 55.2%
DISPUTE 68 million 192k 42.5 963 k 71.6%
FUNDS 41 million 6,295 k 1.9 32,780 k 91.8%
LOGISTICS 173 million 2,826 k 16.8 18,732 k 67.8%
ORDER 117 million 4,505 k 3.6 28,570 k 81.9%
PAY 124 million 1,736 k 13.8 10,017 k 45.0%




Experiments

* Methods
* Rule-based algorithms: LRU, LFU, LIRS, LRU-k
« ML-based algorithm: GBDT, ANN
« Survival analysis based algorithm: Cox, RSF, DeepSurv, CoxTime

* Metric
* c-index
, 1 A A
 most commonly used metric for survival models ¢= Z I[S(y;1X;) > S(yi|X3)]
i:6;=1J:Yi<y;
» cold data false identification rate FP

cold_fir =

« FP for incorrectly predicted cold data
« TP for correctly predicted cold data

FP+TP



Experiments

 Algorithms performance

« Random Survival Forest (RSF) is the most robust survival analysis based method, it outperforms GBDT by
8.9% ~ 30.3% on c-index metric

Workload auction dispute funds logistics order pay
ANN 0.701 0.695 0.732 0.715 0.701 0.681
ANN (shared) 0.627 0.659 0.725 0.702 0.681 0.651
GBDT 0.750 0.751 0.758 0.747 0.752 0.722
Cox 0.673 0.789 0.918 0.805 0.819 0.747
DeepSurv 0.717 0.809 0.985 0.825 0.843 0.782
CoxTime 0.761 0.824 0.976 0.794 0.887 0.865
CoxCC 0.728 0.810 0.983 0.825 0.838 0.794
RSF 0.817 0.864 0.988 0.872 0.909 0.842

(v.s. GBDT) (+8.9%) | (+15.0%) | (+30.3%) | (+16.7%) | (+20.9%) | (+16.6%)




Experiments

Impacts of the observation window

« the 7 -event has a high probability to be still absent in a long observation
window
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Experiments

« Impacts of the censored data

« RSF can outperform GBDT even when only utilizing 10% of the latter’ s
training samples through properly handling the censored data
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Experiments

 Algorithms performance
» Predict the 7-event within the next coming 30 days.

« SA-LSM can effectively decrease the cold_fir metric by ranging from 31.0% to 48.9%
compared with the best baseline.
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Experiments

« System performance
« SA-LSM reduces the tail latencies by 31.5% for logistics workload
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Experiments

« System performance
« SA-LSM reduces the tail latencies by 78.9% for order workload
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Experiments

« System performance

» The performance improvement is more substantial for order workload

» The fractions of the cold data migrated (51.7% v.s. 28.1%) , the |/O utilization of order
workload reaches the bottleneck of HDD

« The cold_fir metrics improvement (48.9% v.s. 43.7%)
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Conclusion

* We propose to utilize survival analysis, a statistical learning algorithm
commonly used in biostatistics, to effectively compact cold data for LSM-
tree based KV stores

* We design an external service in conjunction with a lightweight protocol to
offload the heavy training and inference operations from the database
kernel.

* The tail latency of the system is decreased by ranging from 31.5% to 78.9%
on typical real-world workloads



