
CloudJump: Optimizing Cloud Database For 
Cloud Storage

Zongzhi Chen, Xinjun Yang, Feifei Li, Xuntao Cheng, Qingda Hu, Zheyu Miao, Rongbiao Xie, 
Xiaofei Wu, Kang Wang, Zhao Song, Haiqing Sun, Zechao Zhuang, Yuming Yang, Jie Xu, 

Liang Yin, Wenchao Zhou, Sheng Wang



1
2
3

Background and Motivation 

Design Considerations

Case Study: PolarDB

4 Case Study: RocksDB



p Background and Motivation 

Cloud-storage

Large storage capability 

Data persistence

High availability 

High aggregated I/O bandwidth

On-demand pricing 

Reduce maintenance costs

…

Cloud-native database

Massive amounts of data 

Elasticity

High availability and durability

High performance

Serverless、pay-as-you-go

…

Target: Can we build a “more” cloud-native database through migrating an 
on-premise database kernel onto the cloud using a cloud storage?



p Background and Motivation 

• Slow SQL with cloud storage
• Low bandwidth utilization

• Bad log performance when flushing 

dirty pages

…

n Experience from our online service

These hinder cloud storage from becoming an performance-
satisfied service for cloud-native databases

n Micro-benchmark

• High I/O lantency and bandwidth

…



p Background and Motivation 

Ø Local accesses v.s. remote accesses
Ø Local bandwidth v.s. aggregated bandwidth
Ø Consistency among multiple database nodes
Ø I/O isolation

Ø Big table further worsen the performance

n Architecture differences in on-premise and on-cloud-storage database

Challenges: 



p Background and Motivation 

B-tree Based 
(Update-in-place)

LSM-tree Based 
(Append-only)

Challenges Design knobs
Problems

Update-in-place Append-only

Remote accesses

WAL Slow serial logging

Log replay Applying logs to
multiple pages

Bulk writing 
of memtables

Data read Loading dependent
remote pages Read amplifications

Synchronization Blocking updates while 
writing pages

Compactions with amplified 
writes & low aggregated 

utilization
Aggregated 
bandwidth

Data write Low bandwidth
(accessing a small single 

page) amplified readsData read

Consistency 
among nodes Page cache With cache: high consistency overhead;

Without cache: amplified I/O with no buffers

I/O isolation I/O scheduling Concurrent and extensive log and
data I/Os cause unpredictable performance

Table：impacts on the design knobs of databases



1
2
3

Background and Motivation 

Design Considerations

Case Study: PolarDB

4 Case Study: RocksDB



p Design Considerations

Design consideration：optimize on cloud storage

• Thread-level Parallelism

eg. Adopt multiple logging and data I/O threads, use asynchronous I/O 

models to fully scatter data across multiple storage nodes

• Task-level Parallelism

eg. Partitioned log on page-space and written in parallel to multiple tasks.

Concurrent Recovery based on partition.

• Reduce remote read and Prefetching

eg. Prefetching potentially achieves larger performance gains on the

cloud storage compared with those on local SSDs,



p Design Considerations

• Fine-grained Locking and Lock-free Data Structures

eg. To minimize the chances of contention during prolonged I/O.

• Scattering among Distributed Nodes

eg. Distribute large log I/Os to different storage nodes to make full use of

the aggregated bandwidth.

• Bypassing Caches

eg. Avoid the coherence issue and optimize I/O formats on database layer.

• Scheduling Prioritized I/O Tasks

eg. Marking and scheduling priorities for different I/Os on database layer.

Seven design consideration：optimize on cloud storage



1
2
3

Background and Motivation 

Design Considerations

Case Study: PolarDB

4 Case Study: RocksDB



p Case Study：PolarDB

• B-tree based storage engine

• Multiple computation nodes 



p Case Study：PolarDB

✗ High WAL I/O Latency

✗ Sequential WAL I/O
✗ Low bandwidth utilization

✓ Log buffer partition，Parallelized writing 

✓ Asynchronous multi-task threads, high bandwidth utilization
✓ Scattered I/O with high distributed writing performance

mlog1_p2

P

Buffer 0 Buffer 1

mlog2_p3

P

Buffer 2 Buffer 3

LLSN
GLSN

LLSN
GLSN

LLSN
GLSN

File 0 File 1 File 2 File 3

LBLSN0 LBLSN1 LBLSN2 LBLSN3

LPLSN0 LPLSN1 LPLSN2 LPLSN3

mlog1_p1
mlog1

Buffer 

mlog2

LSN LSN

File 

BLSN

PLSN

Scattered & Partitioned Global Log



p Case Study：PolarDB

Scattered & Partitioned Global Log

Tx1 mtr1-3 mlog_p1 mlog_pn

Tx2 mlog_p1 mlog_p2

…

Log Buffer 1

Log Buffer 2

Log Buffer n

…

Persistent logs
Fully buffered logs

Unused buffer
mtr2-1 Pending logs

…

Async 
Writers

Worker

GPLSN

Direct I/Os
via libpfs

LPLSNs BRLsLBLSNs

LinkBuf

Partition 0 

Partition 1 

Partition n 

…
A large log I/O request

4KB 
aligned

16KB
sliced

…

header

trailer…
…

blank

Log Buffer - Partition 1

Slicing

File1
Part 1

ChunkServer1

File1
Part 2

ChunkServer2

Parallel I/Os



p Case Study：PolarDB

Parallel Recovery

✓ Multi-task concurrent

recovery / log application
based on Log Partition



Chunk Chunk

Data File

Chunk

Chunk Chunk

Data File

Chunk

p Case Study：PolarDB

Fast Validating

chunck
0

chunck
1

chunck
2

Centralized -
backup Metadata

super 
block
data
block

…
Avoid scanning all 

files during file 
verification

Logical Prefetch

Trigger read-ahead

Asynchronous read

✓ Reduce the access to remote 

storage during startup

✓ Utilize aggregate bandwidth to reduce read delay

Primary index

Secondary index



p Case Study：PolarDB

Lock-optimized B-tree Index

✓ Remove redundant locks

for operations (eg., SMO) to
improve the concurrency of

memory and I/O operations

Page I/O

Shadow Page
✓ Optimize the long locking time

during Page I/Os, to improve operation
concurrency

Lock-free for write

Shadow

Chunk
Data File

Flusher



p Case Study：PolarDB

p For the direct I/O as bypassing the Cache of distributed file system

✓ Align the optimal I/O offset & length to accelerate the direct I/O

✓ Remove invalid I/O merge and perform random write
✓ Adopt multi-asynchronous I/O task queue, fully utilize the advantage of

high bandwidth

p For the long remote access and low I/O isolation

✓ Adopt I/O priority scheduling: prioritizes critical I/Os to eliminate low

isolation effects

I/O Alignment & Scheduler



p Case Study：PolarDB

Experimental Results



1
2
3

Background and Motivation 

Design Considerations

Case Study: PolarDB

4 Case Study: RocksDB



p Case Study：RocksDB



p Case Study：RocksDB

Port corresponding optimizations to

RocksDB

ü Scattered & Partitioned Global Log

ü Scheduled Multi-queue Scatter I/O

ü Direct I/O Alignment

Achieve expected performance gains



p End

Thanks！


