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Motivation Challenge 2: weight consistency for sampling
n Approximate Query Processing (AQP) uses random samples

– to provide fast and approximate answers with error guarantees
– existing solutions often make trade-off between 

• efficient online updates and
• low response time
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n How do existing AQP systems perform random sampling?
Offline sampling Online Scan-based Sampling Online Index-based Sampling
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ü Fast query: linear to sample size
× Stale data and needs rebuild
× Slow and delayed batch update

× Slow query: linear to data size
üQuery over latest updates
ü Fast concurrent update

ü Fast query: linear to sample size
üQuery over latest updates
× Slow serial update

*aka Ranked B-Tree, see [Frank Olken’s PhD 
thesis, 1993]

Why concurrency is hard for aggregate B-trees?

Our goal: design an index structure that can support AQP with 
all the three desired properties.
üFast AQP query: sampling scales (almost) linear to sample size
üQuery over latest updates
üFast concurrent update

n Aggregate B-tree (example: uniform weights)
– Maintains sub-tree weights 𝑤! along with page pointer 𝑐

• 𝑤! is the sum of weights in the sub-tree
– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤!

• It can be shown the leaf tuple sampled has a probability proportional to its weight
– Weight updates must be applied atomically along a tree path from root to leaf where 

insertion happens
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n Baseline: X-latch tree path for each update
× Every update blocks every other thread
× Sampling and update throughput drops under heavy update workload
× DBMS with multi-version CC can further make decrease sampling 

throughput for old snapshots due to “live version bloat”

Challenge 1: non-blocking weight updates
Aggregate B-tree
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• Internal pages have higher contention for weight updates
• Root page is always contended in any update

Can we update weights without X-latching the entire tree path?
• Yes, use CAS with S-latch one page at a time!

• S-latch guarantees no concurrent SMO while CAS is applied
• Weight updater does not block others
• Correctness of sampling? (see challenge 2)

Leaf

Root
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n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling 
purpose if and only if for any index tuple 𝑡 ∈ 𝑇: (𝑤" ≥ ∑"!∈!" (𝑤"$.
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Rejection sampling9 > 3 + 2 + 2

n Natural idea is to update weights along the path before leaf insertion
n However, it is incorrect!

– Concurrent Structural Modification Operation (SMO) may undo the change
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n Solution: two-pass insertion
– Pass 1: regular key insertion

• assign zero weight to new key
– Pass 2: descend in the tree again and modify weights

• redo weight modification on certain pages in case of concurrent SMO
• use page and tuple update counters to detect concurrent SMO

(see paper for details)

Challenge 3: sampling efficiency under MVCC
nSampling under an old snapshot with MVCC could suffer from 

“live version bloat”
– Many live versions of tuples are

• not visible to that sampling thread
• but are physically present in the index
• à high rejections rates à decreased sampling throughput

n Solution: build an in-memory multi-version weight store to allow 
– Querying upper bound of weights under an old snapshot

• Tight enough for minimizing rejection due to live version bloat
– No logging/persistency required

• Only queries by active transactions
• Old snapshots do not live across crashes

– Details in the paper

Evaluation: insertion scalability

B-tree is the original B-link tree without aggregates in PostgreSQL.
Its insertion throughput is an upper bound.
Conclusion: AB-tree scales similarly to the original B-link tree while baseline cannot.

(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory
(32 GB, simulated with same seed )

Evaluation: read-write workload

n Our solution: AB-tree
n based on B-link tree in PostgreSQL 13

(available on Github: https://github.com/zzy7896321/abtree_public )

Read-write workload with 10 insertion threads and varying # of sampling threads

1/5 of read-only throughput

1/40 of read-only throughput
~6x better

5~6x better

Conclusion: AB-tree can sustain a reasonably high insertion and sampling throughput 
when there are heavy updates while baseline can’t.

Future direction: we hope to use AB-tree to enable HTAP within AQP systems.

https://github.com/zzy7896321/abtree_public

