
Skinning with Dual Quaternions

Ladislav Kavan∗ 1,2 Steven Collins1 Jiřı́ Žára2 Carol O’Sullivan1

1Trinity College Dublin, 2Czech Technical University in Prague

84.9 FPS 197.4 FPS 55.1 FPS 122 FPS

Log-matrix Blending Dual Quaternions Spherical Blend Skinning Dual Quaternions

Figure 1: A comparison of dual quaternion skinning with previous methods: log-matrix blending [Cordier and Magnenat-Thalmann 2005] and
spherical blend skinning [Kavan and Zara 2005]. The proposed approach not only eliminates artifacts, but is also much easier to implement
and more than twice as fast.

Abstract
Skinning of skeletally deformable models is extensively used for
real-time animation of characters, creatures and similar objects.
The standard solution, linear blend skinning, has some serious
drawbacks that require artist intervention. Therefore, a number of
alternatives have been proposed in recent years. All of them suc-
cessfully combat some of the artifacts, but none challenge the sim-
plicity and efficiency of linear blend skinning. As a result, linear
blend skinning is still the number one choice for the majority of
developers. In this paper, we present a novel GPU-friendly skin-
ning algorithm based on dual quaternions. We show that this ap-
proach solves the artifacts of linear blend skinning at minimal ad-
ditional cost. Upgrading an existing animation system (e.g., in a
videogame) from linear to dual quaternion skinning is very easy
and has negligible impact on run-time performance.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Geometric Transformations—
[I.3.7]: Computer Graphics—Three-Dimensional Graphics and Re-
alism – Animation

Keywords: skinning, rigid transformations, blending, dual quater-
nions, linear combinations

1 Introduction

Skinning and skeletal animation is the technology behind charac-
ter animation in many applications. In some situations, physically
accurate skin deformation, which supports muscle bulging and dy-
namic effects, is desirable. In other situations, however, a fast algo-
rithm capable of skinning multiple models interactively is needed –
especially in the context of videogames.

The standard algorithm for low-cost skinning is known by many
names: linear blend skinning, vertex blending, skeletal subspace

∗e-mail: kavanl@cs.tcd.ie

deformation or enveloping. It is sometimes used not only for skin
deformation (as the name suggests) but also to animate cloth, be-
cause it is considerably faster than physically based cloth simula-
tion [Cordier and Magnenat-Thalmann 2005]. The basic princi-
ple is that skinning transformations are represented by matrices and
blended linearly. It is very well known that the direct linear com-
bination of matrices is a troublesome way of blending transforma-
tions. This produces artifacts in the deformed skin, even if we re-
strict the skinning transformations to rigid ones (i.e., composition
of a rotation and translation). In spite of these shortcomings, linear
blending is still a very popular skinning method, but perhaps only
because there is no simple alternative.

Recent previous work suggests converting rigid transformation ma-
trices to (quaternion,translation) pairs and blending them instead
of matrices [Hejl 2004; Kavan and Zara 2005]. This works, but at
a cost: Hejl’s algorithm [2004] imposes constraints on the model’s
rigging (specifically, a vertex can only be influenced by neighbour-
ing bones, otherwise artifacts can occur). This could be inconve-
nient, because linear blending has no such constraints (and it is ex-
ploited for many 3D models). Kavan and Zara’s method [2005]
does not have this restriction, but uses a complex and computation-
ally expensive Singular Value Decomposition scheme. Obviously,
the elegancy of linear blend skinning is lost in both cases.

The representation of rigid transformations by matrices or
(quaternion,translation) pairs illustrates just two possible param-
eterizations of the group of rigid transformations. Nothing prevents
us from blending, for example, 3-tuples (axis,angle,translation)
or pairs (axis + translation,sin(angle)). Even if we restrict our-
selves to blending via linear combinations, we can construct in-
finitely many different blending methods just by considering differ-
ent parameterizations of rigid transformations.

A natural question arises: which parameterization of rigid transfor-
mations is the best one for skinning? First of all, it is necessary
to clarify what “best” means in this context. We summarize the
mathematical properties that an ideal blending method for skinning
should possess in Section 3.1. Next, we show that these properties
are satisfied by a representation of rigid transformations known as
dual quaternions – a generalization of regular quaternions invented
in the nineteenth century [Clifford 1882].

From a practical point of view, dual quaternions offer a very sim-
ple yet efficient skinning method. Due to the properties of dual

quaternion blending, none of the skin collapsing effects exhibited
by linear blend skinning will manifest themselves. Blending of
dual quaternions can be elegantly computed in a vertex shader with
complexity comparable to standard linear blending. Dual quater-
nions are more memory efficient, requiring only 8 floats per trans-
formation (essentially, two regular quaternions), instead of the 12
required by matrices. In an existing application, it is extremely easy
to replace a linear blend skinning implementation by a dual quater-
nion one. All that is necessary is a slight modification of the vertex
shader and conversion of the matrices to dual quaternions before
passing them to the shader. The model files as well as the internal
data structures do not need any change at all – the only difference
is in the transformation blending.

2 Related Work

Historically, the idea of skin deformation by an underlying skeleton
is credited to [Magnenat-Thalmann et al. 1988]. Since then, sev-
eral different approaches to skeletal animation have emerged. Our
approach – dual quaternion skinning – falls into the category of ge-
ometric methods.

Physically based methods. A logical approach to character anima-
tion is to simulate the internal structure of the body: bones, muscles
and fat tissues. This can work either with explicit anatomy knowl-
edge [Scheepers et al. 1997; Aubel and Thalmann 2000; Teran
et al. 2005], or without [Capell et al. 2002; Guo and Wong 2005;
Pratscher et al. 2005]. Physically based methods generally obtain
a high level of realism (delivering also dynamic effects and muscle
bulges), but at high computational costs.

Capturing real subjects. Several methods successfully exploit
modern motion capture and/or 3D scanning devices to capture skin
deformation of real people [Allen et al. 2002; Anguelov et al. 2005;
Park and Hodgins 2006; Allen et al. 2006]. These approaches are
highly accurate, but require expensive hardware and are of course
limited only to existing subjects.

Example based techniques. Multiple input meshes can be used
both to resolve the artifacts of linear blending and to add additional
effects like muscle bulging. Example based methods use either
direct interpolation between example meshes [Lewis et al. 2000;
Sloan et al. 2001], correction by principal components of example
deformations [Kry et al. 2002] or fit the linear blending parameters
to match the provided examples [Wang and Phillips 2002; Mohr and
Gleicher 2003]. Recently, a more accurate (yet more complex) ex-
ample interpolation method has been proposed [Kurihara and Miy-
ata 2004] and augmented with an innovative GPU approach [Rhee
et al. 2006]. Generally, this class of methods offers a level of re-
alism limited only by the number of input examples. However, the
production of examples can be costly, requiring a lot of memory to
store them and the animator’s labour.

Geometric methods. In this case, only one input mesh is given
(designed in a reference pose). The skeleton-to-skin binding is de-
fined in a direct, geometrical way. The most popular way, estab-
lished with linear blend skinning, is to bind each vertex to one or
more joints. In the latter case, the weight (amount of influence) of
each influencing joint must be specified. Advanced blending meth-
ods, e.g., direct quaternion blending [Hejl 2004], log-matrix blend-
ing [Cordier and Magnenat-Thalmann 2005] and spherical blending
[Kavan and Zara 2005] also use this rigging structure. Even though
these techniques remove some artifacts, they still fall short of de-
livering natural skin deformation in all postures (see Figure 1 and
Section 3.1).

Some researchers propose combatting skinning artifacts by imple-
menting a different rigging method, e.g., based on sweep surfaces

[Hyun et al. 2005] or auxiliary curved skeletons [Yang et al. 2006;
Forstmann and Ohya 2006]. In some cases, this also allows ad-
vanced effects to be animated, such as muscle bulging. The disad-
vantages include complexity of the GPU implementation (even the
very efficient Forstmann’s method [2006] is about 3 times slower
than linear blend skinning) and inconsistency with the established
rigging standard: new rigging tools and data formats are needed.
In this paper, we argue that the problems of linear blending do not
stem from incorrect rigging, but from incorrect blending. With dual
quaternion skinning, it is therefore neither necessary to change the
rigging structures nor to update existing models.

Dual quaternions. The first reference to dual quaternions (his-
torically called bi-quaternions) appears in [Clifford 1882], along
with the more general concept of geometric algebras. These alge-
bras naturally contain not only vectors and quaternions, but also
k-dimensional subspaces [Wareham et al. 2005]. This leads to very
elegant and dimension-independent expressions of geometric prop-
erties, but sometimes unfortunately also to an increase in time and
memory complexity of the resulting implementation [Fontijne and
Dorst 2003]. Dual quaternions, in turn, are not so general, but
are more compact and faster to manipulate. For computer graph-
ics practitioners, the big advantage of dual quaternions is that they
are based on regular quaternions – a well-known tool in computer
graphics [Shoemake 1985].

Blending vs interpolation. A vast amount of literature has been
devoted to the problem of transformation interpolation [Barr et al.
1992; Juttler 1994; Marthinsen 1999; Belta and Kumar 2002; Hofer
and Pottmann 2004; Li and Hao 2006]. This is not surprising, be-
cause the construction of interpolation curves for given key trans-
formations (e.g., camera orientations) is a fundamental problem in
computer animation. Unfortunately, in skinning, we face a different
problem: the blending of rigid transformations, i.e., their weighted
average (confusingly, in some literature this is also called interpola-
tion). The weighted averages can be used to construct interpolation
curves (see [Buss and Fillmore 2001]) but not vice versa.

3 Dual Quaternion Skinning

In this section, we first quickly review previous geometric skin-
ning algorithms (Section 3.1), identifying their strengths and weak-
nesses and deriving properties that an ideal blending for skinning
should possess. Then we present a short tutorial on dual quaternions
(Section 3.2) and discuss dual quaternion blending (Section 3.3).
The final dual quaternion skinning algorithm is summarized in Sec-
tion 3.4.

Conventions. We denote scalars by lower-case letters, vectors and
quaternions in bold and matrices by capital letters. Dual quantities
are distinguished from non-dual by a caret, e.g., â denotes a dual
number and q̂ a dual quaternion. The i-th component of vector v is
written as vi, thus also v = (v1, . . . ,vn). The dot product of vectors v
and w is denoted as 〈v,w〉 and ‖v‖ is the usual vector norm. Cross
product is denoted as v×w.

3.1 Background on Geometric Skinning

In the following section, we focus only on geometric skinning
methods with linear blend skinning-style rigging structure (which
is a de facto standard in the videogames industry). A 3D object
conforming to this standard consists of skin, a skeleton and vertex
weights. The skin is a 3D triangular mesh with no assumed topol-
ogy or connectivity and the skeleton is a rooted tree (both designed
in a reference pose). The nodes of the skeleton represent joints and
the edges can be interpreted as bones. However, each node (except
the root node) can be easily identified with the edge leading to it, so

the difference between joints and bones is rather moot in our case.
The transformations relating joints in the hierarchy are assumed to
be rigid (we do not consider scale or shear). The vertex weights
describe the skin-to-skeleton binding, i.e, the amount of influence
of individual joints on each vertex.

Let us assume that there are p joints in our model. We usually
store the joints in an array, with every joint referenced by a number
1, . . . , p. In the reference (rest) pose, each joint has an associated
local coordinate system. The transformation from the rest-pose of
joint j to its actual position in the animated posture can be expressed
by a rigid transformation matrix – let us denote this matrix as Cj .

We assume that vertex v is attached to joints j1, . . . , jn with weights
w = (w1, . . . ,wn). The indices j1, . . . , jn are integers referring to
the joints that influence a given vertex – in other words, they are in-
dices into the array of joints. There is usually a fixed upper bound
on n (the number of influencing joints), typically 4, following from
graphics hardware considerations. The weights are normally as-
sumed to be convex, i.e., wi ≥ 0 and ∑n

i=1 wi = 1 (however, this
non-negativity is not exploited in our algorithm). The i-th compo-
nent of vector w, wi, represents the amount of influence of joint ji
on vertex v.

The vertex position in the mesh deformed by linear blend skinning
is then computed as:

v′ =
n

∑
i=1

wiCji v =

(
n

∑
i=1

wiCji

)
v (1)

that is, taking a linear combination of joint transformation matri-
ces. This explains the skin collapsing artifacts (see Figure 2) – the
blended matrix ∑n

i=1 wiCji is no longer a rigid transformation, but a
general affine one (potentially containing scale and shear factors).
Formally speaking, the skin collapsing effects visualize the fact that
the set of orthonormal matrices is not closed under addition.

Figure 2: Typical “candy-wrapper” artifacts of linear blend skin-
ning.

A blending method that avoids such skin-collapsing defects must
therefore deliver a rigid transformation in all cases. The blending of
matrix logarithms [Alexa 2002] satisfies this condition and has been
implemented for skinning by [Cordier and Magnenat-Thalmann
2005]. Unfortunately, log-matrix blending has a different problem:
in some cases, it picks a longer trajectory than necessary when in-
terpolating rotation [Bloom et al. 2004]. This means that instead
of a direct, straight rotation, a diversion is sometimes taken, which
can result in unsightly artifacts (see Figure 3). Our desired blending
should therefore always interpolate rigid transformations along the
shortest path, i.e., along a geodesic in the manifold of rigid transfor-
mations [Hofer and Pottmann 2004]. Note that this can be achieved
for log-matrix blending in the case of two transformations [Li and
Hao 2006], but this method does not generalize to n transforma-
tions.

Decomposing rigid transformation matrices into
(quaternion,translation) pairs and blending them linearly

Figure 3: Artifacts of log-matrix blending [Alexa 2002] caused by
choosing a longer trajectory than necessary.

has none of the above-mentioned problems: it always produces
rigid transformations and selects the shortest path of the interpo-
lated rotation [Kavan and Zara 2005]. Unfortunately, the blending
of quaternions and translation vectors independently has another
pitfall – dependence on the body-space coordinate system. In
practice, this means that the model’s vertices rotate around the
origin of the body-space. The origin is user-defined and usually
coincides with the center of mass. In many applications, rotation
around the center of mass is exactly what we need. However, this
is not the case for skinning.

Rotation of model vertices around the center of mass produces un-
acceptable skin deformations. Intuitively, vertices influenced by
both the lower and upper arm should naturally rotate about a point
near the elbow. This is the principle of [Hejl 2004]: the vertices
rotate around the nearest joint. In cases similar to that of the elbow
(two bones connected by a joint), this works perfectly. However,
for more complex joint influences, such as those usually occurring
around the armpit or dorsum, artifacts result from the fact that the
center of rotation is fixed and does not adapt to the actual posture. In
character models, these artifacts can be usually avoided by careful
rigging. However, they are inevitable in other deformable objects,
such as our simple cloth model shown in Figure 4.

Figure 4: Artifacts of direct quaternion blending [Hejl 2004] caused
by fixed rotation centers.

The limitations of Hejl’s method can be resolved as described in
[Kavan and Zara 2005], which presents an accurate method to com-
pute the rotation centers. It works by minimizing the translation
of the resulting blended transformation (c.f. with Hejl’s method
which works correctly only when this translation is zero). Unfor-
tunately, the cost of this approach is significant: it requires a least-
squares solution of a set of equations, carried out using Singular
Value Decomposition (SVD). Since it is not affordable to run SVD
per vertex, the rotation centers are cached and reused for clusters
of vertices. This trick enables real-time performance of spherical
blend skinning to be achieved. Unfortunately, the recycling of rota-
tion centers may cause discontinuities of the deformed skin in areas
where the clusters concur (see Figure 5). These artifacts are how-
ever much less frequent (and apparent) than with direct quaternion
blending.

Note that it was not necessary (and not even possible) to choose
a rotation center in linear or log-matrix blending. This is be-
cause both of these approaches are coordinate invariant, i.e., it
does not matter if we switch our transformations to a new coor-

Figure 5: Discontinuities of spherical blend skinning [Kavan and
Zara 2005] caused by caching rotation centers.

dinate system before or after the blending. This is easy to ver-
ify: if matrix M represents a change of coordinates, then matrices
Cj1 , . . . ,Cjn expressed with respect to the new coordinate system
become MCj1 M−1, . . . ,MCjn M−1. Linear blending with these ma-
trices gives:(

n

∑
i=1

wiMCji M
−1

)
= M

(
n

∑
i=1

wiCji

)
M−1

which follows from the distributive property of matrix multiplica-
tion. We see that the resulting blended matrix is really the same
as that for matrices Cj1 , . . . ,Cjn , just with respect to the new co-
ordinate system (of course). The same reasoning can be repeated
for log-matrix blending if we recall the following properties of ma-
trix exponential and logarithm: exp(MCji M

−1) = M exp(Cji)M
−1

and log(MCji M
−1) = M log(Cji)M

−1 (see [Moakher 2002]). This
shows that log-matrix blending is coordinate-invariant.

Why does this not work for (quaternion,translation) pairs? The
reason is that if we define an algebra over (quaternion,translation)
pairs, with multiplication corresponding to composition of trans-
formations, then this algebra is not distributive. Specifically, it is
not distributive with respect to right multiplication [Kavan and Zara
2005] (it is with respect to left multiplication). As right multiplica-
tion corresponds to the change of body-space coordinates (and left
multiplication to the change of world-space coordinates), this just
reflects the fact that blending (quaternion,translation) pairs rotates
about the origin of the body-space.

To summarize, we see that an optimal rigid transformation blending
method for skinning should:

• always return a valid rigid transformation (to prevent skin-
collapsing effects)

• be coordinate-invariant (to avoid the problems with rotation
center)

• interpolate two rigid transformations along the shortest path
(to mimic natural skin behaviour and avoid excessive stretch-
ing)

Note that because we work with all types of rigid transformations,
the shortest path property actually embraces two properties: short-
est path rotation and translation. Shortest path rigid transformations
correspond to screws (see next section). Besides the above stated
properties, the blending should of course be efficiently computable,
typically on a GPU. As we will show in the remainder of this paper,
our proposed dual quaternion blending satisfies all of these require-
ments.

3.2 Dual Quaternions

Dual quaternions are not a standard tool in computer graphics, in
contrast to regular quaternions. This section provides a brief tuto-
rial; for further details, see [McCarthy 1990; Kavan et al. 2006].

We assume that the reader is already familiar with regular quater-
nions, otherwise see for example [Dam et al. 1998; Hanson 2006].
Dual quaternions can be considered as quaternions whose elements
are dual numbers. The algebra of dual numbers is similar to com-
plex numbers: any dual number â can be written as â = a0 + εaε ,
where a0 is the non-dual part, aε the dual part and ε is a dual unit
satisfying ε2 = 0. The dual conjugate is analogous to the complex
conjugate: â = a0 − εaε . Multiplication of two dual numbers is
given as (a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε + aε b0). The in-
verse of a dual number â−1 is given by

1
a0 + εaε

=
1
a0

− ε
aε

a2
0

(2)

as can be immediately verified. The previous expression is defined
only when a0 �= 0. Purely dual numbers, that is dual numbers with
a0 = 0, do not have an inverse. This is a fundamental difference
from complex numbers, because every non-zero complex number
has an inverse. The square root is defined only for dual numbers
with a positive non-dual part, and it is computed as

√
a0 + εaε =

√
a0 + ε

aε
2
√

a0

A dual quaternion q̂ can be written as q̂ = ŵ+ ix̂+ jŷ+kẑ, where ŵ
is the scalar part (dual number), (x̂, ŷ, ẑ) is the vector part (dual vec-
tor), and i, j,k are the usual quaternion units. The dual unit ε com-
mutes with quaternion units, for example iε = εi. A dual quater-
nion can also be considered as an 8-tuple of real numbers, or as the
sum of two ordinary quaternions, q̂ = q0 + εqε . Conjugation of a
dual quaternion is defined using classical quaternion conjugation:
q̂∗ = q∗

0 + εq∗
ε . The norm of a dual quaternion can be written as

‖q̂‖ =
√

q̂∗q̂ =
√

q̂q̂∗, which expands to

‖q̂‖ =
√

q̂∗q̂ = ‖q0‖+ ε
〈q0,qε〉
‖q0‖ (3)

The norm satisfies the usual property ‖p̂q̂‖ = ‖p̂‖‖q̂‖. The inverse
of a dual quaternion is defined only when q0 �= 0. In this case,
we have q̂−1 = q̂∗

‖q̂‖2 . Unit dual quaternions are those satisfying

‖q̂‖ = 1. According to the previous formula, a dual quaternion q̂ is
unit if and only if ‖q0‖ = 1 and 〈q0,qε〉 = 0. Note that unit dual
quaternions are always invertible (their inverse is just conjugation).
Just like ordinary quaternions, dual quaternions are also associative,
distributive, but not commutative.

As expected, unit dual quaternions naturally represent 3D rotation,
when the dual part qε = 0. If we have a 3D vector (v0,v1,v2), we
define the associated unit dual quaternion as v̂ = 1+ ε(v0i + v1 j +
v2k). The rotation of vector (v0,v1,v2) by a dual quaternion q̂ can
then be written as q̂v̂q̂∗ (where q̂∗ denotes both quaternion and dual
conjugation). This can be verified, because if qε = 0 then q̂ = q0
and q̂v̂q̂∗ simplifies to

q0(1+ ε(v0i+v1 j +v2k))q∗
0 = 1+ εq0(v0i+v1 j +v2k)q∗

0

where q0(v0i + v1 j + v2k)q∗
0 is the familiar formula for rotation by

a regular quaternion.

What is interesting is that dual quaternions can also represent 3D
translation. A unit dual quaternion t̂, defined as t̂ = 1 + ε

2 (t0i +
t1 j + t2k) corresponds to translation by vector (t0,t1,t2) (note that
dual quaternions work with half of the translation vector, analogous
to classical quaternions, which work with half of the angle of rota-
tion). If we simplify t̂v̂t̂∗, we obtain 1+ ε((v0 + t0)i +(v1 + t1) j +
(v2 + t2)k), which shows that the unit dual quaternion t̂ really per-
forms translation by (t0,t1,t2). Rigid transformation is a composi-
tion of rotation and translation, and composition of transformations

corresponds to multiplication of dual quaternions. If the rotation
is described by unit quaternion q0 and the translation by unit dual
quaternion 1 + ε

2 (t0i + t1 j + t2k) as before, then their composition
is

(1+
ε
2
(t0i+ t1 j + t2k))q0 = q0 +

ε
2
(t0i+ t1 j + t2k)q0 (4)

We can verify, by direct computation, that the result is always a
unit dual quaternion and, conversely, that any unit dual quaternion
can always be written in this form. Let us assume that we already
have a routine for conversion between a 3×3 rotation matrix and a
unit quaternion, as well as a routine for quaternion multiplication.
Equation (4) then shows how to convert a 4×4 rigid transformation
matrix to a unit dual quaternion. The opposite conversion, from a
unit dual quaternion q0 + εqε to a matrix is also straightforward.
The rotation is just a matrix representation of q0 and the translation
is given by the vector part of 2qε q∗

0.

Every unit dual quaternion q̂ can be written as

q̂ = cos
θ̂
2

+ ŝ sin
θ̂
2

(5)

where ŝ is a unit dual vector with zero scalar part, see [McCarthy
1990] or [Daniilidis 1999]. Note that this looks like the formula
for regular quaternions, just employing the dual angle θ̂ = θ0 +εθε
and unit dual vector ŝ = s0 + εsε . The geometric interpretation of
those quantities is related to screw motion, that is a rotation and
translation about the same axis. Chasle’s theorem [Daniilidis 1999]
states that any rigid transformation can be described by a screw
motion (see Figure 6). Angle θ0/2 is the angle of rotation, and unit
vector s0 represents the direction of the axis of rotation. θε/2 is the
amount of translation along vector s0, and sε is the moment of the
axis. Moment is an unambiguous description of the position of an
axis in space. It is given by equation sε = p×s0, where p is a vector
pointing from the origin to an arbitrary point on the axis. Which
point we choose is not important, because for any other point of the
axis, say p+cs0 (where c is an arbitrary scalar), we obtain the same
moment: (p + cs0)× s0 = p× s0. In other words, we can say that
while classical quaternions can represent only rotations whose axes
pass through the origin, dual quaternions can represent rotations
with arbitrary axes.

Dual quaternions exhibit the so-called antipodal property of classi-
cal quaternions, i.e., the fact that both q̂ and −q̂ represent the same
rigid transformation. Therefore, when converting matrices to dual
quaternions, we must choose an appropriate sign. This is however
the same problem as in the case of regular quaternions, but we can
apply the same methods as in [Hejl 2004] or [Kavan and Zara 2005],
i.e., consistently select signs so that the resulting quaternions lie in
the same hemisphere.

3.3 Blending of Dual Quaternions

Using Equation (4), we can convert our skinning transformations
to unit dual quaternions q̂1, . . . , q̂n. The next task is to compute
a blended unit dual quaternion q̂ with respect to the given convex
weights w = (w1, . . . ,wn). This can be done by taking their linear
combination followed by a normalization (because we need a unit
dual quaternion). We call this Dual quaternion Linear Blending
(DLB):

DLB(w; q̂1, . . . , q̂n) =
w1q̂1 + . . .+wnq̂n

‖w1q̂1 + . . .+wnq̂n‖
In the following, we show that DLB has all the properties required
in skinning (as summarized in Section 3.1).

�0��

s0

p0

s0

p

0

��� s0���.

Figure 6: Example of a screw motion, side and top view.

Firstly, it is clear that DLB always returns a rigid transformation,
because DLB computes a unit dual quaternion which can be subse-
quently converted to a rigid transformation matrix.

Secondly, in order to demonstrate the coordinate-invariance of
DLB, we have to verify that for any unit dual quaternion r̂, the fol-
lowing formula is true:

DLB(w; r̂q̂1r̂∗, . . . , r̂q̂nr̂∗) = r̂DLB(w; q̂1, . . . , q̂n)r̂∗ (6)

In fact, this breaks down to verifying two similar properties, called
left and right invariance. Left invariance requires that

DLB(w; r̂q̂1, . . . , r̂q̂n) = r̂DLB(w; q̂1, . . . , q̂n)

and right invariance, by analogy, requires that:

DLB(w; q̂1r̂, . . . , q̂nr̂) = DLB(w; q̂1, . . . , q̂n)r̂

It should be clear that left and right invariance together imply
coordinate-invariance. To prove left invariance, it is sufficient to
apply the distributive property of dual quaternions and the multi-
plicative property of the norm (Section 3.2):

DLB(w; r̂q̂1, . . . , r̂q̂n) =
w1r̂q̂1 + . . .+wnr̂q̂n

‖w1r̂q̂1 + . . .+wnr̂q̂n‖ =

r̂
w1q̂1 + . . .+wnq̂n

‖r̂‖ ‖w1q̂1 + . . .+wnq̂n‖ = r̂DLB(w; q̂1, . . . , q̂n)

because ‖r̂‖ = 1, according to our assumption. Demonstration of
the right invariance proceeds along the same lines. We see that DLB
is indeed coordinate-invariant.

Thirdly, we show that when DLB is applied to two rigid transforma-
tions, it interpolates them along the shortest trajectory. Let therefore
p̂, q̂ be two unit dual quaternions. We will denote their blending as
DLB(t; p̂, q̂). Thanks to the left invariance of DLB (proven above)
we can write

DLB(t; p̂, q̂) = p̂p̂∗DLB(t; p̂, q̂) = p̂DLB(t;1, p̂∗q̂)

It is therefore sufficient to show that the path between 1 (the identity
transformation) and p̂∗q̂ will be the shortest one, i.e., given by the
screw corresponding to p̂∗q̂. Since p̂, q̂ are unit dual quaternions,
so is p̂∗q̂ and therefore, according to Equation (5), there exists n̂
(a unit dual quaternion with zero scalar part) and α̂ (a dual scalar)
such that p̂∗q̂ = cos α̂

2 + n̂sin α̂
2 . Therefore, DLB(t;1, p̂∗q̂) can be

re-written as

DLB(t;1, p̂∗q̂) =
1− t + tp̂∗q̂
‖1− t + tp̂∗q̂‖ =

1− t + t cos(α̂
2)+ n̂t sin(α̂

2)
‖1− t + tp̂∗q̂‖

which means that the screw axis of DLB(t;1, p̂∗q̂) is the same for
all t ∈ [0,1] and is given by n̂ – the only thing that varies is the angle

of rotation and amount of translation, both encoded in
1−t+t cos(α̂

2)
‖1−t+tp̂∗q̂‖

and
t sin(α̂

2)
‖1−t+tp̂∗q̂‖ . In other words, DLB(t;1, p̂∗q̂) produces a shortest

path screw motion. It should be noted that this screw motion does
not have a constant speed – in an analogy to linear interpolation
of regular quaternions. However, it can be demonstrated that the
velocity of this motion is actually not far from constant [Kavan et al.
2006], which explains why this issue does not present any visible
drawbacks in skinning.

3.4 The Final Algorithm

This section discusses how to efficiently implement dual quater-
nion skinning. First, we need to convert the skinning matrices
C1, . . . ,Cp (where p is the total number of joints) to dual quater-
nions q̂1, . . . , q̂p, unless our application works with them already.
This will typically be done on a CPU and will not take long, be-
cause the conversion to a dual quaternion involves just one quater-
nion multiplication (see Equation (4)) and the number of joints p is
usually quite small. The dual quaternions q̂1, . . . , q̂p are then sent to
the GPU as uniform parameters, each represented by a 2×4 matrix.

The skin deformation, i.e., the DLB itself and conversion back to
the matrix form, takes place in the vertex shader. Since the number
of vertices tends to be orders of magnitude higher than the number
of joints, the vertex shader code should be optimized. The first step
of DLB(w; q̂ j1 , . . . , q̂ jn), i.e., the computation of the linear combi-
nation b̂ = ∑n

i=1 wiq̂ ji , is straightforward. However, the following
normalization, i.e., the computation of b̂′ = b̂/‖b̂‖, and the subse-
quent conversion of b̂′ to matrix M can be optimized as follows:

If b̂ = b0 +εbε , then the norm ‖b̂‖ = ‖b0‖+ε 〈b0,bε 〉
‖b0‖ , according to

Equation (3). The inverse is given by

1

‖b̂‖ =
1

‖b0‖ − ε
〈b0,bε〉
‖b0‖3

according to Equation (2). Therefore,

b̂′ = b̂

‖b̂‖ = (b0 + εbε)
1

‖b̂‖ =
b0

‖b0‖ + ε
(

bε
‖b0‖ − b0〈b0,bε〉

‖b0‖3

)

Now, b̂′ = b′
0 +εb′

ε needs to be converted to a homogeneous matrix
M. Its rotational part is given simply by b′

0 = b0
‖b0‖ . The translation

is given by the vector part of 2b′
ε(b′

0)
∗. This simplifies to

2b′
ε(b

′
0)

∗ = 2

(
bε
‖b0‖

− b0〈b0,bε〉
‖b0‖3

)
b∗

0

‖b0‖
= 2

(
bε b∗

0

‖b0‖2 − 〈b0,bε〉
‖b0‖2

)

Since the scalar part of 2b′
ε(b

′
0)

∗ = 0 (according to Equation (4)), it

means that there is no need to evaluate 〈b0,bε 〉
‖b0‖2 , because its purpose

is only to cancel out the scalar part of bε b∗
0

‖b0‖2 . Therefore, we can
compute the translational part of matrix M just by computing the

vector part of 2 bε b∗
0

‖b0‖2 (and its scalar part can be safely ignored). This
means that we can avoid the lengthy dual quaternion normalization.

Matrix M is then used to transform the input vertex v. Thanks to
the fact that M is always a rigid transformation matrix, there are
no complications with the inverse transposition and normalization
(as in linear blending [Mohr and Gleicher 2003]) and we can use
M directly to transform also the vertex normal vn. Dual quaternion
skinning can thus be summarized in the following pseudocode:

Figure 7: Comparison of linear (left) and dual quaternion blending
(right). Dual quaternions preserve rigidity of input transformations
and therefore avoid skin collapsing artifacts.

Input: dual quaternions q̂1, . . . , q̂p (uniform parameters)
vertex position v and normal vn
joints indices j1, . . . , jn and weights w1, . . . ,wn

Output: transformed vertex position v′ and normal v′n

b̂ = w1q̂ j1 + . . .+wnq̂ jn
// denote the non-dual part of b̂ as b0 and the dual one as bε
c0 = b0/‖b0‖
cε = bε/‖b0‖
// denote the components of c0 as w0,x0,y0,z0
// denote the components of cε as wε ,xε ,yε ,zε
t0 = 2(−wε x0 +xε w0 −yε z0 + zε y0)
t1 = 2(−wε y0 +xε z0 +yε w0 − zε x0)
t2 = 2(−wε z0 −xε y0 +yε x0 + zε w0)

M =

⎛
⎝ 1−2y2

0 −2z2
0 2x0y0 −2w0z0 2x0z0 +2w0y0 t0

2x0y0 +2w0z0 1−2x2
0 −2z2

0 2y0z0 −2w0x0 t1
2x0z0 −2w0y0 2y0z0 +2w0x0 1−2x2

0 −2y2
0 t2

⎞
⎠

v′ = Mv // where v has form v = (v0,v1,v2,1)
v′n = Mvn // where vn has form vn = (vn,0,vn,1,vn,2,0)

The actual vertex shader code would add some lighting compu-
tations and transformation by the model-view-projection matrix.
Note that the formulas for t0,t1,t2 are simply the expanded forms
of quaternion product 2cε c∗0. It is encouraging how simple the re-
sulting algorithm is.

4 Results and Comparison

In our experiments, we use a female model with 5002 vertices, 9253
triangles and 54 joints. We compare the proposed dual quater-
nion skinning with linear blending, direct quaternion blending
[Hejl 2004], log-matrix blending [Cordier and Magnenat-Thalmann
2005] and spherical blend skinning [Kavan and Zara 2005]. Some
artifacts are better visualized on a simple model of cloth (6000 ver-
tices, 12000 triangles and 49 joints). Note that the only variable
in our experiments is the transformation blending – the input data
(model files and postures) are always the same. The visual results

Figure 8: Comparison of direct quaternion blending (left) and dual
quaternion blending (right). Only the latter delivers smooth defor-
mation.

support our hypothesis that our DLB method (which satisfies the
properties stated in Section 3.1) is indeed free of artifacts, see Fig-
ures 7, 8, 9 and 10.

In order to compare computational performance, we have imple-
mented both CPU and GPU versions of dual quaternion skinning.
The average times are reported in Figure 11. The performance of
log-matrix vs. spherical blending has been compared only on the
CPU, because the GPU implementation of these algorithms has not
been provided in the previous work. Note that our implementa-
tion of log-matrix blending uses an optimization for rigid transfor-
mations based on the Rodrigues formula, as suggested in [Alexa
2002].

From the measurements, we see that dual quaternion, linear and
direct quaternion blending [Hejl 2004] have quite similar perfor-
mance. Although our algorithm is slightly slower than both linear
and direct quaternion blending, we believe that this is not a high
price to pay for the elimination of artifacts. When compared to log-
matrix and spherical blending, we see that dual quaternion skinning
is more than twice as fast (and also much easier to implement).

Figure 9: Comparison of log-matrix (left) and dual quaternion
blending (right). The shortest-path property of dual quaternion
blending guarantees natural skin deformations.

Figure 10: Comparison of spherical blending (left) and dual quater-
nion blending (right). Dual quaternions do not need to cluster ver-
tices and therefore naturally avoid artifacts.

0

4

8

12

Pentium 4 / 3.4 GHz GeForce 6600 GT

LBS DQB Log SBS DLB

3.67

11.78
10.83

5.074.66

0.0

0.1

0.2

0.3

0.4

0.5

LBS DQB DLB

0.32

0.39

0.46

[ms] [ms]

Figure 11: Average CPU/GPU runtimes for skin deformation of the
woman model in milliseconds: LBS – linear blend skinning, DQB
– direct quaternion blending, Log – log-matrix blending, SBS –
spherical blend skinning, DLB – dual quaternion linear blending.

5 Conclusions

In this paper, we propose a novel skinning method based on the
blending of dual quaternions. We justify its usefulness not only on
practical examples, but also by identifying the mathematical prop-
erties important for skinning and showing that dual quaternions sat-
isfy them. Our method is efficient, very simple to implement and
does not require the modification of existing models or authoring
tools (even though advanced methods exploiting the linearity of lin-
ear blend skinning, such as [Mohr and Gleicher 2003], would have
to be adapted). We therefore believe that it provides a really practi-
cal alternative to the popular but inaccurate linear blend skinning.

The proposed algorithm has several limitations. Dual quaternion
skinning simulates skin-to-skeleton binding in a simplistic way and
is therefore unable to produce realistic musculature or dynamic ef-
fects. Also, dual quaternions are limited only to rigid transforma-
tions and are thus not suitable for models whose parts can scale or
shear (e.g., some cartoon characters).

From a broader point of view, the blending of dual quaternions has
potentially many more applications than just skinning. More gener-
ally, it is a method for rigid transformation blending with interesting
properties. Therefore, it could be potentially useful in contexts such
as motion blending, analysis or compression [Alexa 2002]. The in-

vestigation of other applications of dual quaternions in computer
graphics promises to be an interesting area for future work.

6 Acknowledgements

We wish to thank Carlo H. Séquin for early illuminating discus-
sion on the topic and the anonymous reviewers for their helpful
comments. We acknowledge the support of the Higher Education
Authority of Ireland. This work has been partly supported by the
Ministry of Education of the Czech Republic under the research
programs LC-06008 (Center for Computer Graphics) and MSM
6840770014.

References
ALEXA, M. 2002. Linear combination of transformations. In SIGGRAPH ’02: Pro-

ceedings of the 29th annual conference on Computer graphics and interactive tech-
niques, ACM Press, 380–387.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2002. Articulated body deformation
from range scan data. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, ACM Press, New York,
NY, USA, 612–619.

ALLEN, B., CURLESS, B., POPOVIĆ, Z., AND HERTZMANN, A. 2006. Learning
a correlated model of identity and pose-dependent body shape variation for real-
time synthesis. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, Eurographics Association, Aire-la-Ville, Switzer-
land, 147–156.

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S., RODGERS, J., AND

DAVIS, J. 2005. SCAPE: shape completion and animation of people. ACM Trans.
Graph. 24, 3, 408–416.

AUBEL, A., AND THALMANN, D. 2000. Realistic deformation of human body shapes.
Proc. Computer Animation and Simulation 2000, 125–135.

BARR, A. H., CURRIN, B., GABRIEL, S., AND HUGHES, J. F. 1992. Smooth
interpolation of orientations with angular velocity constraints using quaternions.
ACM Trans. Graph., 313–320.

BELTA, C., AND KUMAR, V. 2002. An SVD-based projection method for interpola-
tion on SE(3). IEEE Transactions on Robotics and Automation 18, 3, 334–345.

BLOOM, C., BLOW, J., AND MURATORI, C., 2004. Errors and omissions in Marc
Alexa’s Linear combination of transformations. http://www.cbloom.com/3d/

techdocs/lcot_errors.pdf.

BUSS, S. R., AND FILLMORE, J. P. 2001. Spherical averages and applications to
spherical splines and interpolation. ACM Trans. Graph. 20, 2, 95–126.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND POPOVIC, Z. 2002. In-
teractive skeleton-driven dynamic deformations. In SIGGRAPH ’02: Proceedings
of the 29th annual conference on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 586–593.

CLIFFORD, W. 1882. Mathematical Papers. London, Macmillan.

CORDIER, F., AND MAGNENAT-THALMANN, N. 2005. A data-driven approach for
real-time clothes simulation. Computer Graphics Forum 24, 2, 173–183.

DAM, E., KOCH, M., AND LILLHOLM, M., 1998. Quaternions, interpolation and
animation. Technical Report DIKU-TR-98/5, University of Copenhagen.

DANIILIDIS, K. 1999. Hand-eye calibration using dual quaternions. International
Journal of Robotics Research 18, 286–298.

FONTIJNE, D., AND DORST, L. 2003. Modeling 3D euclidean geometry. IEEE
Comput. Graph. Appl. 23, 2, 68–78.

FORSTMANN, S., AND OHYA, J. 2006. Fast skeletal animation by skinned arc-spline
based deformation. In EG 2006 Short Papers, 1–4.

GUO, Z., AND WONG, K. C. 2005. Skinning with deformable chunks. Computer
Graphics Forum 24, 3, 373–381.

HANSON, A. J. 2006. Visualizing Quaternions. Morgan Kaufmann Publishers Inc.

HEJL, J., 2004. Hardware skinning with quaternions. Game Programming Gems 4,
Charles River Media, 487–495.

HOFER, M., AND POTTMANN, H. 2004. Energy-minimizing splines in manifolds.
ACM Trans. Graph. 23, 3, 284–293.

HYUN, D.-E., YOON, S.-H., CHANG, J.-W., SEONG, J.-K., KIM, M.-S., AND

JÜTTLER, B. 2005. Sweep-based human deformation. The Visual Computer 21,
8-10, 542–550.

JUTTLER, B. 1994. Visualization of moving objects using dual quaternion curves.
Computers & Graphics 18, 3, 315–326.

KAVAN, L., AND ZARA, J. 2005. Spherical blend skinning: A real-time deformation
of articulated models. In 2005 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, ACM Press, 9–16.

KAVAN, L., COLLINS, S., O’SULLIVAN, C., AND ZARA, J., 2006. Dual quaternions
for rigid transformation blending. Technical report TCD-CS-2006-46, Trinity Col-
lege Dublin.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: real time large de-
formation character skinning in hardware. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, 153–159.

KURIHARA, T., AND MIYATA, N. 2004. Modeling deformable human hands
from medical images. In SCA ’04: Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, ACM Press, New York,
NY, USA, 355–363.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space deformation: a unified
approach to shape interpolation and skeleton-driven deformation. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 165–172.

LI, J., AND HAO, P. 2006. Smooth interpolation on homogeneous matrix groups for
computer animation. Journal of Zhejiang University 7, 7, 1168–1177.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THALMANN, D. 1988. Joint-
dependent local deformations for hand animation and object grasping. In Proceed-
ings on Graphics interface ’88, Canadian Information Processing Society, 26–33.

MARTHINSEN, A. 1999. Interpolation in lie groups. SIAM J. Numer. Anal. 37, 1,
269–285.

MCCARTHY, J. M. 1990. Introduction to theoretical kinematics. MIT Press, Cam-
bridge, MA, USA.

MOAKHER, M. 2002. Means and averaging in the group of rotations. SIAM Journal
on Matrix Analysis and Applications 24, 1, 1–16.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate character skins
from examples. ACM Trans. Graph. 22, 3, 562–568.

PARK, S. I., AND HODGINS, J. K. 2006. Capturing and animating skin deformation
in human motion. ACM Trans. Graph. 25, 3, 881–889.

PRATSCHER, M., COLEMAN, P., LASZLO, J., AND SINGH, K. 2005. Outside-
in anatomy based character rigging. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New
York, NY, USA, 329–338.

RHEE, T., LEWIS, J., AND NEUMANN, U. 2006. Real-time weighted pose-space
deformation on the GPU. Computer Graphics Forum 25, 3.

SCHEEPERS, F., PARENT, R. E., CARLSON, W. E., AND MAY, S. F. 1997. Anatomy-
based modeling of the human musculature. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 163–172.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves. In Proceedings
of the 12th annual conference on Computer graphics and interactive techniques,
ACM Press, 245–254.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001. Shape by example.
In Proceedings of the 2001 symposium on Interactive 3D graphics, ACM Press,
135–143.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V., LAU, C., AND

FEDKIW, R. 2005. Creating and simulating skeletal muscle from the visible human
data set. IEEE Transactions on Visualization and Computer Graphics 11, 3, 317–
328.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping: least-squares
approximation techniques for skin animation. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, 129–
138.

WAREHAM, R., CAMERON, J., AND LASENBY, J. 2005. Applications of conformal
geometric algebra in computer vision and graphics. Lecture Notes in Computer
Science 3519, 329–349.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve skeleton skinning
for human and creature characters: Research articles. Comput. Animat. Virtual
Worlds 17, 3-4, 281–292.

