AB-tree: Index for Concurrent Random
Sampling and Updates

Zhuoyue Zhao Dong Xie Feifei Li
University at Buffalo Pennsylvania State University Alibaba

]
Motivation

m Approximate Query Processing (AQP) uses random samples
— to provide fast and approximate answers with error guarantees
— existing solutions often make trade-off between
. efficient online updates and

. low response time

SELECT SUM(y)
FROM A
WHERE x >= 5 AND x <= 10

Q Unbiased estimator
Database > > _ Qi) Vi/Pi
Table

Y1, Yn Y =

n
Confidence interval €, 6

Pr(ly-Y|<e)=1-6

Random samples

AB-tree: Index for Concurrent Random Sampling and Updates

]
Motivation

m How do existing AQP systems perform random sampling?

Offline sampling Online Scan-based Sampling Online Index-based Sampling
v' Fast query: linear to sample size « Slow query: linear to data size v’ Fast query: linear to sample size
x Stale data and needs rebuild v’ Query over latest updates v" Query over latest updates
x Slow and delayed batch update v’ Fast concurrent update x Slow serial update
Offline Online Online
serial
Database concurrent Database update

Table update Table

Scan-based
random sampling

Index-based Random
sampling & Query execution

Random sampling

Online rebuild on
m update

Query execution Query execution *aka Ranked B-Tree, see [Frank Olken’s PhD thesis, 1993]

AB-tree: Index for Concurrent Random Sampling and Updates

-
Goals

m Design an index structure that supports
v Fast AQP query: sampling scales (almost) linear to sample size
v Query over latest updates
v" Fast concurrent update

Online

Concurrent
>
update

Concurrent Index-based Random
sampling & Query execution

AB-tree: Index for Concurrent Random Sampling and Updates

I
Example: aggregate B-tree with uniform weights

m Aggregate B-tree
- Maintains sub-tree weights w. along with page pointer ¢
W, is the sum of weights in the sub-tree
— Starting from root, randomly descend into sub-trees with probability < w,
It can be shown the leaf tuple sampled has a probability proportional to its weight

Insert 12
Pr 6 || 16
ty ta 3 / 7 6
P2 1 P3 9 12 Pa || 22 || 26
2 3 3 2 2 2 2
P1o P11 P12

ﬂ-- OaO0 Do - ODE EOE DEE S0

AB-tree: Index for Concurrent Random Sampling and Updates

I
Example: aggregate B-tree with uniform weights

m Aggregate B-tree
- Maintains sub-tree weights w. along with page pointer ¢
w, is the sum of weights in the sub-tree
— Starting from root, randomly descend into sub-trees with probability < w,
It can be shown the leaf tuple sampled has a probability proportional to its weight
- Weight updates must be applied atomically along a tree path from root to leaf where insertion happens

Insert 12
Pr 6 || 16
tp t2 3 / 8 6
P2 1 P3 9 12 Pa || 22 || 26
2 3 3 3 2 2 2 2
Ps P1o P11 P12

DOE BEE DOO 0N DDE DS DEE DO

AB-tree: Index for Concurrent Random Sampling and Updates

-
Baseline and our solution

m Baseline: X-latch tree path for each update
x Every update blocks every other thread
x Sampling and update throughput drops significantly under heavy update workload

m Challenges: how to ensure highly concurrent sampling and update without
impacting the correctness of random sampling

m QOur solution: AB-tree
— based on B-link tree implementation in PostgreSQL 13
— available here: https://github.com/zzy7896321/abtree public

AB-tree: Index for Concurrent Random Sampling and Updates

https://github.com/zzy7896321/abtree_public

I
Challenge 1: Non-blocking Weight Updates

m Different contention pattern than conventional concurrent B-trees

Regular B-tree Aggregate B-tree
Root Root
Lower 1 Higher
Contention P3 || 9 || 12 Contention P3 || 9 || 12
. ‘ Ps P9 cower i §197 : Ps S P9
Contontion ﬂﬂm 11 (PN 13 14| wenenen HEE EEIE ERE
Leaf Leaf

* Internal pages have higher contention for weight updates

« SMO often h leaf
SMO often happens around lea * Root page is always contended in any update

» Internal pages rarely updated

Can we update weights without X-latching the entire tree path?

* Yes, use CAS with S-latch one page at a time!
» S-latch guarantees no concurrent SMO while CAS is applied
« Weight updater do not block others
« Correctness of sampling?

Conventional wisdom:

Localize contention to one or two pages at a
time using atomic Compare-And-Swap (CAS) or
X-latches.

- AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: Ensuring Consistent Weights for Sampling

m Consistent weights needed for sampling purpose

— perform rejection sampling as in [Olken’93]

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

Pr 16 116
5
LN e @
P2 1 P3 9 12 Pa || 22 || 26
2 3 3 2 2 2
P1o P11 12

ﬂ-- BOad Boo Do OmE GO -

Concurrent Aggregate Index

Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

— perform rejection sampling as in [Olken’93]

m However, we cannot update weight in parent before insertion

— Concurrent Structural Modification Operation (SMO) may undo the change

T;:insertk, =4
T,:insertk, =5

1) T, increments W,
2) T, increments W,

T, inserts t

10

)
) T, splits pg and inserts t’
)

t, tg t; t3
1 |2 1 || 3 P2
2<3
3 2 =
- - (undercounting!)

new page p13

AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: Ensuring Consistent Weights for Sampling

m Consistent weights needed for sampling purpose
— perform rejection sampling as in [Olken’93]

m However, we cannot update weight in parent before insertion
— Concurrent Structural Modification Operation (SMO) may undo the change

m Solution: two-pass insertion
— Pass 1: regular key insertion
- assign zero weight to new key
— Pass 2: descend in the tree again and modify weights
. redo weight modification on certain pages in case of concurrent SMO
. use page and tuple update counters to detect concurrent SMO -- see paper for details

T AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 3: Sampling under MVCC

m Sampling under an old snapshot with MVCC could suffer from “live version bloat”
— Many live versions of tuples are
not visible to that sampling thread
but are physically present in the index
- high rejections rates = decreased sampling throughput

m Solution: build an in-memory multi-version weight store to allow
— Querying upper bound of weights under an old snapshot
- Tight enough for minimizing rejection due to live version bloat
— No logging/persistency required
Only queries by active transactions
Old snapshots do not live across crashes

— Details in the paper

12 AB-tree: Index for Concurrent Random Sampling and Updates

I
Experiments

m Atwo-column table A(x,y), AB-tree/baseline built on y
— Fan-out is up to about 300, height = 4
— Preloaded with 1 billion random tuples

m Runs random insertions/random sampling/mixed workload

SELECT COUNT(*) FROM A TABLESAMPLE SWR(?); -- AB-tree
SELECT COUNT(*) FROM A TABLESAMPLE BERNOULLI(?); -- Baseline heap scan
INSERT INTO A VALUES (7, 7?);

13 AB-tree: Index for Concurrent Random Sampling and Updates

I
Scalability

—‘.ﬁ_ —@— AB-tree Baseline e B-tree T.J: —8— AB-tree Baseline e B-tree 1‘, —@— AB-tree Baseline e B-tree
+ 400000 :’4()()()()()- X + 400000
£ X 2 -3

Pl] . 2))
%0 300000 o DRTVINRREE o ¥ %o 3000001 %0 i)()()()()()
S O s S
£ I e e e e s % ol w £ o<
= 1 5 10 131517 20 2325 30 33 36 ‘= T T R A o an o = 1 5 10 131517 20 2325 30 33 36
K Number of threads é 1 D 10 131517 20 2325 30 33 36 L Number of threads

a Number of threads
(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory

(32 GB, simulated with same seed)

B-tree is the original B-link tree without aggregates in PostgreSQL. Its insertion throughput is an upper bound.

14 AB-tree: Index for Concurrent Random Sampling and Updates

o
Read-write workload

DA : = 1/5 of read-

> —@— AB-tree Baseline) ®— AB-tree Baseline

=) only throughput
& 1200001 0—o—0—0—0—0—o—0—0—9 £ 100000

) = |

S 80000 6x bett = (\3383 5~6x better
£ ~6x better 5 6

c < 400001

.o 40000+ +

= 80 20000

§ 0 v . : :) = 0

o 2 4 6 8 10 E 2 4 6 8 10

< Number of concurrent sampling threads n Number of concurrent sampling threads

Read-write workload with 10 insertion threads and varying # of sampling threads

15 AB-tree: Index for Concurrent Random Sampling and Updates

I
Summary

m We designed AB-tree, an aggregate B-tree that supports efficient concurrent
random sampling and updates

m Future direction

— Improve scalability to many-core systems
— Use AB-tree to enable HTAP use cases with AQP

Thank you!
Q& A

16 AB-tree: Index for Concurrent Random Sampling and Updates

I
Existing Random Sampling Access Methods

m Sampling has been supported as TABLESAMPLE since SQL 2003

x Scan-based: scales linearly to data size (slow!)
x Limited support for random sampling operators needed by AQP

. System/Block sample: sampling pages instead of tuples (non-independent/non-uniform)
- Bernoulli sample: flipping a biased coin (no control on sample size and slow)
- No support for weighted sampling

v' Works seamlessly with concurrent updates
. standard concurrency control mechanism applies

SELECT SUM(y) / 0.01
FROM A TABLESAMPLE BERNOULLI (1)
WHERE X >= 5 AND X <= 10

17 AB-tree: Index for Concurrent Random Sampling and Updates

I
Existing Random Sampling Access Methods

m Index structure for random sampling

— Aggregate B-tree (aka Ranked B-Tree, see Frank Olken’s PhD thesis, 1993)
Maintains sub-tree weights w. along with page pointer ¢
- Randomly traverse sub-trees with probability o< w,
v O(logg N) time per sample (fast)
v Supports uniform and weighted samples
x Unable to perform concurrent updates

Pr 16 [l 16
t1 lp 3 / 7 6
P2 1 % 9 12 Pa || 22 || 26
2 3 3 2 2 2 2
P1o P11 P12

ﬂ-- OO0 Doo - OOE G0N BOE E0n

AB-tree: Index for Concurrent Random Sampling and Updates

I
Aggregate B-tree Indexes for Random Sampling

m Aggregate B-tree is more efficient when taking a small sample of size m from N tuples
—- O(mllogg N|) time, B is the fan-out
— In contrast, the standard SQL tablesample Bernoulli operator requires O(N) time

m Question: how to enable concurrent updates and sampling in the same aggregate B-tree?
— Three challenges from correctly maintaining and querying the aggregated weights
— Naive solution: x-lock all the pages along a search path during any update

Pr 16 |l 16
t t, / 7 6
P2 || 1 p3 9 || 12 Ps || 22 || 26
2 3 3 2 2 2 2 z
P1o P11 P12

ﬂ-- OO0 poo Do OOE EOE DOE E0n

AB-tree: Index for Concurrent Random Sampling and Updates

]
Notations

6 || 16
t, t; t / 7 6
p
P2 || 1 A | T Pe 122 26
Wi, =2 We, =3 5 2 2 2 2 2
Ct, = Ps Ct, = Pe P10 P11 P12

BT B Bl Bl

DHE -BaG B0 -nnm

20 AB-tree: Index for Concurrent Random Sampling and Updates

-
Our solution

m Qur solution: AB-tree

— Based on the B-link tree [Lehman & Yao, TODS’81] implementation in PostgreSQL
-~ We focus on the insertions (deletions are done in bulks and in background)

Two-pass insertions: updating weights after inserting the leaf tuples

Only shared-latch pages when updating weights = allows higher concurrency on root

Use Compare-And-Swap or Fetch-And-Add to update the aggregate weights and page LSN

— Multi-version weight store

Allows a sampling thread to query an upper bound of the stored weight at an old snapshot

Avoids rejections due to live version bloat

21 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 1: updating weights before leaf insertion =2 undercounting
t; i3

]

T;:insertk, =4
T,:insertk,, =5 1 P2

Steps:
P 3

236
Pe

22 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 1: updating weights before leaf insertion =2 undercounting
t; i3

T;:insertk, =4
T,:insertk,, =5 1 P2

Steps:

(1) T; increments Wy, 4

236
Pe

23

AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 1: updating weights before leaf insertion =2 undercounting
t; i3

T;:insertk, =4
T,:insertk,, =5 1 P2

Steps:
(1) T; increments Wy,
(2) T, increments W,

5

236
Pe

24 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 1: updating weights before leaf insertion =2 undercounting
t; i3

T;:insertk, =4
T,:insertk,, =5 1 || 3 P2

Steps:

(1) T; increments Wy,
(2) T, increments W,
(

3) T, splits p; and inserts t’ --- """" >-n-

new page p;3

2 2

25 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 1: updating weights before leaf insertion =2 undercounting
T;:insertk, =4 ltz t‘3
T,:insertk,, =5 1 || 3 P2

]

2 2

T; inserts t new page pi3

26 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 2: updating weights after leaf insertion = both undercounting and overcounting
t; i3

A

T;:insertk, =4
T,:insertk,, =5 1 P2

]

Steps:
P 3

236
Pe

27 AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 2: updating weights after leaf insertion = both undercounting and overcounting

: t t
T;:insertk, =4 23

]

T,:insertk,, =5 1 || 3 P2

Steps:
(1) T, splits ps and inserts t’

2 2

new page p;3

28

AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 2: updating weights after leaf insertion = both undercounting and overcounting

: t t
T;:insertk, =4 23

]

T,:insertk,, =5 1 || 3 P2

Steps:
(1) T, splits ps and inserts t’
(2) T; inserts t

2 2

new page p;3

29

AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 2: updating weights after leaf insertion = both undercounting and overcounting

: t t
T;:insertk, =4 23

]

T,:insertk,, =5 1 || 3 P2

Steps:

(1) T, splits ps and inserts t’
(2) T; inserts t
(

57 ncrement OEE noo

new page p;3

2 3

30

AB-tree: Index for Concurrent Random Sampling and Updates

I
Challenge 2: consistent weights for sampling (cont’d)

m Consistent weights needed for sampling purpose

Definition 1: An aggregate B-tree T is said to be consistent for sampling purpose if and only if
for any index tuple ¢t € T: W, = X.rc., Wy

m Scenario 2: updating weights after leaf insertion = both undercounting and overcounting

: t t
T;:insertk, =4 23

Ty:insert kyr =5 11| 3| P2 Overcount is not Okay either:
Steps: The weight of the index tuple pointing to p, is
1) T, splits ps and inserts t’ 2 4 now smaller than the sum in p,.
2) T, inserts t

(
23; T, increments i, --- ------ »..ﬂ
(4)

4) T, increments W, new page pq3

31 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree

m Running example: inserting k; = 12

m First descent: search for insertion location
— No latch is held across pages during search
— S-latch the internal pages; X-latch the leaf page
— May have to move right if a concurrent split moves the insertion point to the right

Pi1 || 6 || 16 ||+
) \ 7 A 6
'S
P2 || 1 6 P 9 || 12 || 16 |- Pa, 22 || 26 ||+0
2 3 3 2 2 2 2 2
P10 P11 P12

ﬂ-l---*--ﬂ -ﬂﬂ - >l-->- >- -

32 AB-tree: Index for Concurrent Random Sampling and Updates

Insertion in AB-tree: first descent

m Running example: inserting k; = 12

m First descent: search for insertion location

P2
2

— No latch is held across pages during search

— S-latch the internal pages; X-latch the leaf page

— May have to move right if a concurrent split moves the insertion point to the right

P1

(%

3

6 16 |[+o0
7
- @)
LS}
9 12 || 16
@ 2 2

[e)]

P10

22

26

+ oo

2

P11

2

P12

ﬂ-l---*--ﬂ -ﬂﬂ - >l-->- >- -

33

AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12

m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-latch pages.
— Atomically update w on the internal pages and xmin on the leaf pages.

Pi1 || 6 || 16 ||+

U
[e))

7

P2 || 1 I M9 || 12 || 16 [~ M| 22 || 26 ||+
2 3 3 2

) 2
P1o P11 P12

n-l-»-ln -lm mn—- »l——»- ol Bo o

34

IN
IN

AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-lock pages.
— Atomically update w on the internal pages and xmin on the leaf pages.

P1
6 || 16 ||+ @

P3 t !
1\
9 12 || 16
3 2 2

- Ps
mmE
12

35 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12

m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-lock pages.

— Atomically update w on the internal pages and xmin on the leaf pages.

- &
S
Wrong! ° || 16 ||Fe

. fetch—and—adq
A concurrent structural modification b3 t - 8
operation (SMO) on the child page may —
undo the increment. 9 || 12 16

3 2

- Ps
mmE
12

IND

36

AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree

— S-lock pages.
— Atomically update w on the internal pages and xmin on the leaf pages.
P1
Wrong! 6 (| 12 || 14 [-- »| 16 + o0
A concurrent structural modification /p3 t
operation (SMO) on the child page may ‘ ol 7 .
undo the increment. S| ° > 6
3 2 2

- Ps
mmE
12

37 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree

— S-lock pages.
— Atomically update w on the internal pages and xmin on the leaf pages.
P1
Wrong! 6 (| 12 || 14 [-- »| 16 + 00
5: undercount!!
A concurrent structural modification 7p3 t
operation (SMO) on the child page may - ol D) e
undo the increment. S >
3 3 2

- Ps
mmE
12

38

AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well
— B-link tree obtains latches from bottom to up during split 2 need deadlock avoidance
- Rewind to some parent page if there’re concurrent splits that
- undo the increments in the parent/ancestor pages
- or moves the search point to the right of the child page

N

Detect concurrent SMO P1 (g H.G 16 ||+ @
SID: 16-bit SMO ID for internal page t 7

+= 1 for any SMO on some children) ——

P3| § 9 || 12 || 16 @

RID: 16-bit Recompute ID for index tuple s o]\, "

+= 1 for a split on its child page _ T g Q
No WAL on SID or RID - only concurrent II;“?
threads are interested 127

39

AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well

Detect concurrent SMO P1l.S H.G 16 ||+ @
SID: 16-bit SMO ID for internal page t \Z

+= 1 for any SMO on some children —

p3 9 || 12 || 16 @

RID: 16-bit Recompute ID for index tuple d "

+= 1 for a split on its child page B Dg Q
No WAL on SID or RID - only concurrent II;“?
threads are interested 127

40 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well

m Case 1: SID,, does not change > safe to perform the update

Detect concurrent SMO P1@ 16 ||+ @
: . fetch—and—add

SID: 16-bit SMO ID for internal page t \Z > 8

+= 1 for any SMO on some children M ——

P3| g 9 ([12 || 16 @

RID: 16-bit Recompute ID for index tuple 3 .) 2

+= 1 for a split on its child page - g -
No WAL on SID or RID - only concurrent lgmz
threads are interested 127

41 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well
m Case 2: 5ID, changes but p; still has the search point, and

— The SID of the parent page or the RID of the index tuple t"' that points to p; did not change
- safe to update t’

/ . t" may have moved to the right!!
Detect concurrent SMO P1@ ['
t
_1_1

1“ 26 | oo @
\7fe
12

SID: 16-bit SMO ID for internal page tch—and—add
+= 1 for any SMO on some children M =
Ps(g]|l 9 16 @ New page from a split
RID: 16-bit Recompute ID for index tuple s o]\, "

+= 1 for a split on its child page

- Ps
No WAL on SID or RID - only concurrent lglg
threads are interested 127

42 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well
m Case 3: 5D, changes and any of the following happens

— p3 does not have the search point or p; no longer contains a link to p;

— the SID of the parent page and the RID of t"’ both change
t’,

— root splits 2 must rewind /
Detect concurrent SMO pl@ - @ ________ " 26 e @
SID: 16-bit SMO ID for internal page t \Z
+= 1 for any SMO on some children M\ ot
P3| g 9 || 12 || 16 @
RID: 16-bit Recompute ID for index tuple 3 [, 2

+= 1 for a split on its child page

i Ps

12
No WAL on SID or RID — only concurrent ng“g-qb
threads are interested 12

43 AB-tree: Index for Concurrent Random Sampling and Updates

Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m Update the weight only when holding an S-latch on the correct child page as well

m Rewind: find some page p on a higher level, such that

— the SID of its parent page p’’ does not change

— or the RID of the index tuple that points to p does not change

+= 1 for a split on its child page

threads are interested

B Or we restart from the root @
Pi| S

No WAL on SID or RID - only concurrent

t”

44

AB-tree: Index for Concurrent Random Sampling and Updates

Detect concurrent SMO 16
SID: 16-bit SMO ID for internal page t \Z
+=1 for any SMO on some children A
P3| g 9 || 12 || 16
RID: 16-bit Recompute ID for index tuple 3]\,

- Ps
s
12

26 + o0 @

After rewinding, we usually have two
latches held and may do update,

except when we rewind to the original
parent page p or we restart from root.

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12
m When we reach a leaf page (e.g., pg)

P1
6 || 16 ||[+o0
P3 t !
1‘
9 12 || 16

/@ 2

- Ps
mmE
12

45 AB-tree: Index for Concurrent Random Sampling and Updates

Insertion in AB-tree: second descent

Running example: inserting k; = 12
When we reach a leaf page (e.g., pg)
— Use Compare-and-Swap (CAS) to update xmin to the running transaction ID

The insertion algorithm maintains an AB-tree that is always consistent for sampling purpose at
all times and can correctly insert a tuple and update the aggregated weights.

46

P1
6 || 16 ||[+o0
P3 t !
1\
9 12 || 16

IND

/ :

- Ps
< mpEm
12

AB-tree: Index for Concurrent Random Sampling and Updates

I
Multi-version weight store

m Live version bloat

- Many new tuples in the index invisible to an old snapshot

Pi1 || 6 || 16 ||+

5 \ 7 6
e
Pz || 1 6 |- Pl g 1o [16 | Paull 22 || 26 [[+eo
2 3 3 2 2 2 2 2
P10 P11
P P P -MEE R - S -

a7 AB-tree: Index for Concurrent Random Sampling and Updates

Multi-version weight store

m Based on PostgreSQL MVCC model

P2
2

Snapshot S “xming:xmaxg:xip_lists”

. a set of concurrent transaction ID in [xming, xmaxs) , union all transactions >= xmaxg

RW transactions are assigned transaction IDs (xid)

Each tuple has a xmin (creating transaction ID), and a xmax (deleting transaction ID)

A tuple t is visible & xmin; € S A xmin; commits A (xmax; € S or aborts or is invalid)

3

Pi1|| 6 || 16 ||4+o0
t
i
P T T b Pa
3 2 2 2

P10

22

26

+ oo

2

2
P11

n--—--lln -lm mml—»l—»l»l—»n

48

AB-tree: Index for Concurrent Random Sampling and Updates

Multi-version weight store
m Based on PostgreSQL MVCC model

— Snapshot S “xming:xmaxs:xip_lists”

. a set of concurrent transaction ID in [xming, xmaxs) , union all transactions >= xmaxg
- RW transactions are assigned transaction IDs (xid)
— Each tuple has a xmin (creating transaction ID), and a xmax (deleting transaction ID)
— Atuple tisvisible » xmin; € S, i.e., xmin; < xmaxs A xmin; & xip_lists

Pi1 || 6 || 16 ||+

) \ 7 6
t
1
P2 || 1 6 P 9 || 12 || 16 |- Pa, 22 || 26 ||+0
2 3 3 2 2 2 2 2
P10 P11

n--—--lln -lm mml—»l—»l»l—»n

49 AB-tree: Index for Concurrent Random Sampling and Updates

I
Multi-version weight store

m Solving live version bloat using the necessary condition for visibility:

- xmin; < xmaxs A xming € Xipyise.

m Onlyinclude leaf tuples whose xmin satisfies the above condition in sampling
— Maintain delta weights at different transaction IDs in memory (No persistence/WAL needed)

Hash table: D7 t’ P3
1T@2[11@4 1@38 3@8*2@4 2@2
@ © @ Pi1 || 6 || 16 ||+ @ © ©
E) \ 7 6

t
i

P2 || 1 6 B3 g T2 26 b Pa 22 || 26 +0

2 3 3 2 2 2 2 2

P1o P11

n-l-»-ln -lm mnl »l——»- PO Fo

50 AB-tree: Index for Concurrent Random Sampling and Updates

Multi-version weight store
m Say we have a sampling thread at snapshot S = 2:2:{ }

— Only committed tuples with xmin < 2 may be visible

- W =7—-3-2=2%W =3-1-1=1
Hash table: D7 t’ pv3
. —— .
1@21@4f1@8 o e e e 3@82@42@2
5 7 6
; \
p2 [1 6 |- P g T Ta6 oo Pl 22 || 26 [[+o0
2 3 3 2 2 2 2 2
P1o P11
n--—--lln -lm mml »l——»- Lo Ro

51

AB-tree: Index for Concurrent Random Sampling and Updates

I
Multi-version weight store

m GlobalXmin — smallest xmin of any active snapshot in the system

— Any version < GlobalXmin may be discarded
— Background GC thread scans the chains periodically

Hash table: D7 t’ P3
1T@2[11@4 1@38 3@8*2@4 2@2
@ © @ Pi1 || 6 || 16 ||+ @ © ©
E) \ 7 6

t
i

P2 || 1 6 B3 g T2 26 b Pa 22 || 26 +0

2 3 3 2 2 2 2 2

P1o P11

n-l-»-ln -lm mnl »l——»- PO Fo

52 AB-tree: Index for Concurrent Random Sampling and Updates

Insertion in AB-tree: first descent

m Running example: inserting k; = 12

m First descent: search for insertion location

— No latch is held across pages during search

— S-latch the internal pages; X-latch the leaf page

P1

(%

P2 || 1 6 -3
2 3 3

--- o 22 || 26 ||+o0

6 || 16 ||+oo
7
9 (| 12 || 16
M\ 2
X

IN

[e)]

2 2 2
P1o P11 P12

ﬂ-l---*--ﬂ“ -ﬂﬂ---’ 11 B8 --- -

53

AB-tree: Index for Concurrent Random Sampling and Updates

I
Insertion in AB-tree: first descent (cont’d)

m Running example: inserting k; = 12

® Inconsistent for sampling: W; = 2 < B;Z’LE”’WV%’

\A

— Attach the creating transaction ID xmin to leaf tuples Valid xmin are used in multi-
— Newly inserted leaf tuples have invalid xmin = ¢ version weight store later.

— Leaf tuples with xmin = ¢ may not be counted or sampled

P1 6 || 16 |[+o0
t
1\
P2 || 1 6 [Py 12 ([16 |-----m-mmmm s e Pall 22 || 26 [J+oo

IN
IN

9
2 3 / M)\ 2 / 2 X
Ds Ps p, [X P10 P11 P12
PPN PPD AR IR »l——»- L B
2) 2 4 2 \2] 2 2/ 2] 42 2

54 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12

m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-latch pages -- ensures index entry not concurrently moved

Pi1 || 6 || 16 ||+
E) 7 6
t
p p
P2 || 1 6 - B > 12 |16 |-t 2| 22 (| 26 ||HG0
2 3 3 2 2 2 2 .
P10 P11 P12

n--—--lln -lm mm—-—»l——»-—»l—- FIE

95 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12

m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-latch pages -- ensures index entry not concurrently moved

— Atomically update w or xmin using CAS or FAA Concurrent split may require us to redo
(5 weight maintenance on ancestor pages
p: e Il 16 400 = (see paper for details).
) 8 6
t
p p
P2 || 1 6 - E Sl 9 |f12]|l16}f -2l 22 | 26 || 40
2 3 3 2 2 2 2 2
P10 P11 P12

n-l-»-ln -lm mn—- »l——»- ol Bo o

56 AB-tree: Index for Concurrent Random Sampling and Updates

]
Insertion in AB-tree: second descent

m Running example: inserting k; = 12

m Second descent: updating the aggregate weights
— Use the same search key to re-descend the tree
— S-latch pages -- ensures index entry not concurrently moved

- Atomically update W or xmin using CAS or FAA Concurrent split may require us to redo
weight maintenance on ancestor pages
il 6 Il 16 ||+oo (see paper for details).
2 8 6
. S
p p
P2 || 1 6 [9 || 12 || 16 [T 22 || 26 ||+ 00
2 3 3 3 2 2) 2
P10 P11 P12

n-l-»-ln -lm mn—- »l——»- ol Bo o

o7 AB-tree: Index for Concurrent Random Sampling and Updates

I
Read-only workload

—&—AB-tree—<—Bernoulli Baseline :|\ . —8—AB-tree—<—Bernoulli Baseline
—_n e v = — 1.75
\320 e 2150
c 15 a0 1.25
® £ 1.00
> 10 = 0.751
& 5 = 0.50-
80 a € (.25
-l ¥ (T
< (iesos— , | | | 9 (0.00 1_36090000000—HHH—H—HH——H—¢—>
0 20000 40000 60000 80000 100000 § 1 5 10 131517 20 2325 30 33 36
Sampling rate x10” or Sample Size Number of threads
(a) Average query latency (b) Peak sampling throughput

Figure 9: Sampling with varying number of threads

58 AB-tree: Index for Concurrent Random Sampling and Updates

TPC-H

Baseline [/ 1Bernoulli/B-Tree [_IHeap file

75.4

2.14
0.526

62.3

0.298 0-378

[/ JAB-tree
@ 102 66.7
oy
3 1
k- 10" 5
e
s 10°;
0 0.288 0.331
3
1071

Peak insertion throughput (s71)

before insertion

during insertion

(a)

—
(]
o
-~

80k 1
60k
40k 1
20k 1

100k

88.3k

30.7k

after insertion

Ut
Ne)

Disk usage (GB)
N B D

92.5

89.8 89.8

(b)

2 2 2 2
o o o o

()

Figure 16: Mixed workload on TPC-H lineitem (SF = 100)

59

AB-tree: Index for Concurrent Random Sampling and Updates

