
AB-tree: Index for Concurrent Random Sampling and Update
Zhuoyue Zhao

University at Buffalo
zzhao35@buffalo.edu

Dong Xie
Pennsylvania State University

dongx@psu.edu

Feifei Li
Alibaba

lifeifei@alibaba-inc.com

Motivation Challenge 2: weight consistency for sampling
n Approximate Query Processing (AQP) uses random samples

– to provide fast and approximate answers with error guarantees
– existing solutions often make trade-off between

• efficient online updates and
• low response time

Database
Table

𝒚𝟏, … , 𝒚𝒏

Random
samples

SELECT SUM(y)
FROM A
WHERE x >= 5 AND x
<= 10

Unbiased estimator

$𝑌 =
∑#∈[&]𝑦#/𝑝#

𝑛
Confidence interval 𝜀, 𝛿

𝑃𝑟 𝑌 − $𝑌 ≤ 𝜀 ≥ 1 − 𝛿

n How do existing AQP systems perform random sampling?
Offline sampling Online Scan-based Sampling Online Index-based Sampling

Database
Table

𝒕𝟏, … , 𝒕𝒏
rebuild on
update

Database
Table

Query execution

Offline

Online

Online

𝒕𝟏, … , 𝒕𝒏

Query execution

Online

Aggregate
B-tree*

concurrent
update

serial
update

Index-based Random sampling
& Query execution

Scan-based
random sampling

Random
sampling

ü Fast query: linear to sample size
× Stale data and needs rebuild
× Slow and delayed batch update

× Slow query: linear to data size
üQuery over latest updates
ü Fast concurrent update

ü Fast query: linear to sample size
üQuery over latest updates
× Slow serial update

*aka Ranked B-Tree, see [Frank Olken’s PhD
thesis, 1993]

Why concurrency is hard for aggregate B-trees?

Our goal: design an index structure that can support AQP with
all the three desired properties.
üFast AQP query: sampling scales (almost) linear to sample size
üQuery over latest updates
üFast concurrent update

n Aggregate B-tree (example: uniform weights)
– Maintains sub-tree weights 𝑤! along with page pointer 𝑐

• 𝑤! is the sum of weights in the sub-tree
– Starting from root, randomly descend into sub-trees with probability ∝ 𝑤!

• It can be shown the leaf tuple sampled has a probability proportional to its weight
– Weight updates must be applied atomically along a tree path from root to leaf where

insertion happens

10 11 12

7 -> 85 6

2 23 22 -> 3 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡! 𝑡"𝑡#

𝑝#

𝑝!

𝑝" 𝑝$

𝑝% 𝑝& 𝑝' 𝑝(𝑝) 𝑝!* 𝑝!! 𝑝!#

Insert 12

n Baseline: X-latch tree path for each update
× Every update blocks every other thread
× Sampling and update throughput drops under heavy update workload
× DBMS with multi-version CC can further make decrease sampling

throughput for old snapshots due to “live version bloat”

Challenge 1: non-blocking weight updates
Aggregate B-tree

10 11

2 2

7 8 9 13 14

9 12

3

𝑝!

𝑝" 𝑝# 𝑝$

• Internal pages have higher contention for weight updates
• Root page is always contended in any update

Can we update weights without X-latching the entire tree path?
• Yes, use CAS with S-latch one page at a time!

• S-latch guarantees no concurrent SMO while CAS is applied
• Weight updater does not block others
• Correctness of sampling? (see challenge 2)

Leaf

Root
Higher Contention

Lower Contention

n Consistent weights needed for sampling purpose
– perform rejection sampling as in [Olken’93]

Definition 1: An aggregate B-tree 𝑇 is said to be consistent for sampling
purpose if and only if for any index tuple 𝑡 ∈ 𝑇: (𝑤" ≥ ∑"!∈!" (𝑤"$.

10 11

5 6

2 23 22 2 2

7 8 90 1 2 3 6 13 14 17 20 23 26 27 30

1 9 12 22 26

6 16

3

𝑡! 𝑡"𝑡#

𝑝#

𝑝!

𝑝" 𝑝$

𝑝% 𝑝& 𝑝' 𝑝(𝑝) 𝑝!* 𝑝!! 𝑝!#

Rejection sampling9 > 3 + 2 + 2

n Natural idea is to update weights along the path before leaf insertion
n However, it is incorrect!

– Concurrent Structural Modification Operation (SMO) may undo the change

2 3

1 3 𝑝#

𝑝&

𝑇*: insert 𝑘+ = 4
𝑇,: insert 𝑘+! = 5

2

𝑡"𝑡#

Steps:
(1) 𝑇* increments 9𝑤+"
(2) 𝑇, increments 9𝑤+"
(3) 𝑇, splits 𝑝- and inserts 𝑡.
(4) 𝑇* inserts 𝑡

4 5 6
new page 𝑝!"

2 < 3
(undercounting!)

2 3 6

1 𝑝#

𝑝&

3

𝑡"𝑡#

n Solution: two-pass insertion
– Pass 1: regular key insertion

• assign zero weight to new key
– Pass 2: descend in the tree again and modify weights

• redo weight modification on certain pages in case of concurrent SMO
• use page and tuple update counters to detect concurrent SMO

(see paper for details)

Challenge 3: sampling efficiency under MVCC
nSampling under an old snapshot with MVCC could suffer from

“live version bloat”
– Many live versions of tuples are

• not visible to that sampling thread
• but are physically present in the index
• à high rejections rates à decreased sampling throughput

n Solution: build an in-memory multi-version weight store to allow
– Querying upper bound of weights under an old snapshot

• Tight enough for minimizing rejection due to live version bloat
– No logging/persistency required

• Only queries by active transactions
• Old snapshots do not live across crashes

– Details in the paper

Evaluation: insertion scalability

B-tree is the original B-link tree without aggregates in PostgreSQL.
Its insertion throughput is an upper bound.
Conclusion: AB-tree scales similarly to the original B-link tree while baseline cannot.

(a) Small buffer (128MB) (b) Large buffer (32GB) (c) In-memory
(32 GB, simulated with same seed)

Evaluation: read-write workload

n Our solution: AB-tree
n based on B-link tree in PostgreSQL 13

(available on Github: https://github.com/zzy7896321/abtree_public)

Read-write workload with 10 insertion threads and varying # of sampling threads

1/5 of read-only throughput

1/40 of read-only throughput
~6x better

5~6x better

Conclusion: AB-tree can sustain a reasonably high insertion and sampling throughput
when there are heavy updates while baseline can’t.

Future direction: we hope to use AB-tree to enable HTAP within AQP systems.

https://github.com/zzy7896321/abtree_public

