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ABSTRACT

In data mining applications and spatial and multimedia data-
bases, a useful tool is the kNN join, which is to produce
the k nearest neighbors (NN), from a dataset S, of every
point in a dataset R. Since it involves both the join and the
NN search, performing kNN joins efficiently is a challenging
task. Meanwhile, applications continue to witness a quick
(exponential in some cases) increase in the amount of data
to be processed. A popular model nowadays for large-scale
data processing is the shared-nothing cluster on a number of
commodity machines using MapReduce [6]. Hence, how to
execute kNN joins efficiently on large data that are stored
in a MapReduce cluster is an intriguing problem that meets
many practical needs. This work proposes novel (exact and
approximate) algorithms in MapReduce to perform efficient
parallel kNN joins on large data. We demonstrate our ideas
using Hadoop. Extensive experiments in large real and syn-
thetic datasets, with tens or hundreds of millions of records
in both R and S and up to 30 dimensions, have demonstrated
the efficiency, effectiveness, and scalability of our methods.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management—
Systems. Subject: Query processing

General Terms

Algorithms

1. INTRODUCTION
The k-nearest neighbor join (kNN join) is an important

and frequently used operation for numerous applications in-
cluding knowledge discovery, data mining, and spatial data-
bases [2,14,20,22]. Since both the join and the nearest neigh-
bor (NN) search are expensive, especially on large data sets
and/or in multi-dimensions, kNN-join is a costly operation.
Lots of research have been devoted to improve the perfor-
mance of kNN joins by proposing efficient algorithms [20,22].
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However, all these approaches focus on methods that are to
be executed in a single thread on a single machine. With
the fast increase in the scale of the input datasets, processing
large data in parallel and distributed fashions is becoming
a popular practice. Even though a number of parallel algo-
rithms for equi-joins in relational engines [8,15], set similar-
ity joins [17], relational θ-joins [12], and spatial range joins
defined by distance threshold [25] in MapReduce have been
designed and implemented, there has been little work on
parallel kNN joins in large data, which is a challenging task
and becoming increasingly essential as data sets continue to
grow at an exponential rate.

When dealing with extreme-scale data, parallel and dis-
tributed computing using shared-nothing clusters, which typ-
ically consist of a number of commodity machines, is quickly
becoming a dominating trend. MapReduce [6] was intro-
duced with the goal of providing a simple yet powerful par-
allel and distributed computing paradigm. The MapReduce
architecture also provides good scalability and fault toler-
ance mechanisms. In past years there has been increasing
support for MapReduce from both industry and academia,
making it one of the most actively utilized frameworks for
parallel and distributed processing of large data today.

Motivated by these observations, this work investigates
the problem of executing kNN joins for large data using
MapReduce. We first propose the basic approach using
block-nested-loop-join (BNLJ) and its improved version us-
ing the R-tree indices. However, due to the quadratic num-
ber (to the number of blocks in each input dataset) of par-
titions produced (hence, the number of reducers), the ba-
sic approach does not scale well for large and/or multi-
dimensional data. In light of its limitation, we introduce
a MapReduce-friendly, approximate algorithm that is based
on mapping multi-dimensional data sets into one dimension
using space-filling curves (z-values), and transforming kNN
joins into a sequence of one-dimensional range searches. We
use a small number of random vectors to shift the datasets so
that z-values can preserve the spatial locality with proved
high probability. The most significant benefit of our ap-
proach is that it only requires a linear number (to the num-
ber of blocks in each input data set) of partitions (hence,
the number of reducers), which features excellent scalability.
There are a number of interesting and challenging problems
associated with realizing this idea in MapReduce, e.g., how
to perform the random shifts in MapReduce, how to design
a good partition over the one-dimensional z-values for the
join purpose, and instantiate it efficiently in MapReduce,
how to reduce the amount of communication incurred in the



Map-to-Reduce phase. We address these issues in our study.
We present the above algorithms in MapReduce and illus-

trate how we handle a number of system issues which arise
in realizing these algorithms using Hadoop. Extensive ex-
periments over large real data sets (up to 160 million joining
160 million records and up to 30 dimensions) demonstrate
that our approximate method consistently outperforms the
basic approach by at least 1-2 orders of magnitude, while
achieving very good approximation quality.

The paper is organized as follows. Section 2 introduces
background information. Section 3 discusses baseline meth-
ods and Section 4 presents our parallel kNN join algorithms
in MapReduce. Section 5 reports experimental results. Sec-
tion 6 discusses related work and Section 7 concludes.

2. BACKGROUND

2.1 kNN Join
Formally, given two datasets R and S in R

d. Each record
r ∈ R (s ∈ S) may be interpreted as a d-dimensional point.
We focus on the L2 norm, i.e., the similarity distance be-
tween any two records is their euclidean distance d(r, s).
Then, knn(r, S) returns the set of k nearest neighbors (kNN)
of r from S, where ties are broken arbitrarily. People are also
often interested in finding just the approximate k nearest
neighbors. Let aknn(r, S) be a set of approximate k nearest
neighbors for r in S. Assume r’s exact kth nearest neighbor
in knn(r, S) is point p. Let p′ be the kth nearest neighbor
in aknn(r, S). Then, we say aknn(r, S) is a c-approximation
of knn(r, S) for some constant c if and only if:

d(r, p) ≤ d(r, p′) ≤ c · d(r, p).

The algorithm producing aknn(r, S) is dubbed a c-approx-
imate kNN algorithm.

kNN join: The kNN join knnJ(R, S) of R and S is:

knnJ(R, S) = {(r, knn(r, S))| for all r ∈ R}.
Approximate kNN join: The approximate kNN join of
R and S is denoted as aknnJ(R, S) and is expressed as:

aknnJ(R, S) = {(r, aknn(r, S))| for all r ∈ R}.

2.2 MapReduce and Hadoop Basics
A MapReduce program typically consists of a pair of user-

defined map and reduce functions. The map function is in-
voked for every record in the input data sets and produces
a partitioned and sorted set of intermediate results. The
reduce function fetches sorted data, from the appropriate
partition, produced by the map function and produces the
final output data. Conceptually, they are: map(k1, v1) →
list(k2, v2) and reduce(k2, list(v2)) → list(k3, v3).

A typical MapReduce cluster consists of many slave ma-
chines, which are responsible for performing map and reduce
tasks, and a single master machine which oversees the ex-
ecution of a MapReduce program. A file in a MapReduce
cluster is usually stored in a distributed file system (DFS),
which splits a file into equal sized chunks (aka splits). A
file’s splits are then distributed, and possibly replicated, to
different machines in the cluster. To execute a MapReduce
job, a user specifies the input file, the number of desired
map tasks m and reduce tasks r, and supplies the map and
reduce function. For most applications, m is the same as

the number of splits for the given input file(s). The coor-
dinator on the master machine creates a map task for each
of the m splits and attempts to assign the map task to a
slave machine containing a copy of its designated input split.
Each map task partitions its output into r buckets, and each
bucket is sorted based on a user-defined comparator on k2.
Partitioning is done via a hash function on the key value,
i.e. hash(k2) mod r. A map task’s output may be tem-
porarily materialized on a local file system (LFS), which is
removed after the map task completes.

Next, the coordinator assigns r reduce tasks to different
machines. A shuffle and sort stage is commenced, during
which the i’th reducer ri copies records from bi,j , the i’th
bucket from each of the jth (1 ≤ j ≤ m) map task. After
copying all list(k2, v2) from each bi,j , a reduce task merges
and sorts them using the user specified comparator on k2.
It then invokes the user specified reduce function. Typically,
the reduce function is invoked once for each distinct k2 and
it processes a k2’s associated list of values list(v2), i.e. it
is passed a (k2, list(v2)) pair per invocation. However, a
user may specify a group-by comparator which specifies an
alternative grouping by k2. For every invocation, the reduce
function emits 0 or more final key value pairs (k3, v3). The
output of each reduce task (list(k3, v3)) is written into a
separate distributed file residing in the DFS.

To reduce the network traffic caused by repetitions of
the intermediate keys k2 produced by each mapper, an op-
tional combine function for merging output in map stage,
combine(k2, list(v2)) → list(k2, v2), can be specified.

It might be necessary to replicate some data to all slaves
running tasks, i.e. job specific configurations. In Hadoop
this may be accomplished easily by submitting a file to the
master for placement in the Distributed Cache for a job. All
files submitted to a job’s Distributed Cache are replicated to
all slaves during the initialization phases of the job and re-
moved after the completion of the job. We assume the avail-
ability of a Distributed Cache, though a similar mechanism
should be available in most other MapReduce frameworks.

3. BASELINE METHODS
The straightforward method for kNN-joins in MapReduce

is to adopt the block nested loop methodology. The basic
idea is to partition R and S, each into n equal-sized blocks
in the Map phase, which can be easily done in a linear scan
of R (or S) by putting every |R|/n (or |S|/n) records into
one block. Then, every possible pair of blocks (one from R
and one from S) is partitioned into a bucket at the end of
the Map phase (so a total of n2 buckets). Then, r (= n2)
reducers are invoked, one for each bucket produced by the
mappers. Each reducer reads in a bucket and performs a
block nested loop kNN join between the local R and S blocks
in that bucket, i.e., find kNNs in the local block of S of every
record in the local block of R using a nested loop. The
results from all reducers are written into (n2) DFS files. We
only store the records’ ids, and the distance between every
record r ∈ R to each of its kNNs from a local S block, i.e.,
the record output format of this phase is (rid, sid, d(r, s)).

Note in the above phase, each record r ∈ R appears in one
block of R and it is replicated in n buckets (one for each of
the n blocks from S). A reducer for each bucket simply finds
the local kNNs of r w.r.t. the corresponding block from S.
Hence, in the second MapReduce phase, our job is to find
the global kNNs for every record r ∈ R among its n local



kNNs produced in the first phase, a total of nk candidates.
To do so, it is necessary to sort the triples (a record r ∈ R,
one of its local kNNs in one bucket, their distance) from the
first phase for each r ∈ R. This can be achieved as follows.
In the Map stage, we read in all outputs from the first phase
and use the unique record ID of every record r ∈ R as the
partitioning key (at the end of the Map phase). Hence, ev-
ery reducer retrieves a (rid, list(sid, d(r, s)) pair and sorts
the list(sid, d(r, s)) in ascending order of d(r, s). The re-
ducer then emits the top-k results for each rid. We dub this
method H-BNLJ (Hadoop Block Nested Loop Join).

An improvement. A simple improvement to H-BNLJ is
to build an index for the local S block in a bucket in the
reducer, to help find kNNs of a record r from the local R
block in the same bucket. Specifically, for each block Sbj

(1 ≤ j ≤ n), we build a reducer-local spatial index over Sbj ,
in particular we used the R-tree, before proceeding to find
the local kNNs for every record from the local R block in
the same bucket with Sbj . Then, we use kNN functionality
from R-tree to answer knn(r, Sbj) in every bucket in the
reducer. Bulk-loading a R-tree for Sbj is very efficient, and
kNN search in R-tree is also efficient, hence this overhead is
compensated by savings from not running a local nested loop
in each bucket. Remaining steps are identical to H-BNLJ,
and we dub it H-BRJ (Hadoop Block R-tree Join).

Cost analysis. Each bucket has one local R block and one
local S block. Given n2 buckets to be read by the reducer,
the communication cost of H-BNLJ in the first MapReduce
round is O((|R|/n+|S|/n)·n2). In the second round, for each
record r ∈ R, all local kNNs of r in each of the n buckets
that r has been replicated into are communicated. So the
communication cost of this round is O(kn|R|). Hence, the
total communication cost of H-BNLJ is O(n(|R| + |S|) +
nk|R|). In terms of cpu cost, the cost for each bucket in the
first round is clearly (|R||S|)/n2. Summing over all buckets,
it leads to O(|R||S|). In the second round, the cost is to
find the k records with the smallest distances among the nk
local kNNs for each record r ∈ R. Using a priority queue of
size k, this can be achieved in O(nk log k) cost. Hence, the
total cpu cost of H-BNLJ is O(|R||S| + |R|nk log k).

H-BRJ’s communication cost is identical to that in H-
BNLJ. Bulk-loading an R-tree over each block Sbj takes
O(|Sbj | log |Sbj |) in practice. Note, there are n2 buckets in
total (each block Sbj is replicated in n buckets). The asymp-
totic worst-case query cost for kNN search in R-tree is as
expensive as linear scan, however, in practice, this is often
just square-root of the size of the dataset. Thus, finding local
kNNs from Sbj for each record in a local block Rbi in a bucket

with Rbi and Sbj takes O(|Rbi|
p

|Sbj |). Since |Rbi| = |R|/n
and |Sbj | = |S|/n for any block, H-BRJ’s first round cpu

cost is O(n|S| log(|S|/n)+n|R|
p

|S|/n). Its second round is
identical to that in H-BNLJ. Hence, H-BRJ’s total cpu cost
is O(n|S| log(|S|/n) + n|R|

p

|S|/n + |R|nk log k).

Remarks. In this work our goal is to work with ad-hoc
join requests in a MapReduce cluster over datasets R and S
which are stored in the cluster, and design algorithms that
do everything in MapReduce. Therefore, we do not consider
solutions which require pre-processing of the datasets either
outside of the MapReduce cluster or using non MapReduce
programs. We focus on using the standard MapReduce pro-
gramming model, which always includes the map and reduce

functions, to ensure high compatibility of our approaches
with any MapReduce system. With these constraints, we do
not consider the use of complex data structures or indices,
such as a global (distributed) index or overlay structure built
on a dataset offline, using non MapReduce programs, and
adapted for later-use in the MapReduce cluster [18,19].

4. Z-VALUE BASED PARTITION JOIN
In H-BNLJ and H-BRJ, for each r ∈ R we must compute

knn(r, Sbj) for a block Sbj in a bucket, where each bucket
is forwarded to a reducer for processing (leading to n2 re-
ducers). This creates excessive communication (n2 buckets)
and computation costs, as shown in our cost analysis.

This motivates us to find alternatives with linear commu-
nication and computation costs (to the number of blocks
n in each input dataset). To achieve this, we search for
approximate solutions instead, leveraging on space-filling
curves. Finding approximate nearest neighbors efficiently
using space-filling curves is well studied, see [21] for using the
z-order curve and references therein. The trade-off of this
approach is spatial locality is not always preserved, leading
to potential errors in the final answer. Fortunately, remedies
exist to guarantee this happens infrequently:

Theorem 1 [from [21]] Given a query point q ∈ R
d, a data

set P ⊂ R
d, and a small constant α ∈ Z

+. We generate
(α − 1) random vectors {v2, . . . ,vα}, such that for any i,
vi ∈ R

d, and shift P by these vectors to obtain {P1, . . . , Pα}
(P1 = P ). Then, Algorithm 1 returns a constant approxi-
mation in any fixed dimension for knn(q, P ) in expectation.

Algorithm 1: zkNN(q, P , k, α) [from [21]]

generate {v2, . . . ,vα}, v1 =
−→
0 , vi is a random vector in1

R
d; Pi = P + vi (i ∈ [1, α]; ∀p ∈ P , insert p + vi in Pi);

for i = 1, . . . , α do2

let qi = q + vi, Ci(q) = ∅, and zqi
be qi’s z-value;3

insert z−(zqi
, k, Pi) into Ci(q); // see (1)4

insert z+(zqi
, k, Pi) into Ci(q); // see (2)5

for any p ∈ Ci(q), update p = p − vi;6

C(q) =
Sα

i=1 Ci(q) = C1(q) ∪ · · · ∪ Cα(q);7

return knn(q, C(q)).8

For any p ∈ R
d, zp denotes p’s z-value and ZP represents

the sorted set of all z-values for a point set P ; we define:

z−(zp, k, P ) = k points immediately preceding zp in ZP (1)

z+(zp, k, P ) = k points immediately succeeding zp in ZP (2)

The idea behind zkNN is illustrated in Figure 1, which
demonstrates finding Ci(q) on Pi (= P + vi) with k = 3.
Algorithm zkNN repeats this process over (α− 2) randomly
shifted copies, plus P1 = P , to identify candidate points
{C1(q), . . . , Cα(q)}, and the overall candidate set C(q) =
Sα

i=1 Ci(q). As seen in Figure 1(b), Ci(q) over Pi can be
efficiently found using binary search if z-values of points in
Pi are sorted, with a cost of O(log |P |). There is a spe-
cial case for (1) (or (2)) near the head (tail) of ZP , when
there are less than k preceding (succeeding) points. When
this happens, we take an appropriate additional number of
succeeding (preceding) points, to make k total points.

In practice, only a small number of random shifts are
needed; α = 2 is sufficient to guarantee high quality ap-
proximations as shown in our experiments.
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Figure 1: Algorithm zkNN.

Using zkNN for kNN joins in a centralized setting is obvi-
ous (applying zkNN over S for every record in R, as Yao et
al. did [21]). However, to efficiently apply the above idea for
kNN joins in a MapReduce framework is not an easy task:
we need to partition R and S delicately to achieve good
load-balancing. Next, we will discuss how to achieve ap-
proximate kNN-joins in MapReduce by leveraging the idea
in zkNN, dubbed H-zkNNJ (Hadoop based zkNN Join).

4.1 zkNN Join in MapReduce

Overview of H-zkNNJ. We generate α vectors {v1, . . . ,

vα} in R
d (where v1 =

−→
0 ) randomly, and shift R and S

by these vectors to obtain α randomly shifted copies of R
and S respectively, which are denoted as {R1, . . . , Rα} and
{S1, . . . , Sα}. Note that R1 = R and S1 = S.

Consider any i ∈ [1, α], and Ri and Si, ∀r ∈ Ri, the
candidate points from Si, Ci(r), for r’s kNN, according to
zkNN, is in a small range (2k points) surrounding zr in ZSi

(see Figure 1(b) and lines 4-5 in Algorithm 1). If we partition
Ri and Si into blocks along their z-value axis using the same
set of (n−1) z-values, {zi,1, . . . , zi,n−1}, and denote resulting
blocks as {Ri,1, . . . , Ri,n} and {Si,1, . . . , Si,n}, such that:

Ri,j , Si,j = [zi,j−1, zi,j) (let zi,0 = 0, zi,n = +∞); (3)

Then, for any r ∈ Ri,j , we can find Ci(r) using only Si,j ,
as long as Si,j contains at least 2k neighboring points of zr,
i.e., z−(zr, k, Si) and z+(zr, k, Si), as shown in Figure 2.

: ZRi
or ZSi

: partition values

ZSi

zr

k = 2

Ci(r)

Si,1 Si,2 Si,3

Ri,1 Ri,2 Ri,3 ZRi

zi,1 zi,2

zr

Figure 2: Ci(r) ⊆ Si,j.

When this is not the case, i.e., Si,j does not contain enough
(k) preceding (succeeding) points w.r.t. a point r with zr ∈
Ri,j , clearly, we can continue the search to the immediate
left (right) block of Si,j , i.e., Si,j−1 (Si,j+1), and repeat the
same step if necessary until k preceding (succeeding) points
are met. An example is shown in Figure 3. To avoid check-
ing multiple blocks in this process and ensure a search over
Si,j is sufficient, we “duplicate” the nearest k points from
Si,j ’s preceding (succeeding) block (and further block(s) if
necessary, when Si,j−1 or Si,j+1 does not have k points).
This guarantees, for any r ∈ Ri,j , the k points with preced-
ing (succeeding) z-values from Si are all contained in Si,j ,
as shown in Lemma 1. This idea is illustrated in Figure 4.

: ZRi
or ZSi

: partition values

ZSi

zr

k = 3

Ci(r)

Si,1 Si,2 Si,4

Ri,1 Ri,2 Ri,4 ZRi

zi,1 zi,2

zrSi,3

zi,3

Ri,3

Figure 3: Ci(r) 6⊆ Si,j.

: ZRi
or ZSi

: partition values

ZSi

zr

k = 3

Ci(r)

Si,1 Si,2 Si,4

Ri,1 Ri,2 Ri,4 ZRi

zi,1 zi,2

zrSi,3

zi,3

Ri,3

copy copy copy

zi,2,k− zi,3,k+

Figure 4: Copy z−(zi,j−1, k, Si), z
+(zi,j , k, Si) to Si,j .

Lemma 1 By copying the nearest k points to the left and
right boundaries of Si,j in terms of ZSi

, into Si,j ; for any
r ∈ Ri,j, Ci(r) can be found in Si,j .

Proof. By equations (1), (2), and (3), z−(zi,j−1, k, Si)
and z+(zi,j , k, Si) are copied into Si,j , i,e.,

Si,j = [zi,j−1, zi,j) ∪ z−(zi,j−1, k, Si) ∪ z+(zi,j , k, Si). (4)

Also, for any r ∈ Ri, Ci(r) = z−(zr, k, Si) ∪ z+(zr, k, Si).
Since r ∈ Ri,j , we must have zi,j−1 ≤ zr < zi,j . These facts,
together with (4), clearly ensure that Ci(r) ⊆ Si,j .

That said, we can efficiently identify Ci(r) for any r ∈
Ri,j , by searching only block Si,j .

Partition. The key issue left is what partition values, as
{zi,1, . . . , zi,n−1}, delivers good efficiency in a distributed
and parallel computation environment like MapReduce.

We first point out a constraint in our partitioning; the jth
blocks from Ri and Si must share the same boundaries. This
constraint is imposed to appeal to the distributed and par-
allel computation model used by MapReduce. As discussed
in Section 2.2, each reduce task in MapReduce is responsi-
ble for fetching and processing one partition created by each
map task. To avoid excessive communication and incurring
too many reduce tasks, we must ensure for a record r ∈ Ri,j ,
a reduce task knows where to find Ci(r) and can find Ci(r)
locally (from the partition, created by mappers, which this
reducer is responsible for). By imposing the same bound-
aries for corresponding blocks in Ri and Si, the search for
Ci(r) for any r ∈ Ri,j should start in Si,j , by definition of
Ci(r). Our design choice above ensures Ci(r) is identifiable
by examining Si,j only. Hence, sending the jth blocks of Ri

and Si into one reduce task is sufficient. This means only
n reduce tasks are needed (for n blocks on Ri and Si re-
spectively). This partition policy is easy to implement by a
map task once the partition values are set. What remains
to explain is how to choose these values.

As explained above, the jth blocks Ri,j and Si,j will be
fetched and processed by one reducer and there will be a
total of n reducers. Hence, the best scenario is to have
∀j1 6= j2, |Ri,j1 | = |Ri,j2 | and |Si,j1 | = |Si,j2 |, which leads
to the optimal load balancing in MapReduce. Clearly, this
is impossible for general datasets R and S. A compromised
choice is to ensure ∀j1 6= j2, |Ri,j1 | · |Si,j1 | = |Ri,j2 | · |Si,j2 |,
which is also impossible given our partition policy. Among



the rest (with our partitioning constraint in mind), two sim-
ple and good choices are to ensure the: (1) same size for
Ri’s blocks; (2) same size for Sj ’s blocks.

In the first choice, each reduce task has a block Ri,j that
satisfies |Ri,j | = |Ri|/n; the size of Si,j may vary. The worst
case happens when there is a block Si,j such that |Si,j | =
|Si|, i.e., all points in Si were contained in the jth block Si,j .
In this case, the jth reducer does most of the job, and the
other (n − 1) reducers have a very light load (since for any
other block of Si, it contains only 2k records, see (4)). The
bottleneck of the Reduce phase is apparently the jth reduce

task, with the cost of O(|Ri,j | log |Si,j |) = O( |Ri|
n

log |Si|).
In the second choice, each reduce task has a block Si,j that

satisfies |Si,j | = |Si|/n; the size of Ri,j may vary. The worst
case happens when there is a block Ri,j such that |Ri,j | =
|Ri|, i.e., all points in Ri were contained in the jth block
Ri,j . In this case, the jth reducer does most of the job, and
the other (n − 1) reducers have effectively no computation
cost. The bottleneck of the Reduce phase is the jth reduce

task, with a cost of O(|Ri,j | log |Si,j |) = O(|Ri| log |Si|
n

) =
O(|Ri| log |Si| − |Ri| log n). For massive datasets, n ≪ |Si|,
which implies this cost is O(|Ri| log |Si|).

Hence, choice (1) is a natural pick for massive data. Our
first challenge is how to create equal-sized blocks {D1, . . . ,
Dn} such that ∀x ∈ Di and ∀y ∈ Dj if i < j then x < y,
over a massive one-dimensional data set D in the Map phase.
Given a value n, if we know the 1

n
, 2

n
, . . . , n−1

n
quantiles of

D, clearly, using these quantiles guarantees n equal-sized
blocks. However, obtaining these quantiles exactly is expen-
sive for massive datasets in MapReduce. Thus, we search
for an approximation to estimate the φ-quantile over D for
any φ ∈ (0, 1) efficiently in MapReduce.

Let D consist of N distinct integers {d1, d2, . . . , dN}, such
that ∀i ∈ [1, N ], di ∈ Z

+, and ∀i1 6= i2, di1 6= di2 . For
any element x ∈ D, we define the rank of x in D as r(x) =
PN

i=1[di < x], where [di < x] = 1 if di < x and 0 otherwise.

We construct a sample bD = {s1, . . . , s| bD|} of D by uniformly

and randomly selecting records with probability p = 1
ε2N

,

for any ε ∈ (0, 1); ∀x ∈ bD, its rank s(x) in bD is s(x) =
P| bD|

i=1[si < x] where [si < x] = 1 if si < x and 0 otherwise.

Theorem 2 ∀x ∈ bD, br(x) = 1
p
s(x) is an unbiased estima-

tor of r(x) with standard deviation ≤ εN , for any ε ∈ (0, 1).

Proof. We define N independent identically distributed
random variables, X1, . . . , XN , where Xi = 1 with probabil-

ity p and 0 otherwise. ∀x ∈ bD, s(x) is given by how many
di’s such that di < x have been sampled from D. There are
r(x) such di’s in D, each is sampled with a probability p.
Suppose their indices are {ℓ1, . . . , ℓr(x)}. This implies:

s(x) =

| bD|
X

i=1

[si < x] =

r(x)
X

i=1

Xℓi
.

Xi is a Bernoulli trial with p = 1
ε2N

for i ∈ [1, N ]. Thus,
s(x) is a Binomial distribution expressed as B(r(x), p):

E[br(x)] = E[
1

p
s(x)] =

1

p
E[s(x)] = r(x) and,

Var[br(x)] = Var(
s(x)

p
) =

1

p2
Var(s(x))

=
1

p2
r(x)p(1− p) <

N

p
= (εN)2.

Now, given required rank r, we estimate the element with
the rank r in D as follows. We return the sampled element

x ∈ bD that has the closest estimated rank br(x) to r, i.e:
x = argmin

x∈ bD

|br(x) − r|. (5)

Lemma 2 Any x returned by Equation (5) satisfies:

Pr[|r(x) − r| ≤ εN ] ≥ 1 − e−2/ε.

Proof. We bound the probability of the event that r(x)
is indeed away from r by more than εN . When this happens,
it means that no elements with ranks that are within εN to
r have been sampled. There are 2⌊εN⌋ such rank values.
To simplify the presentation, we use 2εN in our derivation.
Since each rank corresponds to a unique element in D, hence:

Pr[|r(x) − r| > εN ] = (1 − p)2εN = (1 − 1

ε2N
)2εN

< e(−1/ε2)2ε = e−2/ε.

Thus, we can use bD and (5) to obtain a set of estimated
quantiles for the 1

n
, 2

n
, . . . , n−1

n
quantiles of D. This means

that for any Ri, we can partition ZRi
into n roughly equal-

sized blocks for any n with high probability.
However, there is another challenge. Consider the shifted

copy Ri, and the estimated quantiles {zi,1, . . . , zi,n−1} from
ZRi

. In order to partition Si using these z-values, we need
to ensure that, in the jth block of Si, z−(zi,j−1, k, Si) and
z+(zi,j , k, Si) are copied over (as illustrated in Figure 4).
This implies that the partitioning boundary of Si,j is no
longer simply zi,j−1 and zi,j ! Instead, they have been ex-
tended to the kth z-values to the left and right of zi,j−1

and zi,j respectively. We denote these two boundary val-
ues for Si,j as zi,j−1,k− and zi,j,k+. Clearly, zi,j−1,k− =
min(z−(zi,j−1, k, Si)) and zi,j,k+ = max( z+(zi,j , k, Si)); see
Figure 4 for an illustration on the third Si block Si,3. To
find zi,j−1,k− and zi,j,k+ exactly given zi,j−1 and zi,j is ex-
pensive in MapReduce: we need to sort z-values in Si to
obtain ZSi

and commute the entire Si to one reducer. This
has to be done for every random shift.

We again settle for approximations using random sam-
pling. Our problem is generalized to the following. Given
a dataset D of N distinct integer values {d1, . . . , dN} and a
value z, we want to find the kth closest value from D that
is smaller than z (or larger than z, which is the same prob-
lem). Assume that D is already sorted and we have the
entire D, this problem is easy: we simply find the kth value
in D to the left of z which is denoted as zk−. When this is

not the case, we obtain a random sample bD of D by select-

ing each element in D into bD using a sampling probability

p. We sort bD and return the ⌈kp⌉th value in bD to the left
of z, denoted as bzk−, as our estimation for zk− (see Figure
5). When searching for zk− or bzk−, only values ≤ z matter.

Hence, we keep only di ≤ z in D and bD in the following
analysis (as well as in Figure 5). For ease of discussion, we

assume that |D| ≥ k and | bD| ≥ ⌈kp⌉. The special case when
this does not hold can be easily handled by returning the

furthest element to the left of z (i.e., min(D) or min( bD))
and our theoretical analysis below for the general case can
also be easily extended.

Note that both zk− and bzk− are elements from D. We
define r(di) as the rank of di in descending order for any
di ∈ D; and s(di) as the rank of di in descending order for
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Figure 5: Estimate zk− given any value z.

any di ∈ bD. Clearly, by our construction, r(zk−) = k and
s(bzk−) = ⌈kp⌉.
Theorem 3 Let X = r(bzk−) be a random variable; by our
construction, X takes the value in the range [⌈kp⌉, r(d1)].
Then, for any a ∈ [⌈kp⌉, r(d1)],

Pr[X = a] = p

 

a − 1

⌈kp⌉ − 1

!

p⌈kp⌉−1(1 − p)a−⌈kp⌉, (6)

and Pr[X − k] ≤ εN ≥ 1 − e−2/ε if p = 1/(ε2N). (7)

Proof. When X = a, two events must have happened:

• e1: the ath element dℓ (r(dℓ) = a) smaller than z in D

must have been sampled into bD.

• e2: exactly (⌈kp⌉ − 1) elements were sampled into bD
from the (a − 1) elements between dℓ and z in D.

e1 and e2 are independent, and Pr(e1) = p and Pr(e2) =
`

a−1
⌈kp⌉−1

´

p⌈kp⌉−1(1 − p)a−1−(⌈kp⌉−1), which leads to (6).

Next, by Theorem 2, br(x) = 1
p
s(x) is an unbiased estima-

tor of r(x) for any x ∈ bD (i.e., E(br(x)) = r(x)). By our
construction in Figure 5, s(bzk−) = ⌈kp⌉. Hence, br(bzk−) = k.

This means that bzk− is always the element in bD that has the
closest estimated rank value to the kth rank in D (which
corresponds exactly to r(zk−)). Since X = r(bzk−), when

p = 1/(ε2N), by Lemma 2, Pr[X−k] ≤ εN ≥ 1−e−2/ε.

Theorem 3 implies that boundary values zi,j−1,k− and
zi,j,k+ for any jth block Si,j of Si can be estimated accu-
rately using a random sample of Si with the sampling prob-
ability p = 1/(ε2|S|): we apply the results in Theorem 3
using zi,j−1 (or zi,j by searching towards the right) as z and
Si as D. Theorem 3 ensures that our estimated boundary
values for Si,j will not copy too many (or too few) records
than necessary (k records immediately to the left and right
of zi,j−1 and zi,j respectively). Note that zi,j−1 and zi,j are
the two boundary values of Ri,j , which themselves are also
estimations (the estimated j−1

n
th and j

n
th quantiles of ZRi

).

The algorithm. Complete H-zkNNJ is in Algorithm 2.

4.2 System Issues
We implement H-zkNNJ in three rounds of MapReduce.

Phase 1: The first MapReduce phase of H-zkNNJ corre-
sponds to lines 1-13 of Algorithm 2. This phase constructs
the shifted copies of R and S, Ri and Si, also determines
the partitioning values for Ri and Si. To begin, the master
node first generates {v1,v2, . . . ,vα}, saves them to a file in
DFS, and adds the file to the distributed cache, which is
communicated to all mappers during their initialization.

Each mapper processes a split for R or S: a single record
at a time. For each record x, a mapper, for each vector vi,
first computes vi + x and then computes the z-value zvi+x

Algorithm 2: H-zkNNJ(R, S, k, n, ε, α)

get {v2, . . . ,vα}, vi is a random vector in R
d; v1 =

−→
0 ;1

let Ri = R + vi and Si = S + vi for i ∈ [1, α];2

for i = 1, . . . , α do3

set p = 1
ε2|R|

, bRi = ∅, A = ∅;4

for each element x ∈ Ri do5

sample x into bRi with probability p;6

A =estimator1( bRi, ε, n, |R|);7

set p = 1
ε2|S|

, bSi = ∅;8

for each point s ∈ Si do9

sample s into bSi with probability p;10

bzi,0,k− = 0 and bzi,n,k+ = +∞;11

for j = 1, . . . , n − 1 do12

bzi,j,k−, bzi,j,k+ =estimator2(bSi, k, p, A[j]);13

for each point r ∈ Ri do14

Find j ∈ [1, n] such that A[j − 1] ≤ zr < A[j];15

Insert r into the block Ri,j

for each point s ∈ Si do16

for j = 1 . . . n do17

if bzi,j−1,k− ≤ zs ≤ bzi,j,k+ then18

Insert s into the block Si,j19

for any point r ∈ R do20

for i = 1, . . . , α do21

find block Ri,j containing r; find Ci(r) in Si,j ;22

for any s ∈ Ci(r), update s = s − vi;23

let C(r) =
Sα

i=1 Ci(r); output (r, knn(r, C(r));24

Algorithm 3: estimator1( bR, ε, n, N)

p = 1/(ε2N), A = ∅; sort z-values of bR to obtain Z bR;1

for each element x ∈ Z bR do2

get x’s rank s(x) in Z bR;3

estimate x’s rank r(x) in ZR using br(x) = s(x)/p;4

for i = 1, . . . , n − 1 do5

A[i]=x in Z bR with the closest br(x) value to i/n ·N ;6

A[0] = 0 and A[n] = +∞; return A;7

Algorithm 4: estimator2(bS, k, p, z)

sort z-values of bS to obtain ZbS .1

return the ⌈kp⌉th value to the left and the ⌈kp⌉th2

value to the right of z in ZbS.

and writes an entry (rid, zvi+x) to a single-chunk unrepli-
cated file in DFS identifiable by the source dataset R or S,
the mapper’s identifier, and the random vector identifier i.
Hadoop optimizes a write to single-chunk unreplicated DFS
files from a slave by writing the file to available local space.
Therefore, typically the only communication in this opera-
tion is small metadata to the master. While transforming
each input record, each mapper also samples a record from

Ri into bRi as in lines 4-6 of Algorithm 2 and samples a

record from Si into bSi as in lines 8-10 of Algorithm 2. Each

sampled record x from bRi or bSi is emitted as a ((zx, i), (zx,
i, src)) key-value pair, where zx is a byte array for x’s z-
value, i is a byte representing the shift for i ∈ [1, α], and src
is a byte indicating the source dataset R or S. We build a
customized key comparator which sorts the emitted records
for a partition (Hadoop’s mapper output partition) in as-
cending order of zx. We also have a customized partitioner



which partitions each emitted record into one of α partitions
by the shift identifier i so all records from the ith shifted

copy, both bRi and bSi, end up in the same partition destined
for the same reducer. Note each mapper only communicates
sampled records to reducers.

In the reduce stage, a reduce task is started to handle each

of the α partitions, consisting of records from bRi and bSi. We
define a grouping comparator which groups by i to ensure
each reducer task calls the reduce function only once, passing

all records from bRi and bSi to the reduce function. The
reduce function first iterates over each of the records from
bRi (bSi) in the ascending order of their z-values and saves
these records into an array. The reducer estimates the rank
of a record in ZRi

if it is from Ri as in lines 2-4 of Algorithm
3. Next, the reducer computes the estimated 1

n
, 2

n
, . . . , n−1

n

quantiles for ZRi
from bRi, as in lines 5-6 of Algorithm 3.

Note all records in bRi are sorted by the estimated ranks so

the reducer can make a single pass over bRi to determine
the estimated quantiles. After finding the (n− 1) estimated
quantiles of ZRi

the reducer writes these (plus A[0] and A[n]
as in line 7 of Algorithm 3) to a file in DFS identifiable
by Ri. They will be used to construct Ri,j blocks in the
second MapReduce phase. The final step of the reducer is
to determine the partitioning z-values for Si,j blocks as in
lines 11-13 of Algorithm 2 which are written to a file in DFS
identifiable by Si. The first phase is illustrated in Figure 6.

R
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sample of ith shift

shuffle estimator 1

DFS

DFS

DFS

RiRi

shift by vi

S

sample of ith shift

Si
Si

Map Reduce

Ri

Si

ith shift

ith shift

estimator 2sort
&compute z-value

Figure 6: H-zkNNJ MapReduce Phase 1

Phase 2: The second phase corresponds to lines 14-19 for
partitioning Ri and Si into appropriate blocks, and then
lines 20-23 for finding candidate points for knn(r, S) for any
r ∈ R, of Algorithm 2. This phase computes candidate set
Ci(r) for each record r ∈ Ri. The master first places the
files containing partition values for Ri and Si (outputs of
reducers in Phase 1) into the distributed cache for mappers,
as well as the vector file. Then, the master starts mappers
for each split of the Ri and Si files containing shifted records
computed and written to DFS by mappers in phase 1.

Mappers in this phase emit records to one of the αn total
(Ri,j , Si,j) partitions. Mappers first read partition values
for Ri and Si from the distributed cache and store them in
two arrays. Next, each mapper reads a record x from Ri

or Si in the form (rid, zx) and determines which (Ri,j , Si,j)
partition x belongs to by checking which Ri,j or Si,j block
contains zx (as in lines 14-19 of Algorithm 2). Each mapper
then emits x, only once if x ∈ Ri and possibly more than
once if x ∈ Si, as a key-value pair ((zx, ℓ), (zx, rid, src, i))
where ℓ is a byte in [1, αn] indicating the correct (Ri,j , Si,j)
partition. We implement a custom key comparator to sort
by ascending zx and a custom partitioner to partition an
emitted record into one of αn partitions based on ℓ.

The reducers compute Ci(r) for each r ∈ Ri,j in a parti-
tion (Ri,j , Si,j); αn reducers are started, each handling one
of the αn (Ri,j , Si,j) partitions. A reducer first reads the vec-
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Figure 7: H-zkNNJ MapReduce Phase 2

tor file from the distributed cache. Each reduce task then
calls the reduce function only once, passing in all records
for its designated (Ri,j , Si,j) partition. The reduce function
then iterates over all records grouping them by their src at-
tributes, storing the records into two vectors: one containing
records for Ri,j and the other containing records from Si,j .
Note in each vector entries are already sorted by their z-
values, due to the sort and shuffle phase. The reducer next
computes Ci(r) for each r ∈ Ri,j using binary search over
Si,j (see Figure 1(b)), computes the coordinates from the z-
values for any s ∈ Ci(r) and r, then updates any s ∈ Ci(r)
as s = s − vi and r = r − vi and computes d(r, s). The re-
ducer then writes (rid, sid, d(r, s)) to a file in DFS for each
s ∈ knn(r, Ci(r)). There is one such file per reducer. The
second MapReduce phase is illustrated in Figure 7.

Phase 3: The last phase decides knn(r, C(r)) for any r ∈ R
from the knn(r, Ci(r))’s emitted by the reducers at the end
of phase 2, which corresponds to line 24 of Algorithm 2. This
can be easily done in MapReduce and we omit the details.

Cost analysis. In the first phase sampled records from Ri

and Si for i ∈ [1, α] are sent to the reducers. By our con-

struction, the expected sample size is 1
ε2 for each bRi or bSi,

giving a total communication cost of O( α
ε2 ). For the second

phase, we must communicate records from Ri and Si to the
correct (Ri,j , Si,j) partitions. Each record r ∈ Ri is commu-
nicated only once giving a communication cost of O(α|R|).
A small percentage of records s ∈ Si may be communicated
more than once since we construct a Si,j block using Lemma
1 and Theorem 3. In this case a Si,j block copies at most
2 ·(k+ε|S|) records from neighboring blocks with high prob-
ability giving us an O(|Si,j |+ k + ε|S|) communication cost
per Si,j block. In practice, for small ε values we are copying
roughly O(k) values only for each block. For αn of the Si,j

blocks, the communication is O(α · (|S| + nk)). Hence, the
total communication cost is O(α·(|S|+|R|+nk)) for the sec-
ond phase. In the final phase we communicate knn(r,Ci(r))
for each r ∈ Ri giving us a total of αk candidates for each
r ∈ R, which is O(αk|R|). Thus, the overall communication
is O(α · ( 1

ε2 + |S|+ |R|+ k|R|+nk)). Since α is a small con-

stant, n and k are small compared to 1/ε2, |S| and |R|. The
total communication of H-zkNNJ is O(1/ε2 + |S| + k|R|).

For the cpu cost, the first phase computes the shifted
copies, then the partitioning values, which requires the sam-

ples bRi and bSi to be sorted (by z-values) and then they are
processed by reducers. Further, for each identified parti-
tion value for Ri, we need to find its ⌈kp⌉th neighbors (left
and right) in ZbSi

to construct partition values for Si, which

translates to a cpu cost of O(n log(|bSi|)). Over all α shifts,

the total cost is O(α · (|R| + |S| + | bR| log | bR| + |bS| log |bS| +



n log |bS|)), which is O(α·(|R|+|S|+1/ε2 log 1/ε2+n log 1/ε2)).
The cost of the second phase is dominated by sorting the Si,j

blocks (in sort and shuffle) and binary-searching Si,j for each
r ∈ Ri,j , giving a total cost of O((|Ri,j | + |Si,j |) log |Si,j |)
for each (Ri,j , Si,j) partition for every reducer. When per-

fect load-balancing is achieved, this translates to O(( |R|
n

+
|S|
n

) log |S|
n

) on each reducer. Summing costs over all αn
of the (Ri,j , Si,j) partitions we arrive at a total cost of

O(α(|R|+ |S|) log |S|
n

) (or O(α(|R|+ |S|) log |S|) in the worst
case if Si is not partitioned equally) for the second phase.
The last phase can be done in O(αk|R| log k). The total
cpu cost for all three phases is O(α · ( 1

ε2 log 1
ε2 + n log 1

ε2 +
(|R| + |S|) log |S| + k|R| log k)). Since α is a small con-
stant and k|R| log k ≪ (|R| + |S|) log |S|, the total cost is
O( 1

ε2 log 1
ε2 + n log 1

ε2 + (|R| + |S|) log |S|).
Remarks. Our algorithm is designed to be efficient for
small-medium k values. Typical kNN join applications de-
sire or use small-medium k values. This is intuitive by the
inherent purpose of ranking, i.e. an application is only con-
cerned with the rank of the k nearest neighbors and not
about ranks of further away neighbors. When k is large, in
the extreme case k = |S|, the output size dictates no solution
can do better than naive solutions with quadratic cost.

5. EXPERIMENTS

5.1 Testbed and Datasets
We use a heterogeneous cluster consisting of 17 nodes with

three configurations: (1) 9 machines with 1 Intel Xeon E5120
1.86GHz Dual-Core and 2GB RAM; (2) 6 machines with 2
Intel Xeon E5405 2.00GHz Quad-Core processors and 4GB
RAM; (3) 2 machines with 1 Intel Xeon E5506 2.13GHz
Quad-Core processor and 6GB RAM. Each node is con-
nected to a Gigabit Ethernet switch and runs Fedora 12
with hadoop-0.20.2. We select one machine of type (2) as
the master node and the rest are used as slave nodes. The
Hadoop cluster is configured to use up to 300GB of hard
drive space on each slave and 1GB memory is allocated for
each Hadoop daemon. One TaskTracker and DataNode dae-
mon run on each slave. A single NameNode and JobTracker
run on the master. The DFS chunk size is 128MB.

The default dimensionality is 2 and we use real datasets
(OpenStreet) from the OpenStreetMap project. Each dataset
represents the road network for a US state. The entire
dataset has the road networks for 50 states, containing more
than 160 million records in 6.6GB. Each record contains a
record ID, 2-dimensional coordinate, and description.

We also use synthetic Random-Cluster (R-Cluster) data
sets to test all algorithms on datasets of varying dimension-
ality (up to 30). The R-Cluster datasets consist of records
with a record ID and d-dimensional coordinates. We rep-
resent record IDs as 4-byte integers and the coordinates as
4-byte floating point types. We also assume any distance
computation d(r, s) returns a 4-byte floating point value.

A record’s z-value is always stored and communicated
as a byte array. To test our algorithms’ performance, we
analyze end-to-end running time, communication cost, and
speedup and scalability. We generate a number of different
datasets as R and S from the complete OpenStreet dataset
(50 states) by randomly selecting 40, 60, 80, 120, and 160
million records. We use (M × N) to denote a dataset con-
figuration, where M and N are the number of records (in

million) of R and S respectively, e.g., a (40 × 80) dataset
has 40 million R and 80 million S records. Unless otherwise
noted (40 × 40) OpenStreet is the default dataset.

For H-zkNNJ, we use α = 2 by default (only one random
shift and original dataset are used), which already gives very
good approximations as we show next. We use ε = 0.003 for
the sampling methods by default. Let γ be the number
of physical slave machines used to run our methods in the
cluster, we set the default number of reducers as r = γ.
The number of blocks in R and S is n = r/α for H-zkNNJ
and n =

√
r for H-BNLJ and H-BRJ, since the number of

buckets/partitions created by a mapper is αn in H-zkNNJ
and n2 in H-BNLJ and H-BRJ, which decides the number
of reducers r to run. In the default case, γ = 16, k = 10.

5.2 Performance Evaluation

Approximation quality. For our first experiment we ana-
lyze the approximation quality of H-zkNNJ. Since obtaining
the exact kNN join results on the large datasets we have is
very expensive, to study this, we randomly select 0.5% of
records from R. For each of the selected records, we calcu-
late its distance to the approximate kth-NN (returned by the
H-zkNNJ) and its distance to the exact kth-NN (found by an
exact method). The ratio between the two distances is one
measurement of the approximation quality. We also mea-
sure the approximation quality by the recall and precision
of the results returned by H-zkNNJ. Since both approximate
and exact answers have exactly k elements, its recall is equal
to its precision in all cases. We plot the average as well as
the 5% - 95% confidence interval for all randomly selected
records. All quality-related experiments are conducted on a
cluster with 16 slave nodes. Figures 8(a) to 8(d) present the
results using the OpenStreet datasets. To test the influence
of the size of datasets, we use the OpenStreet datasets and
gradually increase datasets from (40x40) to (160x160) with
k = 10. Figure 8(a) indicates H-zkNNJ exhibits excellent
approximation ratio (with the average approximation ratio
close to 1.1 in all cases and never exceeds 1.7 even in the
worst case). This shows varying the size of datasets has
almost no influence on the approximation quality of the al-
gorithm. We next use (40x40) OpenStreet datasets to test
how the approximation ratio is affected by k. Figure 8(b)
indicates H-zkNNJ achieves an excellent approximation ra-
tio with respect to k, close to 1.1 in all cases even when
k = 80 and lower than 1.6 even in the worst case. Using the
same setup, we also plot the recall and precision of H-zkNNJ
when we vary the dataset sizes in Figure 8(c). Clearly, its
average recall/precision is above 90% all the time; in the
worst case, it never goes below 60%. Similar results on re-
call/precision hold when we vary k as seen in Figure 8(d).
We also extensively analyze the effect dimensionality d and
the number of shifts α have on the approximation quality in
later experiments.

Effect of ε. Next we analyze the effect ε has on the perfor-
mance of H-zkNNJ using a (40x40) OpenStreet dataset. We
notice in Figure 9(a) the running time of H-zkNNJ decreases
as we vary ε from 0.1 to 0.003, due to better load-balancing
resulted from more equally distributed block sizes for Ri,j

and Si,j . Decreasing ε further actually causes the running
time of H-zkNNJ to increase. This is because the additional
time spent communicating sampled records (the sample size
is O(1/ε2)) in the first phase cancels out the benefit of having
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Figure 8: Approximation quality of H-zkNNJ on (40x40) OpenStreet.
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Figure 9: Effect of ε in H-zkNNJ on (40x40).

more balanced partitions in the second MapReduce phase.
Regardless of the value of ε, H-zkNNJ is always an order
of magnitude faster than H-BRJ. Figure 9(b) analyzes the
standard deviation (sd) in the number of records contained
in the Ri,j and Si,j blocks in the reduce phase of the sec-
ond MapReduce round. Note in the (40x40) dataset with
n = γ/α = 8 in this case, ideally, each block (either Ri,j

or Si,j) should have 5 × 106 records to achieve the optimal
load balance. Figure 9(b) shows our sampling-based parti-
tion method is highly effective, achieving a sd from 100 to
5000 when ε changes from 0.0006 to 0.1. There is a steady
decrease in sd for blocks created from R and S as we de-
crease ε (since sample size is increasing), which improves
the load balancing during the second MapReduce phase of
H-zkNNJ. However, this also increases the communication
cost (larger sample size) and eventually negatively affects
running time. Results indicate ε = 0.003 presents a good
trade-off between balancing partitions and overall running
time: the sd for both R and S blocks are about 200, which
is very small compared to the ideal block size of 5 million.
In this case, our sample is less than 120, 000 which is about
3h of the dataset size 4×107; ε = 0.003 is set as the default.

Speedup and cluster size. Next, we first use a (1x1)
OpenStreet dataset and change the Hadoop cluster size to
evaluate all algorithms. We choose a smaller dataset in this
case, due to the slowness of H-BNLJ and to ensure it can
complete in a reasonable amount of time. The running times
and time breakdown of H-BNLJ, H-BRJ, and H-zkNNJ with
varied cluster sizes γ (the number of physical machines run-
ning as slaves in the Hadoop cluster) are shown in Figure
10. For H-zkNNJ, we test 7 cluster configurations, where
the cluster consists of γ ∈ [4, 6, 8, 10, 12, 14, 16] slaves and
the number of reducers r is equal to γ. We also test the case
when r > γ and γ = 16 (the maximum number of physi-
cal machines as slaves in our cluster) for r ∈ [18, 20, 22, 24].
We always set n = r/α. For H-BNLJ and H-BRJ, we use
3 cluster configurations with γ ∈ [4, 9, 16] and r = γ, hence
n =

√
γ (number of blocks to create in R or S). We also

test the case when r > γ with r = 25, γ = 16, and n = 5.
We see in Figure 10(a) H-BNLJ is several orders of mag-

nitude more expensive than either H-BRJ or H-zkNNJ even
for a very small dataset. This is because we must compute
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Figure 10: Running time for (1x1) OpenStreet.

d(r, s) for a r ∈ R against all s ∈ S in order to find knn(r, S),
whereas in H-BRJ and H-zkNNJ we avoid performing many
distance computations to accelerate the join processing. The
time breakdown of different phases of all algorithms with
r = γ = 16 is depicted in Figure 10(b). A majority of the
time for H-BNLJ is spent during its first phase performing
distance calculations and communicating the n2 partitions.
We see utilizing the R-tree index in H-BRJ gives almost 2 or-
ders of magnitude performance improvement over H-BNLJ
in this phase. Clearly, H-BNLJ is only useful when H-BRJ
and H-zkNNJ are not available and is only practical for small
datasets (it gets worse when dataset size increases). Hence,
we omit it from the remaining experiments.
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Figure 11: Running time and speedup in (40x40).

Using the same parameters for n, r, γ as above, we use a
(40x40) OpenStreet dataset to further analyze the speedup
and running times of H-zkNNJ and H-BRJ in varied clus-
ter sizes. Figure 11(a) shows both running times reduce as
the number of physical nodes increases. But as the number
of reducers exceeds available slave nodes (which is 16) per-
formance quickly deteriorates for H-BRJ whereas the per-
formance decrease is only marginal for H-zkNNJ. This is
because H-BRJ is dependent upon R-trees which require
more time to construct and query. As the number of re-
ducers r for H-BRJ increases, the size of the R and S blocks
decreases, reducing the number of records in each block of
S. This means R-trees will be constructed over a smaller
block. But we must construct more R-trees and we cannot
construct these all in parallel, since there are more reduc-
ers than there are physical slaves. For this case, we see the
reduced block size of S is not significant enough to help
offset the cost of constructing and querying more R-trees.
The speedup of H-zkNNJ and H-BRJ are shown in Figure
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Figure 12: Phase breakdown, running time, and communication vs |R| × |S|.

0

1

2

3

4

10 20 40 60 80

T
im

e 
(s

ec
o

n
d

s 
 ×

1
0

3
)

k  values

zPhase1
zPhase2
zPhase3

(a) H-zkNNJ breakdown.

0

4

8

12

16

10 20 40 60 80

T
im

e 
(s

ec
o

n
d

s 
 ×

1
0

3
)

k  values

RPhase1
RPhase2

(b) H-BRJ breakdown.

0

10

20

30

3 10 20 40 60 80

T
im

e 
(s

ec
o

n
d

s 
 ×

1
0

3
)

k  values

H-zkNNJ
H-BRJ

(c) Running time.

 0

 50

 100

 150

 200

3 10 20 40 60 80

D
at

a 
sh

u
ff

le
d

 (
G

B
)

k  values

H-zkNNJ
H-BRJ

(d) Communication (GB).

Figure 13: Phase breakdown, running time, and communication vs k in (40x40) OpenStreet.

11(b). The speedup for each algorithm is the ratio of the
running time on a given cluster configuration over the run-
ning time on the smallest cluster configuration, γ = 4. In
Figure 11(b), both H-zkNNJ and H-BRJ achieve almost a
linear speedup up to r = γ ≤ 16 (recall r = γ for γ ≤ 16,
and n =

√
r for H-BRJ and n = r/α for H-zkNNJ). Both

algorithms achieve the best performance when r = γ = 16,
and degrade when r > 16 (the maximum possible number of
physical slaves). Hence, for remaining experiments we use
r = γ = 16, n =

√
γ = 4 for H-BRJ, n = γ/α = 8 for

H-zkNNJ. Note H-zkNNJ has a much better speedup than
H-BRJ when more physical slaves are becoming available in
the cluster. From one reducer’s point of view, the speedup
factor is mainly decided by the block size of R which is
|R|/n, and n =

√
r in H-BRJ, n = r/α = r/2 in H-zkNNJ.

Thus the speedup of H-zkNNJ is r/(2
√

r) times more, which
agrees with the trend in Figure 11(b) (e.g., when r = γ = 16,
H-zkNNJ’s speedup increases to roughly 2 times of H-BRJ’s
speedup). This shows not only H-zkNNJ performs better
than H-BRJ, more importantly, the performance difference
increases on larger clusters, by a factor of O(

√
γ).

Scalability. Figures 12(a) and 12(b) demonstrate running
times for different stages of H-zkNNJ and H-BRJ with dif-
ferent dataset configurations. We dub the three stages of H-
zkNNJ zPhase1, zPhase2, and zPhase3 and the two stages
of H-BRJ RPhase1 and RPhase2. The running time of each
stage in both algorithms increases as datasets grow. Also,
the second phase of H-zkNNJ and first phase of H-BRJ are
most expensive, consistent with our cost analysis.

Clearly H-zkNNJ delivers much better running time per-
formance than H-BRJ from Figure 12(c). The performance
of H-zkNNJ is at least an order of magnitude better than
H-BRJ when dealing with large datasets. The trends in Fig-
ure 12(c) also indicate H-zkNNJ becomes increasingly more
efficient than H-BRJ as the dataset sizes increase. Three fac-
tors contribute to the performance advantage of H-zkNNJ
over H-BRJ: (1) H-BRJ needs to duplicate dataset blocks to
achieve parallel processing, i.e. if we construct n blocks we
must duplicate each block n times for a total of n2 partitions,
while H-zkNNJ only has αn partitions; (2) Given the same
number of blocks n in R and S, H-zkNNJ requires fewer ma-
chines to process all partitions for the kNN-join of R and S

in parallel than H-BRJ does. H-zkNNJ needs αn machines
while H-BRJ needs n2 machines to achieve the same level
of parallelism; (3) It takes much less time to binary-search
one-dimensional z-values than querying R-trees. The first
point is evident from the communication overhead in Figure
12(d), measuring the number of bytes shuffled during the
Shuffle and Sort phases. In all cases, H-BRJ communicates
at least 2 times more data than H-zkNNJ.

H-zkNNJ is highly efficient as seen in Figure 12(c). It
takes less than 100 minutes completing kNN join on 160
million records joining another 160 million records, while H-
BRJ takes more than 14 hours! Hence, to ensure H-BRJ can
still finish in reasonable time, we use (40x40) by default.

Effect of k. Figures 13(a)–13(c) present running times for
H-zkNNJ and H-BRJ with different k, using (40x40) Open-
Street datasets. Figure 13(a) shows zPhase1’s running time
does not change significantly, as it only performs dataset
transformations and generates partition information, which
is not affected by k. The execution time of zPhase2 and
zPhase3 grow as k increases. For larger k, H-zkNNJ needs
more I/O and CPU operations in zPhase2 and incurs more
communication overhead in zPhase3, which is similar to
trends observed for RPhase1 and RPhase2 in Figure 13(b).

Figure 13(c) shows H-zkNNJ performs consistently (much)
better than H-BRJ in all cases (from k = 3 to 80). For small
k values, kNN join operations are the determining factors
for performance. For example, the performance of H-zkNNJ
given by Figure 13(a) is mainly decided by zPhase2 where
k is 10. For large k, communication overheads gradually
become a more significant performance factor for both H-
zkNNJ and H-BRJ, evident especially when k = 80. We
see in Figure 13(d) the communication for both algorithms
increases linearly as k. However, H-BRJ requires almost 2
times as much communication as H-zkNNJ.

Effect of dimension. We generate (5x5) R-Cluster datasets
with dimensionality d ∈ [5, 10, 15, 20, 25, 30] (smaller datasets
were used in high dimensions compared to the default two
dimensional (40x40) OpenStreet dataset, to ensure that the
exact algorithms can still finish in reasonable time). For
these experiments, we also use one more random shift to en-
sure good approximation quality results in high dimensions.
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Figure 14: Running time, communication, and approximation quality vs d in (5x5) R-Cluster, α = 3.
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Figure 15: Running time, communication, and approximation quality vs α in (5x5) R-Cluster, d = 15.

Figure 14 illustrates the running time, communication, and
approximation quality of H-zkNNJ and H-BRJ on a cluster
of 16 slave nodes with k = 10 and α = 3 (2 random shifts
plus the original dataset).

The experimental results in Figure 14(a) indicate H-zkNNJ
has excellent scalability in high dimensions. In contrast the
performance of H-BRJ degrades quickly with the increase of
dimensionality. H-zkNNJ performs orders of magnitude bet-
ter than H-BRJ, especially when d ≥ 10. For example, when
d = 30, H-zkNNJ requires only 30 minutes to compute the
kNN join while H-BRJ needs more than 35 hours! In Figure
14(b) we see there is a linear relationship between communi-
cation cost and d. This is not surprising since higher dimen-
sional data requires more bits to represent the z-values for
H-zkNNJ and requires the communication of more 4-byte
coordinate values for H-BRJ. In all cases H-BRJ communi-
cates about 2 times more data than H-zkNNJ.

The results in Figures 14(c) and 14(d) demonstrate H-
zkNNJ has good approximation quality for multi-dimensional
data (up to d = 30) in terms of approximate ratio as well
as recall and precision. The average approximation ratio in
all cases are below 1.2 and even in the worst case when d =
30 the approximation ratio is only around 1.6 as indicated
by Figure 14(c). As we can see from 14(d), the recall and
precision drops slowly as d increases, but the average recall
and precision are still above 60% even when d = 30.

Effect of random shift. Finally, we investigate the effect
the number of random shifts has on the performance and
approximation quality of H-zkNNJ using (5x5) R-Cluster
datasets on a cluster with 16 slave nodes. In the experi-
ments, we vary the number of random shifts α ∈ [2, 3, 4, 5, 6]
and fix values of d = 15 and k = 10. Note that α shifts imply
(α − 1) random shifted copies plus the original dataset.

Figures 15(a) and 15(b) indicate the performance time and
communication cost of H-zkNNJ increase when we vary α
from 2 to 6, due to the following reasons: (1) As α increases,
n (the number of partitions) of H-zkNNJ decreases as n =
r/α and r = γ. As n decreases the block size of R, which is
|R|/n, being processed by each reducer increases. (2) As α
grows, more random shifts have to be generated and com-
municated across the cluster, which leads to an increase in

both performance time and communication cost. Neverthe-
less, H-zkNNJ always outperforms the exact method.

Figures 15(c) and 15(d) show that both the approxima-
tion ratio and recall/precision of H-zkNNJ improve as α in-
creases. The average approximation ratio decreases from
1.25 to below 1.1 and the average recall/precision increases
from 60% to above 80%.

Remarks. H-zkNNJ is the clear choice, when high quality
approximation is acceptable, and requires only 2 parameters
for tuning. The first parameter is the sampling rate ε which
determines how well balanced partitions are, hence the load
balance of the system. Our experiments in Figure 9 show ε =
0.003 is already good enough to achieve a good load balance.
Note ε only affects load balancing and does not have any
effect on the approximation quality of the join. The second
parameter is the number of random shifts α which decides
the approximation quality. By Theorem 1, using a small α
returns a constant approximate solution on expectation and
our experiments in Figures 8, 14(c), 14(d) and 15 verify this,
showing α = 2 already achieves good approximation quality
in 2 dimensions, and α = 3 is sufficient in high dimensions
(even when d increases to 30). Other parameters such as the
number of mappers m, reducers r, and physical machines γ
are common system parameters for any MapReduce program
which are determined based on resources in the cluster.

6. RELATED WORK
Performing kNN joins in the traditional setup has been

extensively studied in the literature [2,20–23]. Nevertheless,
these works focus on the centralized, single-thread setting
that is not directly applicable in MapReduce. Early research
on parallel join algorithms in a shared-nothing multiproces-
sor environment has been presented in [8,15], for relational
join operators. Parallel spatial join algorithms aiming to
join multiple spatial datasets according to a spatial join
predicate (typically the intersection between two objects)
using a multiprocessor system have been studied in [3,7,10,
11, 13, 26], none of which is designed for efficiently process-
ing kNN-joins over distributively stored datasets. Recently,
Zhang et al. [24,25] proposed a parallel spatial join algorithm
in MapReduce, however, dealing with only spatial distance



joins, which does not solve kNN-joins. An efficient parallel
computation of the kNN graph over a dataset was designed
using MPI (message passing interface) in [14]. Note the kNN
graph is constructed over one data set, where each point is
connected to its k nearest neighbors from the same dataset.
As our focus is on kNN-joins over large datasets in MapRe-
duce clusters, techniques for the MPI framework do not help
solve our problem. Another parallel kNN graph construction
method appears in [5], which works only for constructing the
kNN graph over a centralized dataset. The goal there is to
minimize cache misses for multi-core machines.

An efficient parallel set-similarity join in MapReduce was
introduced in [17]; and the efficient processing of relational
θ-joins in MapReduce was studied in [12]. The closest stud-
ies to our work appear in [1, 16] where kNN queries were
examined in MapReduce, by leveraging on the voronoi dia-
gram and the locality-sensitive hashing (LSH) method, re-
spectively. Their focus is the single query processing, rather
than performing the joins. Given a kNN query algorithm, it
is still quite challenging to design efficient MapReduce based
kNN join algorithms (i.e., how to design partitioning to min-
imize communication, how to achieve load balancing). Fur-
thermore, the LSH-based approach works for data in very
high dimensions and the voronoi diagram based approach
only works for data in 2-dimensions. In contrast, our goal is
to design practical, efficient kNN join algorithms that work
well from 2 up to tens of dimensions (say 30, as shown in
our experiments). Finally, our focus in this work is to work
with ad-hoc join requests over ad-hoc datasets (both R and
S) using the standard MapReduce system and only stan-
dard map and reduce programming model (where it is best
to avoid using sophisticated data structures and indices),
hence, we do not consider solutions leveraging the global
indexing structures that require pre-processing one dataset
offline (not using MapReduce) and organize them into an
overlay structure to build a global index (that might be then
adapted into a MapReduce cluster) [18,19], or possible solu-
tions built on systems/frameworks that extend the standard
MapReduce paradigm [4]. Join processing in MapReduce
leveraging columnar storage was investigated in [9], which
does require a new file format. Extending our study to this
storage engine is an interesting future work.

7. CONCLUSION
This work studies parallel kNN joins in MapReduce. Ex-

act (H-BRJ) and approximate algorithms (H-zkNNJ) are
proposed. By delicately constructing partition functions for
H-zkNNJ, we only require linear number of reducers (to the
number of blocks from partitioning the base dataset), in
contrast to the quadratic number of reducers required in
the exact method. H-zkNNJ delivers performance which is
orders of magnitude better than baseline methods, as evi-
denced from experiments on massive real datasets. It also
achieves excellent quality in all tested scenarios. For future
work, we plan to study kNN-joins in very high dimensions
and other metric space in MapReduce.
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