
AB-tree: Index for Concurrent Random
Sampling and Updates

Zhuoyue Zhao Dong Xie Feifei Li
University at Buffalo Pennsylvania State University Alibaba

Motivation
n Approximate Query Processing (AQP) uses random samples

– to provide fast and approximate answers with error guarantees
– existing solutions often make trade-off between

• efficient online updates and
• low response time

AB-tree: Index for Concurrent Random Sampling and Updates2

Database
Table

𝒚𝟏, … , 𝒚𝒏

Random samples

SELECT SUM(y)
FROM A
WHERE x >= 5 AND x <= 10

Unbiased estimator

$𝑌 =
∑#∈[&] 𝑦#/𝑝#

𝑛
Confidence interval 𝜀, 𝛿

𝑃𝑟 𝑌 − $𝑌 ≤ 𝜀 ≥ 1 − 𝛿

Motivation
n How do existing AQP systems perform random sampling?

AB-tree: Index for Concurrent Random Sampling and Updates3

Offline sampling Online Scan-based Sampling Online Index-based Sampling

Database
Table

𝒕𝟏, … , 𝒕𝒏
rebuild on
update

Database
Table

Query execution

Offline

Online

Online

𝒕𝟏, … , 𝒕𝒏

Query execution

Online

Aggregate
B-tree*

concurrent
update

serial
update

Index-based Random
sampling & Query execution

Scan-based
random sampling

Random sampling

ü Fast query: linear to sample size
× Stale data and needs rebuild
× Slow and delayed batch update

× Slow query: linear to data size
ü Query over latest updates
ü Fast concurrent update

ü Fast query: linear to sample size
ü Query over latest updates
× Slow serial update

*aka Ranked B-Tree, see [Frank Olken’s PhD thesis, 1993]

Goals
n Design an index structure that supports

ü Fast AQP query: sampling scales (almost) linear to sample size
ü Query over latest updates
ü Fast concurrent update

AB-tree: Index for Concurrent Random Sampling and Updates4

Online

Aggregate
B-tree

Concurrent
update

Concurrent Index-based Random
sampling & Query execution

Example: aggregate B-tree with uniform weights
n Aggregate B-tree

– Maintains sub-tree weights 𝑤(along with page pointer 𝑐
• 𝑤(is the sum of weights in the sub-tree

– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤(
• It can be shown the leaf tuple sampled has a probability proportional to its weight

AB-tree: Index for Concurrent Random Sampling and Updates5

10 11

75 6

2 23 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Insert 12

Example: aggregate B-tree with uniform weights
n Aggregate B-tree

– Maintains sub-tree weights 𝑤(along with page pointer 𝑐
• 𝑤(is the sum of weights in the sub-tree

– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤(
• It can be shown the leaf tuple sampled has a probability proportional to its weight

– Weight updates must be applied atomically along a tree path from root to leaf where insertion happens

AB-tree: Index for Concurrent Random Sampling and Updates6

10 11 12

85 6

2 23 23 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Insert 12

Baseline and our solution
n Baseline: X-latch tree path for each update

× Every update blocks every other thread
× Sampling and update throughput drops significantly under heavy update workload

n Challenges: how to ensure highly concurrent sampling and update without
impacting the correctness of random sampling

n Our solution: AB-tree
– based on B-link tree implementation in PostgreSQL 13
– available here: https://github.com/zzy7896321/abtree_public

AB-tree: Index for Concurrent Random Sampling and Updates7

https://github.com/zzy7896321/abtree_public

Challenge 1: Non-blocking Weight Updates
n Different contention pattern than conventional concurrent B-trees

AB-tree: Index for Concurrent Random Sampling and Updates8

Regular B-tree Aggregate B-tree

10 11 127 8 9 13 14

9 12𝑝*

𝑝/ 𝑝0 𝑝1
10 11

2 2

7 8 9 13 14

9 12

3

𝑝*

𝑝/ 𝑝0 𝑝1

Leaf

Root

Lower
Contention

• SMO often happens around leaf
• Internal pages rarely updated

Conventional wisdom:
Localize contention to one or two pages at a
time using atomic Compare-And-Swap (CAS) or
X-latches.

• Internal pages have higher contention for weight updates
• Root page is always contended in any update

Can we update weights without X-latching the entire tree path?
• Yes, use CAS with S-latch one page at a time!

• S-latch guarantees no concurrent SMO while CAS is applied
• Weight updater do not block others
• Correctness of sampling?

Leaf

Root

Higher
Contention

Higher
Contention

Lower
Contention

Challenge 2: Ensuring Consistent Weights for Sampling
n Consistent weights needed for sampling purpose

– perform rejection sampling as in [Olken’93]

Concurrent Aggregate Index9

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

10 11

5 6

2 23 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Rejection sampling9 > 3 + 2 + 27

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

n However, we cannot update weight in parent before insertion
– Concurrent Structural Modification Operation (SMO) may undo the change

AB-tree: Index for Concurrent Random Sampling and Updates10

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2

𝑡*𝑡+

Steps:
(1) 𝑇) increments <𝑤3#
(2) 𝑇+ increments <𝑤3#
(3) 𝑇+ splits 𝑝. and inserts 𝑡4
(4) 𝑇) inserts 𝑡

4 5 6
new page 𝑝)*

2 < 3
(undercounting!)

2 3 6

1 𝑝+

𝑝.

3

𝑡*𝑡+

Challenge 2: Ensuring Consistent Weights for Sampling

n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

n However, we cannot update weight in parent before insertion
– Concurrent Structural Modification Operation (SMO) may undo the change

n Solution: two-pass insertion
– Pass 1: regular key insertion

• assign zero weight to new key
– Pass 2: descend in the tree again and modify weights

• redo weight modification on certain pages in case of concurrent SMO
• use page and tuple update counters to detect concurrent SMO -- see paper for details

AB-tree: Index for Concurrent Random Sampling and Updates11

Challenge 3: Sampling under MVCC

n Sampling under an old snapshot with MVCC could suffer from “live version bloat”
– Many live versions of tuples are

• not visible to that sampling thread
• but are physically present in the index
• à high rejections rates à decreased sampling throughput

n Solution: build an in-memory multi-version weight store to allow
– Querying upper bound of weights under an old snapshot

• Tight enough for minimizing rejection due to live version bloat
– No logging/persistency required

• Only queries by active transactions
• Old snapshots do not live across crashes

– Details in the paper

AB-tree: Index for Concurrent Random Sampling and Updates12

Experiments
n A two-column table 𝐴(𝑥, 𝑦), AB-tree/baseline built on 𝑦

– Fan-out is up to about 300, height = 4
– Preloaded with 1 billion random tuples

n Runs random insertions/random sampling/mixed workload

AB-tree: Index for Concurrent Random Sampling and Updates13

-- AB-tree
-- Baseline heap scan

Scalability

AB-tree: Index for Concurrent Random Sampling and Updates14

B-tree is the original B-link tree without aggregates in PostgreSQL. Its insertion throughput is an upper bound.

(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory
(32 GB, simulated with same seed)

Read-write workload

AB-tree: Index for Concurrent Random Sampling and Updates15

Read-write workload with 10 insertion threads and varying # of sampling threads

1/5 of read-
only throughput

1/40 of read-
only throughput

~6x better
5~6x better

Summary

n We designed AB-tree, an aggregate B-tree that supports efficient concurrent
random sampling and updates

n Future direction
– Improve scalability to many-core systems
– Use AB-tree to enable HTAP use cases with AQP

AB-tree: Index for Concurrent Random Sampling and Updates16

Thank you!
Q& A

Existing Random Sampling Access Methods

n Sampling has been supported as TABLESAMPLE since SQL 2003
× Scan-based: scales linearly to data size (slow!)
× Limited support for random sampling operators needed by AQP

• System/Block sample: sampling pages instead of tuples (non-independent/non-uniform)
• Bernoulli sample: flipping a biased coin (no control on sample size and slow)
• No support for weighted sampling

ü Works seamlessly with concurrent updates
• standard concurrency control mechanism applies

AB-tree: Index for Concurrent Random Sampling and Updates17

SELECT SUM(y) / 0.01
FROM A TABLESAMPLE BERNOULLI(1)
WHERE X >= 5 AND X <= 10

Existing Random Sampling Access Methods
n Index structure for random sampling

– Aggregate B-tree (aka Ranked B-Tree, see Frank Olken’s PhD thesis, 1993)
• Maintains sub-tree weights 𝑤(along with page pointer 𝑐
• Randomly traverse sub-trees with probability ∝ 𝑤(

ü 𝑂(log!𝑁) time per sample (fast)
ü Supports uniform and weighted samples
× Unable to perform concurrent updates

AB-tree: Index for Concurrent Random Sampling and Updates18

10 11

75 6

2 23 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Aggregate B-tree Indexes for Random Sampling
n Aggregate B-tree is more efficient when taking a small sample of size 𝑚 from 𝑁 tuples

– 𝑂 𝑚 log! 𝑁 time, 𝐵 is the fan-out
– In contrast, the standard SQL tablesample Bernoulli operator requires 𝑂 𝑁 time

n Question: how to enable concurrent updates and sampling in the same aggregate B-tree?
– Three challenges from correctly maintaining and querying the aggregated weights
– Naïve solution: x-lock all the pages along a search path during any update

AB-tree: Index for Concurrent Random Sampling and Updates19

10 11

75 6

2 23 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Notations

AB-tree: Index for Concurrent Random Sampling and Updates20

10 11

75 6

<w5$=2 2<𝑤3# =3 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡) 𝑡*𝑡+

𝑝+
𝑝* 𝑝,

𝑐3$ = 𝑝- 𝑐3# = 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

Our solution

n Our solution: AB-tree
– Based on the B-link tree [Lehman & Yao, TODS’81] implementation in PostgreSQL
– We focus on the insertions (deletions are done in bulks and in background)

• Two-pass insertions: updating weights after inserting the leaf tuples
• Only shared-latch pages when updating weights à allows higher concurrency on root

¨ Use Compare-And-Swap or Fetch-And-Add to update the aggregate weights and page LSN
– Multi-version weight store

• Allows a sampling thread to query an upper bound of the stored weight at an old snapshot
• Avoids rejections due to live version bloat

AB-tree: Index for Concurrent Random Sampling and Updates21

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting

AB-tree: Index for Concurrent Random Sampling and Updates22

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3 6

1 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

3

𝑡*𝑡+

Steps:

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting

AB-tree: Index for Concurrent Random Sampling and Updates23

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3 6

1 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

4
Steps:
(1) 𝑇) increments <𝑤3#

𝑡*𝑡+

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting

AB-tree: Index for Concurrent Random Sampling and Updates24

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3 6

1 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

5

𝑡*𝑡+

Steps:
(1) 𝑇) increments <𝑤3#
(2) 𝑇+ increments <𝑤3#

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting

AB-tree: Index for Concurrent Random Sampling and Updates25

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2

𝑡*𝑡+

Steps:
(1) 𝑇) increments <𝑤3#
(2) 𝑇+ increments <𝑤3#
(3) 𝑇+ splits 𝑝. and inserts 𝑡4 5 6

new page 𝑝)*

2

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting

AB-tree: Index for Concurrent Random Sampling and Updates26

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2

𝑡*𝑡+

Steps:
(1) 𝑇) increments <𝑤3#
(2) 𝑇+ increments <𝑤3#
(3) 𝑇+ splits 𝑝. and inserts 𝑡4
(4) 𝑇) inserts 𝑡

4 5 6
new page 𝑝)*

2

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting

AB-tree: Index for Concurrent Random Sampling and Updates27

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3 6

1 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

3
Steps:

𝑡*𝑡+

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting

AB-tree: Index for Concurrent Random Sampling and Updates28

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2
Steps:
(1) 𝑇+ splits 𝑝. and inserts 𝑡4

𝑡*𝑡+

5 6

2

new page 𝑝)*

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting

AB-tree: Index for Concurrent Random Sampling and Updates29

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2
Steps:
(1) 𝑇+ splits 𝑝. and inserts 𝑡4
(2) 𝑇) inserts 𝑡

𝑡*𝑡+

4 5 6

2

new page 𝑝)*

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting

AB-tree: Index for Concurrent Random Sampling and Updates30

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2
Steps:
(1) 𝑇+ splits 𝑝. and inserts 𝑡4
(2) 𝑇) inserts 𝑡
(3) 𝑇) increments <𝑤3%

𝑡*𝑡+

4 5 6

3

new page 𝑝)*

Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting

AB-tree: Index for Concurrent Random Sampling and Updates31

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.

2 3

1 3 𝑝+

𝑝.

𝑇): insert 𝑘3 = 4
𝑇+: insert 𝑘3! = 5

2
Steps:
(1) 𝑇+ splits 𝑝. and inserts 𝑡4
(2) 𝑇) inserts 𝑡
(3) 𝑇) increments <𝑤3%
(4) 𝑇+ increments <𝑤3%

𝑡*𝑡+

4 5 6

4

new page 𝑝)*

Overcount is not Okay either:
The weight of the index tuple pointing to 𝑝+ is
now smaller than the sum in 𝑝+.

Insertion in AB-tree
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page
– May have to move right if a concurrent split moves the insertion point to the right

AB-tree: Index for Concurrent Random Sampling and Updates32

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2

S

S

Insertion in AB-tree: first descent
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page
– May have to move right if a concurrent split moves the insertion point to the right

AB-tree: Index for Concurrent Random Sampling and Updates33

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2

S

X

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages.
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.

AB-tree: Index for Concurrent Random Sampling and Updates34

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2

𝑡

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2𝜙

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages.
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.

AB-tree: Index for Concurrent Random Sampling and Updates35

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

S

3 2

𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages.
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.

AB-tree: Index for Concurrent Random Sampling and Updates36

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

S

fetch−and−add
8

Wrong!

A concurrent structural modification
operation (SMO) on the child page may
undo the increment.

3 2

𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages.
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.

AB-tree: Index for Concurrent Random Sampling and Updates37

10 11 12

9 12

6 12 14

12

𝑝0
2

𝑡

2 2 𝜙

Wrong!

A concurrent structural modification
operation (SMO) on the child page may
undo the increment. 15 16

16 +∞

5

3 2

S

𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages.
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.

AB-tree: Index for Concurrent Random Sampling and Updates38

10 11 12

9 12

6 12 14

12

𝑝0

𝑡

2 2 𝜙

Wrong!

A concurrent structural modification
operation (SMO) on the child page may
undo the increment. 15 16

16 +∞

5: undercount!!

3 2

S
3

𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well

– B-link tree obtains latches from bottom to up during split à need deadlock avoidance
– Rewind to some parent page if there’re concurrent splits that

• undo the increments in the parent/ancestor pages
• or moves the search point to the right of the child page

AB-tree: Index for Concurrent Random Sampling and Updates39

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

0

0

0

0

0 0

𝑝)

𝑝* S

S

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well

AB-tree: Index for Concurrent Random Sampling and Updates40

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

0

0

0

0

0 0

S𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 1: 𝑆𝐼𝐷M! does not change à safe to perform the update

AB-tree: Index for Concurrent Random Sampling and Updates41

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

0

0

0

0

0 0

S

S𝑝)

𝑝*

fetch−and−add
8

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 2: 𝑆𝐼𝐷M! changes but 𝑝N still has the search point, and

– The SID of the parent page or the RID of the index tuple 𝑡"" that points to 𝑝# did not change
à safe to update

AB-tree: Index for Concurrent Random Sampling and Updates42

10 11 12

9 12 16

6 16 26 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

1

0

0

0

0 0

S

S𝑝)

𝑝*

𝑡44
0

0

New page from a split

fetch−and−add
8

𝑡′′ may have moved to the right!!

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 3: 𝑆𝐼𝐷M! changes and any of the following happens

– 𝑝$ does not have the search point or 𝑝# no longer contains a link to 𝑝$
– the SID of the parent page and the RID of 𝑡′′ both change
– root splits à must rewind

AB-tree: Index for Concurrent Random Sampling and Updates43

10 11 12

9 12 16

6 16

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

1

0

0

0

0 0

S

S𝑝)

𝑝*

𝑡44 1

26 +∞ 0

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Rewind: find some page 𝑝 on a higher level, such that

– the SID of its parent page 𝑝′′ does not change
– or the RID of the index tuple that points to 𝑝 does not change

n Or we restart from the root

AB-tree: Index for Concurrent Random Sampling and Updates44

10 11 12

9 12 16

6 16

12

𝑝0

7

2

𝑡

2 2 𝜙

3 2

Detect concurrent SMO

SID: 16-bit SMO ID for internal page
+= 1 for any SMO on some children

RID: 16-bit Recompute ID for index tuple
+= 1 for a split on its child page

No WAL on SID or RID – only concurrent
threads are interested

1

0

0

0

0 0

S

S𝑝)

𝑝*

𝑡44 1

26 +∞ 0

After rewinding, we usually have two
latches held and may do update,

except when we rewind to the original
parent page 𝑝 or we restart from root.

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n When we reach a leaf page (e.g., 𝑝P)

AB-tree: Index for Concurrent Random Sampling and Updates45

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 𝜙
S

3 2

𝑝)

𝑝*

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n When we reach a leaf page (e.g., 𝑝P)

– Use Compare-and-Swap (CAS) to update 𝑥𝑚𝑖𝑛 to the running transaction ID

AB-tree: Index for Concurrent Random Sampling and Updates46

10 11 12

9 12 16

6 16 +∞

12

𝑝0

7

2

𝑡

2 2 3
S

3 2

𝑝)

𝑝*

The insertion algorithm maintains an AB-tree that is always consistent for sampling purpose at
all times and can correctly insert a tuple and update the aggregated weights.

Multi-version weight store
n Live version bloat

– Many new tuples in the index invisible to an old snapshot

AB-tree: Index for Concurrent Random Sampling and Updates47

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

𝑡

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

Multi-version weight store
n Based on PostgreSQL MVCC model

– Snapshot S “𝑥𝑚𝑖𝑛%:𝑥𝑚𝑎𝑥%:𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%”
• a set of concurrent transaction ID in 𝑥𝑚𝑖𝑛%, 𝑥𝑚𝑎𝑥% , union all transactions >= 𝑥𝑚𝑎𝑥%

– RW transactions are assigned transaction IDs (xid)
– Each tuple has a 𝑥𝑚𝑖𝑛 (creating transaction ID), and a 𝑥𝑚𝑎𝑥 (deleting transaction ID)
– A tuple 𝑡 is visible ↔ 𝑥𝑚𝑖𝑛& ∉ 𝑆 ∧ 𝑥𝑚𝑖𝑛& commits ∧ (𝑥𝑚𝑎𝑥& ∈ 𝑆 or aborts or is invalid)

AB-tree: Index for Concurrent Random Sampling and Updates48

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

𝑡

Multi-version weight store
n Based on PostgreSQL MVCC model

– Snapshot S “𝑥𝑚𝑖𝑛%:𝑥𝑚𝑎𝑥%:𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%”
• a set of concurrent transaction ID in 𝑥𝑚𝑖𝑛%, 𝑥𝑚𝑎𝑥% , union all transactions >= 𝑥𝑚𝑎𝑥%

– RW transactions are assigned transaction IDs (xid)
– Each tuple has a 𝑥𝑚𝑖𝑛 (creating transaction ID), and a 𝑥𝑚𝑎𝑥 (deleting transaction ID)
– A tuple 𝑡 is visible → 𝑥𝑚𝑖𝑛& ∉ 𝑆, i.e., 𝑥𝑚𝑖𝑛& < 𝑥𝑚𝑎𝑥% ∧ 𝑥𝑚𝑖𝑛& ∉ 𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%

AB-tree: Index for Concurrent Random Sampling and Updates49

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

𝑡

Multi-version weight store
n Solving live version bloat using the necessary condition for visibility:

– 𝑥𝑚𝑖𝑛& < 𝑥𝑚𝑎𝑥% ∧ 𝑥𝑚𝑖𝑛& ∉ 𝑥𝑖𝑝'()&6
n Only include leaf tuples whose 𝑥𝑚𝑖𝑛 satisfies the above condition in sampling

– Maintain delta weights at different transaction IDs in memory (No persistence/WAL needed)

AB-tree: Index for Concurrent Random Sampling and Updates50

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

𝑡

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

… 𝑝/ … … … … 𝑝* … … …
Hash table:

1 @ 81 @ 41 @ 2 3 @ 8 2 @ 4 2 @ 2
𝑡′

Multi-version weight store
n Say we have a sampling thread at snapshot S = 2: 2:

– Only committed tuples with 𝑥𝑚𝑖𝑛 ≤ 2 may be visible

– (𝑤&7
% = 7 − 3 − 2 = 2; (𝑤&% = 3 − 1 − 1 = 1

AB-tree: Index for Concurrent Random Sampling and Updates51

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

… 𝑝/ … … … … 𝑝* … … …
Hash table:

1 @ 81 @ 41 @ 2 3 @ 8 2 @ 4 2 @ 2
𝑡′

𝑡

Multi-version weight store
n GlobalXmin – smallest 𝑥𝑚𝑖𝑛 of any active snapshot in the system

– Any version < GlobalXmin may be discarded
– Background GC thread scans the chains periodically

AB-tree: Index for Concurrent Random Sampling and Updates52

10 117 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝))

75 6

2 23 22 23 2

8 4 4 4 4 4 2 8 8 8 4 2 8 8 8 8 8 8

… 𝑝/ … … … … 𝑝* … … …
Hash table:

1 @ 81 @ 41 @ 2 3 @ 8 2 @ 4 2 @ 2

𝑡

𝑡′

Insertion in AB-tree: first descent
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page

AB-tree: Index for Concurrent Random Sampling and Updates53

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2
X

Insertion in AB-tree: first descent (cont’d)
n Running example: inserting 𝑘B = 12
n Inconsistent for sampling: 5𝑤B = 2 < 3 = ∑B"∈M# 5𝑤B"

– Attach the creating transaction ID 𝑥𝑚𝑖𝑛 to leaf tuples
– Newly inserted leaf tuples have invalid 𝑥𝑚𝑖𝑛 = 𝜙
– Leaf tuples with 𝑥𝑚𝑖𝑛 = 𝜙 may not be counted or sampled

AB-tree: Index for Concurrent Random Sampling and Updates54

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2
X

𝑡

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2𝜙

Valid 𝑥𝑚𝑖𝑛 are used in multi-
version weight store later.

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved

AB-tree: Index for Concurrent Random Sampling and Updates55

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

75 6

2 23 22 23 2

𝑡

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2𝜙

S

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved
– Atomically update (𝑤 or 𝑥𝑚𝑖𝑛 using CAS or FAA

AB-tree: Index for Concurrent Random Sampling and Updates56

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

85 6

2 23 22 23 2

𝑡

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2𝜙

S

Concurrent split may require us to redo
weight maintenance on ancestor pages
(see paper for details).

Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved
– Atomically update (𝑤 or 𝑥𝑚𝑖𝑛 using CAS or FAA

AB-tree: Index for Concurrent Random Sampling and Updates57

10 11 127 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 6 9 12 16 22 26 +∞

6 16 +∞

1 6 9 12 16 22 26 +∞

𝑝+

𝑝)

𝑝* 𝑝,

𝑝- 𝑝. 𝑝/ 𝑝0 𝑝1 𝑝)2 𝑝)) 𝑝)+

85 6

2 23 22 23 3

𝑡

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23

Concurrent split may require us to redo
weight maintenance on ancestor pages
(see paper for details).

Read-only workload

AB-tree: Index for Concurrent Random Sampling and Updates58

TPC-H

AB-tree: Index for Concurrent Random Sampling and Updates59

