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Motivation
n Approximate Query Processing (AQP) uses random samples

– to provide fast and approximate answers with error guarantees
– existing solutions often make trade-off between 

• efficient online updates and
• low response time
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SELECT SUM(y)
FROM A
WHERE x >= 5 AND x <= 10

Unbiased estimator
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∑#∈[&] 𝑦#/𝑝#

𝑛
Confidence interval 𝜀, 𝛿

𝑃𝑟 𝑌 − $𝑌 ≤ 𝜀 ≥ 1 − 𝛿



Motivation
n How do existing AQP systems perform random sampling?
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ü Fast query: linear to sample size
× Stale data and needs rebuild
× Slow and delayed batch update

× Slow query: linear to data size
ü Query over latest updates
ü Fast concurrent update

ü Fast query: linear to sample size
ü Query over latest updates
× Slow serial update

*aka Ranked B-Tree, see [Frank Olken’s PhD thesis, 1993]



Goals
n Design an index structure that supports

ü Fast AQP query: sampling scales (almost) linear to sample size
ü Query over latest updates
ü Fast concurrent update
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Example: aggregate B-tree with uniform weights
n Aggregate B-tree 

– Maintains sub-tree weights 𝑤( along with page pointer 𝑐
• 𝑤( is the sum of weights in the sub-tree

– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤(
• It can be shown the leaf tuple sampled has a probability proportional to its weight
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Example: aggregate B-tree with uniform weights
n Aggregate B-tree 

– Maintains sub-tree weights 𝑤( along with page pointer 𝑐
• 𝑤( is the sum of weights in the sub-tree

– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤(
• It can be shown the leaf tuple sampled has a probability proportional to its weight

– Weight updates must be applied atomically along a tree path from root to leaf where insertion happens
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Baseline and our solution
n Baseline: X-latch tree path for each update

× Every update blocks every other thread
× Sampling and update throughput drops significantly under heavy update workload

n Challenges: how to ensure highly concurrent sampling and update without 
impacting the correctness of random sampling

n Our solution: AB-tree
– based on B-link tree implementation in PostgreSQL 13
– available here: https://github.com/zzy7896321/abtree_public
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Challenge 1: Non-blocking Weight Updates
n Different contention pattern than conventional concurrent B-trees
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Challenge 2: Ensuring Consistent Weights for Sampling
n Consistent weights needed for sampling purpose

– perform rejection sampling as in [Olken’93]
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Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling purpose if and only if 
for any index tuple 𝑡 ∈ 𝑇: <𝑤3 ≥ ∑3!∈(" <𝑤34.
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

n However, we cannot update weight in parent before insertion
– Concurrent Structural Modification Operation (SMO) may undo the change
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Challenge 2: Ensuring Consistent Weights for Sampling

n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

n However, we cannot update weight in parent before insertion
– Concurrent Structural Modification Operation (SMO) may undo the change

n Solution: two-pass insertion
– Pass 1: regular key insertion

• assign zero weight to new key
– Pass 2: descend in the tree again and modify weights

• redo weight modification on certain pages in case of concurrent SMO
• use page and tuple update counters to detect concurrent SMO -- see paper for details
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Challenge 3: Sampling under MVCC

n Sampling under an old snapshot with MVCC could suffer from “live version bloat”
– Many live versions of tuples are

• not visible to that sampling thread
• but are physically present in the index
• à high rejections rates à decreased sampling throughput

n Solution: build an in-memory multi-version weight store to allow 
– Querying upper bound of weights under an old snapshot

• Tight enough for minimizing rejection due to live version bloat
– No logging/persistency required

• Only queries by active transactions
• Old snapshots do not live across crashes

– Details in the paper
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Experiments
n A two-column table 𝐴(𝑥, 𝑦), AB-tree/baseline built on 𝑦

– Fan-out is up to about 300, height = 4
– Preloaded with 1 billion random tuples

n Runs random insertions/random sampling/mixed workload
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-- AB-tree
-- Baseline heap scan



Scalability
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B-tree is the original B-link tree without aggregates in PostgreSQL. Its insertion throughput is an upper bound.

(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory
(32 GB, simulated with same seed )



Read-write workload
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Read-write workload with 10 insertion threads and varying # of sampling threads

1/5 of read-
only throughput

1/40 of read-
only throughput

~6x better
5~6x better



Summary

n We designed AB-tree, an aggregate B-tree that supports efficient concurrent 
random sampling and updates

n Future direction
– Improve scalability to many-core systems
– Use AB-tree to enable HTAP use cases with AQP

AB-tree: Index for Concurrent Random Sampling and Updates16

Thank you!
Q& A



Existing Random Sampling Access Methods

n Sampling has been supported as TABLESAMPLE since SQL 2003
× Scan-based: scales linearly to data size (slow!)
× Limited support for random sampling operators needed by AQP

• System/Block sample: sampling pages instead of tuples (non-independent/non-uniform)
• Bernoulli sample: flipping a biased coin (no control on sample size and slow)
• No support for weighted sampling 

ü Works seamlessly with concurrent updates
• standard concurrency control mechanism applies
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SELECT SUM(y) / 0.01
FROM A TABLESAMPLE BERNOULLI(1)
WHERE X >= 5 AND X <= 10



Existing Random Sampling Access Methods
n Index structure for random sampling

– Aggregate B-tree (aka Ranked B-Tree, see Frank Olken’s PhD thesis, 1993)
• Maintains sub-tree weights 𝑤( along with page pointer 𝑐
• Randomly traverse sub-trees with probability ∝ 𝑤(

ü 𝑂(log!𝑁) time per sample (fast)
ü Supports uniform and weighted samples
× Unable to perform concurrent updates
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Aggregate B-tree Indexes for Random Sampling
n Aggregate B-tree is more efficient when taking a small sample of size 𝑚 from 𝑁 tuples

– 𝑂 𝑚 log! 𝑁 time, 𝐵 is the fan-out
– In contrast, the standard SQL tablesample Bernoulli operator requires 𝑂 𝑁 time

n Question: how to enable concurrent updates and sampling in the same aggregate B-tree?
– Three challenges from correctly maintaining and querying the aggregated weights
– Naïve solution: x-lock all the pages along a search path during any update
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Notations
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Our solution

n Our solution: AB-tree
– Based on the B-link tree [Lehman & Yao, TODS’81] implementation in PostgreSQL
– We focus on the insertions (deletions are done in bulks and in background)

• Two-pass insertions: updating weights after inserting the leaf tuples
• Only shared-latch pages when updating weights à allows higher concurrency on root

¨ Use Compare-And-Swap or Fetch-And-Add to update the aggregate weights and page LSN
– Multi-version weight store

• Allows a sampling thread to query an upper bound of the stored weight at an old snapshot
• Avoids rejections due to live version bloat
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 1: updating weights before leaf insertion à undercounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting
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Challenge 2: consistent weights for sampling (cont’d)

n Consistent weights needed for sampling purpose

n Scenario 2: updating weights after leaf insertion à both undercounting and overcounting
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now smaller than the sum in 𝑝+.



Insertion in AB-tree
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page
– May have to move right if a concurrent split moves the insertion point to the right
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Insertion in AB-tree: first descent
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page
– May have to move right if a concurrent split moves the insertion point to the right
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages. 
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages. 
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages. 
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages. 
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-lock pages. 
– Atomically update (𝑤 on the internal pages and 𝑥𝑚𝑖𝑛 on the leaf pages.
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well

– B-link tree obtains latches from bottom to up during split à need deadlock avoidance
– Rewind to some parent page if there’re concurrent splits that

• undo the increments in the parent/ancestor pages
• or moves the search point to the right of the child page
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 1: 𝑆𝐼𝐷M! does not change à safe to perform the update
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 2: 𝑆𝐼𝐷M! changes but 𝑝N still has the search point, and

– The SID of the parent page or the RID of the index tuple 𝑡"" that points to 𝑝# did not change
à safe to update
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Case 3: 𝑆𝐼𝐷M! changes and any of the following happens

– 𝑝$ does not have the search point or 𝑝# no longer contains a link to 𝑝$
– the SID of the parent page and the RID of 𝑡′′ both change
– root splits à must rewind
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Update the weight only when holding an S-latch on the correct child page as well
n Rewind: find some page 𝑝 on a higher level, such that

– the SID of its parent page 𝑝′′ does not change
– or the RID of the index tuple that points to 𝑝 does not change

n Or we restart from the root
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After rewinding, we usually have two 
latches held and may do update,

except when we rewind to the original 
parent page 𝑝 or we restart from root.



Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n When we reach a leaf page (e.g., 𝑝P)
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n When we reach a leaf page (e.g., 𝑝P)

– Use Compare-and-Swap (CAS) to update 𝑥𝑚𝑖𝑛 to the running transaction ID
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The insertion algorithm maintains an AB-tree that is always consistent for sampling purpose at 
all times and can correctly insert a tuple and update the aggregated weights.



Multi-version weight store
n Live version bloat

– Many new tuples in the index invisible to an old snapshot
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Multi-version weight store
n Based on PostgreSQL MVCC model

– Snapshot S “𝑥𝑚𝑖𝑛%:𝑥𝑚𝑎𝑥%:𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%” 
• a set of concurrent transaction ID in 𝑥𝑚𝑖𝑛%, 𝑥𝑚𝑎𝑥% , union all transactions >= 𝑥𝑚𝑎𝑥%

– RW transactions are assigned transaction IDs (xid)
– Each tuple has a 𝑥𝑚𝑖𝑛 (creating transaction ID), and a 𝑥𝑚𝑎𝑥 (deleting transaction ID)
– A tuple 𝑡 is visible ↔ 𝑥𝑚𝑖𝑛& ∉ 𝑆 ∧ 𝑥𝑚𝑖𝑛& commits ∧ (𝑥𝑚𝑎𝑥& ∈ 𝑆 or aborts or is invalid)
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Multi-version weight store
n Based on PostgreSQL MVCC model

– Snapshot S “𝑥𝑚𝑖𝑛%:𝑥𝑚𝑎𝑥%:𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%”
• a set of concurrent transaction ID in 𝑥𝑚𝑖𝑛%, 𝑥𝑚𝑎𝑥% , union all transactions >= 𝑥𝑚𝑎𝑥%

– RW transactions are assigned transaction IDs (xid)
– Each tuple has a 𝑥𝑚𝑖𝑛 (creating transaction ID), and a 𝑥𝑚𝑎𝑥 (deleting transaction ID)
– A tuple 𝑡 is visible → 𝑥𝑚𝑖𝑛& ∉ 𝑆, i.e., 𝑥𝑚𝑖𝑛& < 𝑥𝑚𝑎𝑥% ∧ 𝑥𝑚𝑖𝑛& ∉ 𝑥𝑖𝑝_𝑙𝑖𝑠𝑡%
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Multi-version weight store
n Solving live version bloat using the necessary condition for visibility:

– 𝑥𝑚𝑖𝑛& < 𝑥𝑚𝑎𝑥% ∧ 𝑥𝑚𝑖𝑛& ∉ 𝑥𝑖𝑝'()&6
n Only include leaf tuples whose 𝑥𝑚𝑖𝑛 satisfies the above condition in sampling

– Maintain delta weights at different transaction IDs in memory (No persistence/WAL needed)
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Multi-version weight store
n Say we have a sampling thread at snapshot S = 2: 2:

– Only committed tuples with 𝑥𝑚𝑖𝑛 ≤ 2 may be visible

– (𝑤&7
% = 7 − 3 − 2 = 2; (𝑤&% = 3 − 1 − 1 = 1
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Multi-version weight store
n GlobalXmin – smallest 𝑥𝑚𝑖𝑛 of any active snapshot in the system

– Any version < GlobalXmin may be discarded
– Background GC thread scans the chains periodically
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Insertion in AB-tree: first descent
n Running example: inserting 𝑘B = 12
n First descent: search for insertion location

– No latch is held across pages during search
– S-latch the internal pages; X-latch the leaf page
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Insertion in AB-tree: first descent (cont’d)
n Running example: inserting 𝑘B = 12
n Inconsistent for sampling: 5𝑤B = 2 < 3 = ∑B"∈M# 5𝑤B"

– Attach the creating transaction ID 𝑥𝑚𝑖𝑛 to leaf tuples
– Newly inserted leaf tuples have invalid 𝑥𝑚𝑖𝑛 = 𝜙
– Leaf tuples with 𝑥𝑚𝑖𝑛 = 𝜙 may not be counted or sampled
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Valid 𝑥𝑚𝑖𝑛 are used in multi-
version weight store later.



Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved
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Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved
– Atomically update (𝑤 or 𝑥𝑚𝑖𝑛 using CAS or FAA
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Concurrent split may require us to redo 
weight maintenance on ancestor pages 
(see paper for details).



Insertion in AB-tree: second descent
n Running example: inserting 𝑘B = 12
n Second descent: updating the aggregate weights

– Use the same search key to re-descend the tree
– S-latch pages -- ensures index entry not concurrently moved
– Atomically update (𝑤 or 𝑥𝑚𝑖𝑛 using CAS or FAA
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Concurrent split may require us to redo 
weight maintenance on ancestor pages 
(see paper for details).



Read-only workload
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