

Ganos: A Multidimensional, Dynamic, and Scene-Oriented Cloud-Native Spatial Database Engine

<u>Jiong Xie</u>, Zhen Chen, Jianwei Liu, Fang Wang, Feifei Li, Zhida Chen, Yinpei Liu, Songlu Cai, Zhenhua Fan, Fei Xiao, Yue Chen

Alibaba DAMO & Alibaba Cloud

A New Era of City Digital Twins

• What are city digital twins?

- Digitization copies of cities
- Bidirectional interaction between digital and real worlds
- Use data and data analytics to help simulation
- Facilitate the automated governance of cities
- Broad applications
 - Urban planning
 - Smart traffic management
 - Automated environment monitoring
 - Etc.

MDS Data

• MDS : Multidimensional, Dynamic, and Scene-oriented spatial data

- Multidimensional: real-world buildings as 3D entities
- Scene-oriented: textures and materials

BIM(Building Information Modeling)

Trajectory of a UAV

- Multidimensional: 3D position (x, y,z)
- Dynamic: positions change over time
- Scene-oriented: take off/landing events, collected images

Challenges to the DBMS Design

- Data types
 - Complex data structure & large scale of data size
- Query types
 - How to support different types of queries, e.g., spatio-temporal queries, sceneoriented queries, and cross-model queries
- Efficiency
 - The large scale and complex data structure result in long query time, e.g., a "big query" can take hours to finish
- Traditional spatial RDBMS have limited support for MDS data in both data types and operations

- Ganos: a new cloud-native spatial RDBMS engine
 - The name comes from the goddess of earth Gaea and the god of time Chronos
- Built on cloud-native relational database PolarDB for PostgreSQL
- Features of Ganos
 - Consider MDS data as first-class citizens
 - A new multidimensional data type hierarchy include 3DMesh, Trajectory, Raster, etc.
 - A systematic framework to manage the MDS data
 - Utilize cloud-native approaches to solve "big" storage / queries

Architecture of Ganos and Relation between Ganos and PolarDB

Data Types

- 3DMesh = (Shape, Visuals, General)
 - Shape: a 3D geometry
 - Visuals = (textures, materials, UVcoords)
 - General attributes

.

- Trajectory = (TPoints, Events)
 - *TPoints* = { $(p_1, t_1, A_1), \dots, (p_n, t_n, A_n)$ }
 - $Events = \{(e_1, t_1^e), ..., (e_m, t_m^e)\}$
- Raster = (Footprint, Time, Matrix)
- PointCloud = { $(p_1, A_1), \dots, (p_n, A_n)$ }

3DMesh

Trajectory

Raster

Data Type Implementation

- Spatial Large Object (SLOB)
 - Compact binary sequence
 - Two Parts: profile and details
 - Profile—summary of an object and is used for filtering
 - Details—detailed information of an object
- SLOB of 3DMesh type
- Indexes
 - nD R-tree based on GIST+
 - Enriches the access methods of GiST

A building as an example

- A building = N components (a roof, many doors,)
- Each component is stored as a SLOB of 3DMesh type
- The components share the same building id

*GIST: Generalized Search Tree originally provided by PostgreSQL

- Ganos allows storing SLOB profile in a database table and storing details on OSS
 - #1: Hot/cold data separation
 - #2: Heterogeneous file access
- Thoughts behind the design
 - An MDS object can be very large
 - Many queries are interested in the same subset of objects or a small part of the object
 - The extended storage can achieve a decent tradeoff between storage cost and query performance

Overview of extended storage

Query Types

- Spatial queries
 - 3D relationships, 3D analysis, and 3D processing operations in 3D scenarios
- Spatio-temporal queries
 - Spatio-temporal relationships, spatio-temporal analysis, and spatio-temporal processing operations
- Scene-oriented queries
 - Operations to construct, edit, and process the scenes
- Cross-model queries
 - Hybrid queries that involve multiple data types
 - e.g., overlay analysis of 3DMesh and Trajectory

Implement a rich set of operations to support these queries

	Category	Geom.	Raster	Traj.	3DMesh	PointCloud	Count
	3D spatial	\checkmark		\checkmark	\checkmark	\checkmark	69
relationship Example: ST_3DIntersects(3DMesh, 3DMes						, 3DMesh) - C	heck if two
	3DMeshes spatially intersect in 3D						
	3D spatial	\checkmark		\checkmark	\checkmark	\checkmark	52
	analysis	Example: ST_3DBuffer(Geometry) - Compute a geometry					
		that contains all points whose distance to the geometry less than or equal to a given distance in 3D					
	3D spatial	\checkmark		\checkmark	\checkmark	\checkmark	90
	processing	Example: ST_3DIntersection(Pointcloud, Geometry) - Con pute a new pointcloud representing the point-set intersec					
	tion of input pointcloud and geometry in 3D						
	Spatio-		\checkmark	\checkmark			31
	temporal	Example: ST_3DIntersects(Raster, Raster) - Check if two					
	relationship	onship rasters intersects in both intersects in both spatial(footprin					
and temporal dimensions							
	Spatio-		\checkmark	\checkmark			57
	temporal Example: ST_LCSSSimilarity(Trajectory, Trajectory						ory) - Com-
	analysis	pute the similarity of two trajectories using LCSS algorithm					
	with spatial and temporal criteria						
	Spatio-		√ 	\checkmark	(77. 1. 1		53
temporal Example: ST_Intersection(Trajectory, Trajectory)						- Compute	
	processing the same temporal points of two trajectories						
	Scene edit		./	./			45
	Seene cuit	Evamn	lo ST A	v ddMater	ial/3DMack	Material) - 4	Add a mate-
		rial to a 3DMesh					
	Scene pro-	iiui to	J				56
	cessing	Examp	le: ST Si	v implify(3	v DMesh) - (ompute a sin	nlified ver-
	sion of the given 3DMesh with geometry and other						ther scene-
		oriented information					
$Cross model \checkmark \checkmark \checkmark \checkmark \checkmark$						\checkmark	75
	processing	Examp	le: ST_Ir	tersects	Traiectory	3DMesh) - C	heck if Tra-
	18	iectory and 3DMesh spatially intersects in 3D					

Parallel Execution

- Spatial-oriented multi-level parallelism
- Intra-query parallelism (IQP)
 - Parallelizes a big query by assigning data slices to many RO nodes
 - The default size of each data slice is 4MB (512 pages), which can be set by users
 - Data slice assignment can be hash-based or dynamic
- Intra-function parallelism (IFP)
 - Further parallelizes the processing of a huge cell by dividing it into small cells and calling subprocesses to process them
 - To mitigate the potential load imbalance problem that is caused by the existence of spatial objects with drastic size differences

- A cross-model query in a city digital twin scene with different data types
- Handling complex 3D scenarios with simple GeoSQL

Buildings (3DMesh)

Unmanned Aerial Vehicle (Trajectory) e.g. UAV must not touch the restricted-fly zone (the 3D space whose distance from a building is less than 100 meters)

SELECT 1 FROM t_trajectory, t_building

WHERE ST_3DIntersects(ST_3DBuffer(t_building.m, 100),

t_trajectory.traj) AND t_trajectory.id = 1);

e.g. The maximum height from the ground of the flight must be lower than 500 meters

WITH height AS (

SELECT st_z((st_dumppoints(traj)).geom) - st_z((st_addz(rast,

traj)).geom) AS h

FROM t_trajectory, t_dem WHERE t_dem.id = 1 AND t_trajectory.id = 1)

SELECT max(h) < 500 FROM height;</pre>

- Datasets : OSM data (96,648,669 trajectories) and BIM data (1,000 large buildings)
- OSS can reduce storage cost with an acceptable sacrifice of QPS.
- Although reading data from OSS is slow, with the help of the indexes, the query performance on spatio-temporal queries can become acceptable.
- Spatial-oriented multi-level parallelism with IQP + IFP can significantly accelerate the processing of big queries on MDS data.

(b) Latency distribution of on-OSS data

(c) Latency vs. degree of parallelism

Novel Applications

- Ganos has offered service in Alibaba Cloud for over 4 years
- It has been applied to a total of 45 industries/application directions

3D Scenes and Analytics

Achieve in-database computation acceleration by nearly 100 times in urban planning and construction of a State-Level New Area in China

Provide built-in Trajectory types and transparent hot/cold data access for LBS service providers

Database for GeoAI

Give the solution of dynamic monitoring of ecological environment based on integrate aerospace data management for a satellite environmental application center of China

- With the rapid development of smart cities, digital twins, and cloud computing, existing spatial relational databases cannot meet the requirement of modern applications for MDS data processing
- Ganos provides a systematic framework of data models, access methods, and operations for MDS data
- Ganos optimizes the processing of queries on MDS data through cloud-native capabilities, which provides a new practice of moving from traditional on-premise spatial database to cloud-native spatial database

C-J Alibaba Cloud

Worldwide Cloud Services Partner

DingTalk group of Ganos

xiejiong.xj@alibaba-inc.com